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Abstract: The rising concerns in terms of environmental protection and the search for more versatile
polymer-based materials have led to an increasing interest in the use of polymer composites
filled with natural organic fillers (biodegradable and/or coming from renewable resources) as a
replacement for traditional mineral inorganic fillers. At the same time, the recycling of polymers is
still of fundamental importance in order to optimize the utilization of available resources, reducing
the environmental impact related to the life cycle of polymer-based items. Green composites
from biopolymer matrix and wood flour were prepared and the investigation focused on several
issues, such as the effect of reprocessing on the matrix properties, wood flour loading effects on
virgin and reprocessed biopolymer, and wood flour effects on material reprocessability. Tensile,
Dynamic-mechanical thermal (DMTA), differential scanning calorimetry (DSC) and creep tests were
performed, pointing out that wood flour leads to an improvement of rigidity and creep resistance
in comparison to the pristine polymer, without compromising other properties such as the tensile
strength. The biopolymer also showed a good resistance to multiple reprocessing; the latter even
allowed for improving some properties of the obtained green composites.

Keywords: green composites; biopolymer; mechanical properties; dynamic mechanical analysis;
creep; thermal analysis

1. Introduction

Rising concerns regarding environmental issues, public health, and stricter legislations are
currently driving research attention on the development of biomaterials coming from renewable
sources. Although in the last decades plastic recycling experienced a large growth in capacity
and technology, the fraction of plastics waste annually disposed in landfills is still the most
significant [1]. Furthermore, most of the common polymeric materials are highly resistant to physical
and microbial degradation and become environmental polluters [2]. The packaging industry involves
huge quantities of plastics and since it deals often with biodegradable products, such as food, this
would suggest the use of biodegradable polymers [3].
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Biopolymers such as poly(lactic acid) (PLA) and Mater-Bi present mechanical behavior similar
to petroleum-based materials and are easily compostable, due to their high biodegradation rate and
nontoxicity. On the other hand, these materials can be too expensive if compared to traditional
plastics [4]. An effective way to reduce cost, without affecting environmentally friendly behavior,
is the development of green composites from biopolymers and natural fillers. Composites are largely
employed in several industrial sectors, especially in transport, and since their recycling is often not
economically feasible, this results in a growing rate of waste accumulation [5]. For these reasons, the
development of compostable or easily recyclable composites would be of great interest for plastics
sustainability. In recent years, several studies investigated the opportunity to replace traditional
fillers, such as glass fibers or carbon black, with natural based materials [6]. Fillers can be derived
from different sources including starch [7], chitin, microcrystalline cellulose [6], rice husk [8], jute [9],
wood flour [10], cassava, starch-green coconut [11], palm [12], hemp [13], caraua [14], bagasse [4],
bamboo, coffee ground [15], poultry feathers [16], flax [17], sisal, and cotton [18]. The benefit of
using natural based materials lies, among other reasons, on reducing dependency on oil [19]. Of
course, for the biomaterial to be economically convenient fillers need to be low-cost and available
in huge quantities; therefore, research is focusing on food/agricultural industry waste products.
Using natural fibers as fillers, beside renewability and biodegradability, can also result in an easier
processing, and subsequent energy saving [20]. Additionally, in some authors’ opinion, energy
recovery from filled-biopolymers incineration can be seen as a contribution to renewable energy
production [21].

Green composites are usually lightweight, fully sustainable materials. Nevertheless they still
generate some concerns, mostly caused by economic reasons, their limited shelf life, and their
mechanical properties, often worse than those of petroleum-based materials. Furthermore there are
concerns that compostable bio-plastics will upset existing recycling methods [19]. Most biopolymers
were originally designed for packaging, so they are not optimized to form the matrix in a composite.
Matrices will be chosen according to mechanical, chemical, and thermal requirements of the final
object and should have low viscosity, so as to guarantee the complete impregnation of fibers [22].
In some cases matrices need to be modified in order to enhance the matrix-fibers surface adhesion;
valid alternatives to matrix treatment can be the use of coupling agents or fiber treatment in order
to improve natural fiber/matrix interfacial adhesion [23-26]. Nevertheless, all solutions lead to
additional costs and to the possibility of reducing the biodegradability.

Natural fibers can also be used to reevaluate recycled matrices with compromised mechanical
properties. In particular when testing high-density polyethylene (HDPE)-hemp composites it was
shown that the matrix-fibers interactions, using a recycled matrix, were stronger than using virgin
material [13]. Other studies showed how the presence of fibers can modify the reprocessability of
materials. When the affinity of matrix-fibers is high, reprocessing can improve the fibers dispersion
and surface area, thus resulting in improved recyclability. Otherwise, if the affinity of matrix-fibers
is low, fibers behave more as a filler than as a reinforcement, and material recyclability decreases
with fiber content [27]. It seems clear how it can be complicated to foresee the effect of the
introduction of fibers in the same material, at different reprocessing stages, and the effect of fibers
on degradation phenomena.

BioFlex F2110 is a new generation of commercial biopolymer produced by FKuR Kunststoff
GmbH (Willich, Germany), based on blend of PLA and Thermoplastic-Copolyesters (TPC) [28], and
in spite of its interesting mechanical properties, to the best of our knowledge, no example of its
characteristics as a matrix in fiber-reinforced materials can be found in scientific literature. Testing
on wood flour/fiber (WF) content effects on some properties of a different version of BioFlex, the
467-F (consisting primarily of renewable resources and biodegradable polymers) was performed by
Sykacek et al. [29] stating improvements in tensile and flexural strength and modulus at the expense
of lower impact strength and higher water uptake. Other studies on WF-natural based polymer
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composites showed slightly different trends, reporting a constant tensile strength with growing fiber
content, but similar behavior for the other parameters [30].

This paper focuses on the characterization of BioFlex F2110-wood flour green composites,
with the addition of fibers at different recycling stages. After loading the fibers, composites were
further processed, by means of a single screw extrusion followed by compression molding. This
way, it was possible to get a better understanding of the reprocessing effect on biopolymer matrix
properties, wood flour loading effects on virgin and reprocessed biopolymer, and wood flour effects
on material reprocessability.

2. Results and Discussion

Tensile characterization allowed for the comparison of the elastic modulus, tensile strength, and
elongation at break of the different systems. Dynamic-mechanical thermal (DMTA) analysis was
mainly important to investigate the complex modulus components, the glass transition temperatures,
and their relationship with the thermomechanical resistance of the different systems. Given the
high number of specimens analyzed (as described in the Experimental section), and their mutual
connections, results and discussion is organized according to individual manufacturing parameters.

2.1. Recycling on Pristine BioFlex

Processing the neat polymer in a single screw extruder up to four times did not lead to significant
reductions in the elastic modulus (Table 1). This applies also to the tensile strength. On the other
hand, a slightly lower elongation at break (still statistically significant, p = 0.0251) was observed,
which could imply the shortening of polymer chains during the reprocessing.

DMTA tests showed the trends for the components of the complex modulus, i.e., storage (E)
and loss (E"') moduli taken at 55 °C (See Table 2). In particular, E’ showed only minor variations
(in agreement with the minor variations observed with reference to the elastic modulus), while the
glass temperature, Tg, experienced a slight reduction. This seems to indicate a moderate shortening
of polymer chains, resulting in a slightly higher mobility, and is in agreement with previous studies
on recycling of PLA and other polyesters [31-33].

Table 1. Elastic modulus (E), tensile strength (TS), elongation at break (EB) for pristine (V) and
reprocessed (two times: R2, four times: R4) BioFlex.

Property \'% R2 R4

E [MPa] 142 141 143
TS [MPa] 10.7 107 101
EB [%] 123 119 99

Table 2. Dynamic-mechanical thermal (DMTA) results for pristine and reprocessed BioFlex.

Property A\ R4

E'[MPal 120 124
E’[MPa] 257 131
Tg [°C] 65 63

2.2. Wood Flour Content

Tensile tests showed an increasing trend for the elastic modulus of BioFlex with increasing
amounts of filler. As shown in Table 3, samples containing 15% and 30% wood flour (i.e., V15
and V30) presented elastic moduli respectively 220% and 380% higher than the original BioFlex (V).
Besides the increasing in elastic modulus, wood flour addition determines a drop of the elongation at
break (mainly due to the stiffening effect of the filler), while tensile strength does not change much

7538



Materials 2015, 8, 7536-7548

upon changing the wood flour content (15% or 30%). This is in adequate agreement with the results
found in other works dealing with natural organic fillers (in particle form) and other biodegradable
polymers [30,34-37] and could be mainly attributed to a decent degree of adhesion between the polar
natural organic filler and the biopolymer. On the other hand, when apolar polymer matrices (such
as polyolefins) are involved, the increase in filler content usually leads to a decrease in the tensile
strength [38].

Table 3. Elastic modulus (E), tensile strength at break (TS), elongation at break (EB) for neat
polymer (V), four-times reprocessed polymer (R4), 15% and 30% filled composites (V15, V30), 15%
and 30% filled composites prepared after multiple recycling of the polymer matrix (R4-15, R4-30).

Property \% R4 V-15 V-30 R4-15 R4-30

E [MPa] 142 143 313 539 317 511
TS [MPa] 10.7 10.1 9.2 11.2 10.3 11.6
EB [%] 123 99 12.9 6.6 11.4 6.8

Similar considerations can be drawn also for reprocessed BioFlex (R4) after wood flour addition
(R4-15, R4-30): a remarkable increase of the rigidity is observed, whereas variations of the tensile
strength are only marginal. On the other hand, elongation at break drastically decreases, as
previously observed. Therefore, adding wood flour can be a simple, cost-saving and effective way to
increase some of the mechanical properties of recycled biodegradable polymers such as BioFlex, in
applications where high ductility levels are not required.

In Figure 1, stress-strain curves are shown for samples of the neat pristine matrix (V) and
composites loaded with 15% (V15) and 30% (V30) wood flour. The dramatic reduction in elongation
at break (and thus in ductility) and, at the same time, the significant increase in elastic modulus (i.e.,
in rigidity) can be easily observed.

12

Tensile Stress [MPa]

V-15
—V30

0 20 40 60 80 100 120 140
Elongation [%]

Figure 1. Comparison on stress-strain curves for virgin BioFlex at different wood flour content.

Dynamic mechanical analysis (Table 4) gave, for E’ and E” (at 55 °C), the same trends showed by
tensile testing for elastic modulus. Furthermore, it was shown that T increases with WF content.
This is probably due to steric hindering caused by wood fibers, which prevents macromolecular
chain movement, and is in agreement with the findings of other researchers. Altun et al. [39]
reported that the glass transition temperature of PLA-wood fiber composites shifted to slightly higher
temperatures, due to the restricted molecular motion arising from strong interaction between the
matrix and filler. Similar trends were also found by Huda et al. [40].
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Figure 2a,b reports, for the entire temperature range of investigation, the DMTA curves for the
storage modulus and the damping factor, respectively. The E’ curves evidence the overall trend of the
different samples, confirming that the addition of wood flour significantly increases the modulus over
the entire range, while reprocessing leads only to minor variations: this suggests that only marginal
shortening of the polymer chains has occurred.

Table 4. Comparison between DMTA results of neat polymer (V), 15% and 30% filled composites
(V15, V30) and 15%, 30% filled composites prepared after multiple recyclings of the polymer matrix
(R4-15, R4-30).

Property \" R4 V-15 V-30 R4-15 R4-30

E' [MPa] 120 124 286 436 296 442
E’[MPal 25.7 13.1 221 35.1 234 35.7
T [°Cl 65 63 69 70 70 70

Regarding the other observable variations upon adding the wood flour, these are substantially
small, although they are more significant (up to approximately 10%) when wood flour is added to the
already reprocessed BioFlex. In all cases, the peak becomes lower and broader upon adding wood
flour, thus indicating significant interaction phenomena between the matrix and the wood particles.

E' (Pa)

1000000 4—— \ X

—0—V-15 - *
——V-30 \
100000 o R4 Q
—eR4-15 \
—=— R4-30 *

T T T T T T T T
40 60 80 100 120

10000

Temperature (°C)

Temperature (°C)

(b)

Figure 2. Storage modulus (a) and damping factor (b) for the investigated samples (V = pristine
polymer, R4 = four-times reprocessed polymer, V15 and V30 = 15% and 30% filled composites,
R4-15 and R4-30 = 15% and 30% filled composites prepared with polymer that has been reprocessed

four times).
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2.3. Recycling of Filled BioFlex

Tensile tests (Table 5) showed that samples recycled four times and then loaded with wood flour
highly benefit from one additional reprocessing through a single screw extruder. In particular, the
elastic modulus increases about 10% and 17%, when passing from R-15 and R-30 to RP-15 and RP-30
respectively. Specimens prepared with matrix polymer not recycled before filling (V-15, V-30) show
much more modest differences after reprocessing (VP-15, VP-30), not always with a positive trend.
Nonetheless, DMTA tests (Table 6) confirm the increase in mechanical properties for both kinds of
samples (even if it is more modest for the non-recycled one). This phenomenon can be explained by
invoking a higher degree of mixing, with improved surface area between wood fibers and polymer
chains, possibly further enhanced in the presence of moderately shorter polymer chains (like in
previously recycled polymers). This makes the transfer of mechanical stress easier, thus increasing
the elastic modulus. Regarding the Ty, this also experiences a very moderate increase, in agreement
with the already discussed trends of the mechanical properties.

Table 5. Elastic modulus (E), tensile strength at break (TS), elongation at break (EB) for all of the
samples (neat polymer: V; four-times reprocessed polymer: R4; 15% and 30% filled composites: V15
and V30; 15% and 30% filled composites prepared after repeated recycling of the polymer matrix:
R4-15 and R4-30; 15% and 30% filled composites subjected to an additional processing step: VP-15,
VP-30; 15% and 30% filled composites prepared after repeated recycling of the polymer and subjected
to additional processing step: RP-15, RP-30).

Property \% R4 V-15 V30 R4-15 R4-30 VP-15 VP-30 RP4-15 RP4-30

E [MPa] 142 143 313 539 317 511 300 477 381 565
TS [MPa] 10.7 10.1 9.2 11.2 10.3 11.6 8.9 10.8 10.6 11.2
EB [%] 123 99 12.9 6.6 11.4 6.8 11.5 73 10.3 55

Table 6. DMTA results for all of the samples (abbreviations as in Table 5).

Property \% R4 V-15 V-30 R4-15 R4-30 VP-15 VP-30 RP4-15 RP4-30

E'[MPa] 120 124 286 436 296 442 296 487 333 512
E’[MPa] 257 131 221 35.1 234 35.7 252 43.5 3.12 4.58
Tg [°Cl 65 63 69 70 70 70 69 71 70 71

Figure 3 offers a direct and simultaneous comparison of the above described effects (wood flour
content, recycling on neat and filled BioFlex) with regard to the elastic modulus.

600

500

E [MPa]

=V ®=mR4

VP ©RP
400

300

200

100

0

30
‘Wood Flour content [%owt]

Figure 3. Elastic modulus of pristine BioFlex and related composites (abbreviations as in Table 5).
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2.4. Viscoelastic Response

Figure 4 shows the creep curves (elongation vs. time) for the composites at 60 °C and 1.5 MPa. It
can be noticed that the presence of higher wood flour percentages leads to a higher creep resistance
as well, in complete agreement with the results from mechanical and DMA tests, which pointed out
the increase in rigidity and thermomechanical resistance due to the wood flour. Regarding the effect
of polymer matrix repeated recycling (“V” vs. “R” samples), the differences are practically negligible,
in agreement with the behavior shown by the same materials under DMA tests.

2.0%
1.8%

1.6%

elongation, %

1.4%

1.2%

1.0%

0.8%

0.6%

0.4%

0.2%

0.0%
1 10 100 1,000 10,000 100,000
time, s

Figure 4. Creep curves of the composites at 60 °C and 1.5 MPa load (15% and 30% filled composites:

V15 and V30; 15% and 30% filled composites prepared after repeated recycling of the polymer matrix:
R15 and R30).

2.5. Thermal Analysis

In order to deepen the investigation of the prepared systems, thermal analysis was carried out
via differential scanning calorimetry. Results of second heating and cooling runs are reported in
Table 7.

Table 7. DSC data (T, = crystallization temperature, Tr, = melting temperature, AH. = crystallization
enthalpy, AHn = melting enthalpy) for second heating and cooling runs of all of the samples
(abbreviations as in Table 5).

Cooling Second Heating

Sample 7 1°C] AH.[J/g] Tm[°Cl AHp [J/g]
\Y% 845 7.5 153 6.7
V-15 86.8 8.1 152.5 7.2
V-30 87.5 8.3 151 8.3
R4 87.2 7 153 6.5
R4-15 88.6 7.5 152 7.4
R4-30 88.8 8.1 152 8.3
RP4-15 88.7 7.6 152 7.9
RP4-30 88.8 8.6 152 8.5

It can be observed that the BioFlex melting temperature slightly decreases upon increasing
the WF content, thus invoking a lower quality of crystals formed in the presence of wood fibers.
On the other hand, the variations are so small that the actual consequences should be considered
as negligible. Regarding the melting enthalpy, the values increase upon increasing the wood
flour content, in agreement with other studies on other commercial biodegradable polyester-based
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polymers and wood flour [41]. It is therefore hypothesized here that the crystals, even with
slightly lower quality degree, are present in greater amounts, and that wood fibers act like a mild
crystallization promoter in BioFlex composites.

This is confirmed also by the crystallization temperature values. Indeed, it was noticed
that crystallization temperature slightly increases upon adding wood flour, thus indicating that
the presence of wood fibers makes crystallization start a little in advance, when compared to
unfilled polymer. Furthermore, it can be noticed that crystallization was also easier (i.e., starting
at a higher temperature) in the recycled material than in the one that were not reprocessed. This
can be considered as further proof that recycling moderately shortens polymer chains, easing
crystallization kinetics.

2.6. Morphology

Figure 5a-h show, respectively, the morphology of fractured surfaces of V-15 (a, b), V-30 (c, d),
R4-15 (e, f), R4-30 (g, h) samples at different magnifications. These representative SEM images
allow for assessing that fibers show a good adhesion with the matrix polymer, as clearly visible
from the good wetting of the fibers themselves. This helps in explaining the results from tensile
tests, in particular the tensile strength which did not decrease in 15 wt % filled samples and even
increased in 30 wt % filled samples, whereas the trend is, in general, the complete opposite in
WF-based composites where interface adhesion in unsatisfactory [36,39,42]. Furthermore, SEM
analysis did not point out significant differences between the “V” and the “R” samples, a result in
accordance with the small differences between the two, observed from the results of mechanical and
thermomechanical characterization.

Figure 5. Cont.
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Figure 5. Morphology of fractured surfaces of samples (a,b) V-15; (c,d) V-30; (e f) R4-15; (g,h) R4-30 at
different magnifications.

3. Experimental Section

3.1. Materials

Polymer and filler used in this study were obtained from commercial sources. BioFlex F2110 was
supplied by FKuR Kunststoff GmbH (Willich, Germany) with a weight-average molecular weight of
53 kD, density of 1.27 g/cm?, melting temperature (Tm) of 153 °C and MFI of 6 g/10 min (190 °C,
2.16 kg) [28]. Wood flour (mainly coming from beech trees) was supplied by La.So.Le (Percoto, Italy),
with a particle size ranging from 300 to 500 pum.

3.2. Composites Preparation

BioFlex-wood flour green composites were prepared in an OMC (Saronno, Italy) corotating
twin- screw extruder. Mechanically mixed polymer pellet and wood flour with weight ratios
of 15% or 30% were poured inside the feeder and processed with a screw rotation speed of
120 rpm. The extruder die temperature was set at 180 °C and the adopted temperature profile was
100-120-140-150-160-170-180 °C. Then, the obtained material was pelletized.

3.3. Reprocessing

This stage was carried out by means of a HAAKE (Karlsruhe, Germany) Polylab single
screw extruder. Extrusion conditions were: screw rotation speed 60 rpm, temperature profile
120-150-180-175 °C. Reprocessing was carried out both on virgin BioFlex (up to four times) and
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on filled BioFlex (one time), so as to study the influence or recycling on material properties in the
presence of wood flour, or not.
Several sample typologies were prepared, changing fiber content and process conditions. All the
samples were prepared by compression molding. Table 8 shows a list of sample typologies prepared.
Prior to any step involving high temperatures, samples were dried at 90 °C for 2 h, in order to
prevent the possibility hydrolytic chain scission phenomena.

Table 8. Sample code, formulation, and processing conditions.

Sample  Wood Flour Content Reprocessing
A% None None
R2 None 2
R4 None 4
V-15 15 wt % None
V-30 30 wt % None
R4-15 15 wt % 4
R4-30 30 wt % 4
VP-15 15 wt % 1-after loading
VP-30 30 wt % 1-after loading
RP4-15 15 wt % 4 + 1-after loading
RP4-30 30 wt % 4 + 1-after loading

3.4. Specimens Preparation

This was carried out by compression molding using a Carver (Wabash, IN, USA) heated
laboratory press. Temperature was set at 180 °C, 10 g of pellets were poured into a custom rectangular
mold and held in contact with the hot press plates for 1 min 30 s, then a pressure of 1 bar was applied
for 1 min 30 s. Finally, pressure was raised till 6 bars for 3 min, before providing a 3 min cooling step
down to 90-100 °C.

3.5. Mechanical and Dynamic-Mechanical Characterization

Both tensile and dynamic-mechanical tests were performed on specimens (thickness =
0.5-0.7 mm, width = 10 mm) cut off from the compression molded sheets. In tensile tests, an Instron
(Norwood, MA, USA) mod. 3365 universal machine was used, with the crosshead speed set to
5 mm/min for composites testing, while for pure BioFlex it was chosen to operate at 1 mm/min for the
first minute and then to accelerate at 10 mm/min, due to the high deformability of the neat material.
At least seven measurements were performed for each sample type. Dynamic-mechanical thermal
analysis (DMTA) was performed by means of a 01 dB-METRAVIB (Limonest, France) DMA50N
apparatus, choosing a heating rate of 5 °C/min up to 120 °C, a strain of 0.05% (after performing
an appropriate strain sweep test, in order to remain within the limits of the linear viscoelastic range)
and a frequency of 1 Hz.

To evaluate the soundness of the data analysis, statistical analysis was performed through
unpaired Student f-test, when sets of data were partially overlapped. Differences between two sets
of data were considered statistically relevant, and not due to experimental fluctuations, when the
p-value obtained was lower than 0.05.

Reproducibility of the results was adequate (max. + 10%).

3.6. Viscoelastic Response

Creep tests were performed on all the materials by applying a stress of 1.5 MPa in a dedicated
apparatus produced by IDEA (Termini Imerese, Italy). This is basically an oven, equipped with four
extensometers, directly connected to mobile clamps and weight holders. The specimens were then
mounted between the two clamps and the test started when the weights were applied at the end of

7545



Materials 2015, 8, 7536-7548

the extensometer. The data were thus collected and subsequently elaborated in terms of deformation
against time.

3.7. Thermal Analysis

Thermal analysis was performed by means of a Perkin Elmer (Waltham, MA, USA) DSC 7
equipment. Samples underwent a first heating from 35 °C up to 190 °C, a cooling step to 35 °C
and eventually a second heating step up to 190 °C. The heating and cooling rate was set at 10 °C/min
and before each temperature sweep an isothermal step was held for at least 2 min, so as to guarantee
thermal homogeneity inside the sample. Enthalpy values found for composites were normalized on
the actual amount of polymer involved in the transition, being wood flour not involved in melting
and crystallization processes.

3.8. Morphological Analysis

The morphology of the fracture surfaces of the prepared systems was investigated by SEM
micrographs collected on samples fractured in liquid nitrogen and covered with gold to make
them conductive, using a PhenomWorld (Eindhoven, The Netherlands) Phenom ProX scanning
electron microscope.

4. Conclusions

In this work, green composites from biopolymer matrix (BioFlex) and wood flour have been
prepared. Several factors have been investigated, such as the effect of reprocessing on the matrix
properties, wood flour loading effects on virgin and reprocessed biopolymer, and wood flour effects
on material reprocessability. Tensile, DMTA, DSC, and creep tests pointed out that the addition of
wood flour to pristine biopolymer leads to a significant increase of the elastic modulus and creep
resistance, without decreasing the tensile strength, which showed some moderate increase. This
indicates that good adhesion was obtained between wood fibers and biopolymer matrix, as also
demonstrated by SEM analysis. Reprocessing of the biopolymer did not significantly decrease the
properties of the pristine one, thus pointing out that this biopolymer can effectively undergo multiple
instances of reprocessing. Furthermore, the addition of wood flour to reprocessed biopolymer
increased the properties in the same way observed for the pristine. The green composites obtained
in this way were subjected to further reprocessing, and it was found that the main properties did
not decrease, or even increase, as in the case of the elastic modulus. This gives positive indications
regarding the reprocessability of these green composites.
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