
 

Materials 2014, 7, 3481-3493; doi:10.3390/ma7053481 

 

materials 
ISSN 1996-1944 

www.mdpi.com/journal/materials 

Article 

Encapsulation of Hydrophobic Phthalocyanine with  

Poly(N-isopropylacrylamide)/Lipid Composite Microspheres for 

Thermo-Responsive Release and Photodynamic Therapy 

Jiaojiao Liu 
1
, Jingliang Li 

3
, Zexin Zhang 

1
, Yuyan Weng 

1
, Gaojian Chen 

1
, Bing Yuan 

1,
*,  

Kai Yang 
1
 and Yuqiang Ma 

1,2,
* 

1
 Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, 

Suzhou 215006, Jiangsu, China; E-Mails: 20114209069@suda.edu.cn (J.L.);  

zhangzx@suda.edu.cn (Z.Z.); wengyuyan@suda.edu.cn (Y.W.); gchen@suda.edu.cn (G.C.); 

yangkai@suda.edu.cn (K.Y.) 
2

 National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, 

Nanjing 210093, Jiangsu, China 
3

 Institute for Frontier Materials, Deakin University, Waurn Ponds, Vic 3216, Australia;  

E-Mail: jingliang.li@deakin.edu.au 

* Authors to whom correspondence should be addressed; E-Mails: yuanbing@suda.edu.cn (B.Y.); 

myqiang@nju.edu.cn (Y.M.). 

Received: 6 March 2014; in revised form: 26 March 2014 / Accepted: 21 April 2014 /  

Published: 30 April 2014 

 

Abstract: Phthalocyanine (Pc) is a type of promising sensitizer molecules for 

photodynamic therapy (PDT), but its hydrophobicity substantially prevents its applications. 

In this study, we efficiently encapsulate Pc into poly(N-isopropylacrylamide) (pNIPAM) 

microgel particles, without or with lipid decoration (i.e., Pc@pNIPAM or 

Pc@pNIPAM/lipid), to improve its water solubility and prevent aggregation in aqueous 

medium. The incorporation of lipid molecules significantly enhances the Pc loading 

efficiency of pNIPAM. These Pc@pNIPAM and Pc@pNIPAM/lipid composite 

microspheres show thermo-triggered release of Pc and/or lipid due to the phase transition 

of pNIPAM. Furthermore, in the in vitro experiments, these composite particles work as 

drug carriers for the hydrophobic Pc to be internalized into HeLa cells. After 

internalization, the particles show efficient fluorescent imaging and PDT effect. Our work 

demonstrates promising candidates in promoting the use of hydrophobic drugs including 

photosensitizers in tumor therapies. 
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1. Introduction 

Phthalocyanines (Pc) and their derivatives have significant potential as theranostic agents for 

fluorescence imaging-guided drug delivery and photodynamic therapy (PDT) applications [1–3]. PDT 

is a kind of clinical therapeutic method during which the photosensitizers (e.g., Pc molecules) generate 

reactive oxygen species (ROS) upon absorption of light with specific wavelength, to kill tumor cells 

invasively or noninvasively [4,5]. Thus, during the photodynamic therapy using Pc molecules, 

following the accumulation of these photosensitizers in a tumor region under the visualizing and 

monitoring by fluorescence imaging, PDT can be precisely applied onto the targeted tissue by 

selectively illuminating the tumor cells, without hurting the normal organs around [2,5]. Furthermore, 

belonging to the second generation of sensitizer molecules used in PDT, Pc has strong absorption and 

fluorescence emission in the near-infrared (NIR) light range (called “biological optical window”), 

among which minimal tissue autofluorescence and light scattering occur [6,7]. 

However, the clinical application of Pc has been significantly limited due to its poor water 

solubility and tendency to form dimers in aqueous medium, which would affect their photophysical 

and photosensitizing properties and photodynamic action [8]. Various strategies have been explored to 

enhance the water solubility and overcome aggregation of Pc molecules, including chemical 

conjugation of them with hydrophilic polymers [9,10], and encapsulation of them into nano- or 

microcarriers, including micelles [11], liposomes [4], dendrimers [5,12], nanoparticles [13,14], etc. 

Among these formulas, noncovalent encapsulation of the hydrophobic Pc into carriers, such as 

macromoleculars and micro-/nanoparticles, is most well received due to the facile manipulation  

for drug encapsulation, enhanced drug loading efficiency, and preserved intrinsic properties of the 

carrier [5,7]. 

Microgel particles have emerged as a well received system for drug delivery [15–17]. These 

particles combine the unique properties of a gel with those of micro-/nanoparticles, such as improved 

drug loading capacity, tunable and monodispersed size, good aqueous dispersibility and high stability, 

as well as biocompatibility [15]. Poly(N-isopropylacrylamide) (pNIPAM) is a type of stimuli-sensitive 

polymer [18]. Besides the normal property of gelled particles, the pNIPAM microgel spheres 

demonstrate thermo-triggered volume phase transition behavior when crossing the lower critical 

solution temperature (LCST) of it at 32 °C [19]. That is, at a temperature below the LCST, the 

pNIPAM particle is in a swollen state with hydrated water molecules; however, when the temperature 

is above the LCST, the hydrogen bonding between the polymer and water molecules breaks down, 

much of the water is expelled from the inside of the particle leading to significant contraction  

(by ~40%) of the particle [20,21]. 

In one of our previous work we have reported that pNIPAM microgel particles with decorated lipids 

(namely “lipogel”) can be utilized as carriers of hydrophilic drugs, for controlled drug loading and 

release due to their biocompatibility and stimuli-responsive phase transition [20]. Now in this work, 
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we successfully encapsulate hydrophobic Pc into pNIPAM microgel particles without or with lipid 

decoration. The as-prepared Pc@pNIPAM and Pc@pNIPAM/lipid composite microspheres show 

thermo-responsive drug release behavior and PDT effect in HeLa cells. 

2. Results and Discussion 

2.1. Characterization of pNIPAM, Pc@pNIPAM and Pc@pNIPAM/Lipid Microspheres 

The pristine pNIPAM microgel particles were 1.1 ± 0.1 µm in size (Figure 1a) and positively 

charged (cf. Supporting Information, Figure S1a). The size monodispersity of the particles was further 

confirmed by AFM experiments (Figure S1b). The three types of samples, i.e., pNIPAM, 

Pc@pNIPAM and Pc@pNIPAM/lipid microspheres, were observed on an inverted confocal 

microscope as shown in Figure 1b–d. The pristine pNIPAM microgel particles were invisible in the 

fluorescence channel while the Pc and lipid compositions of the composite microspheres were 

visualized in the red and green channels, respectively. Compared with the pristine pNIPAM microgel 

particles, the incorporation of Pc and lipids into the pNIPAM particles did not have much distinct 

impact on the size or morphology of the particles in optical or SEM observations (Figure S2). Except 

that, the Pc and lipid loaded particles became visualized under fluorescence observation, which 

endowed the particles with fluorescence imaging ability. The red and green fluorescence were 

distributed uniformly within the particles (Figure 1c,d). 

Figure 1. (a) DLS distribution of pristine pNIPAM microgel particles in aqueous 

dispersion; (b–d) confocal micrographs, including transmission, fluorescence, and overlaid 

images, of (b) pNIPAM; (c) Pc@pNIPAM and (d) Pc@pNIPAM/lipid microspheres in 

aqueous dispersions. Red, Pc; green, NBD-PE-labeled lipids. 
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Figure 2a shows the Uv-vis absorbance spectra of Pc solution (saturated in 3 mL THF) upon the 

addition of different quantities of pNIPAM dispersion. Before each measurement, the solution was 

stabilized for half an hour after the in situ injection of pNIPAM. The absorbance peak at ~690 nm 

originates from the Pc monomers, while the broader peak at ~620 nm corresponds to Pc dimmers [22]. 

It is noted that Pc dimers are inactive and much more inefficient than monomers as photosensitizers for 

PDT [4,23]. With the addition of pNIPAM, the intensity of the absorbance peak referring to Pc 

monomers decreased in an approximately linear manner, without any disturbance to the other part of 

the profiles. This indicates that more and more Pc monomers are adsorbed into the pNIPAM particles, 

leading to the decrease of Pc concentration in the solution. On the other side, we found that after the 

addition of a certain amount of pNIPAM, the intensity of the absorbance peak decreased with time and 

did not reach an equilibrium, even after a long time of 3 h (not shown). This means that the adsorption 

of Pc into pNIPAM particles is a slow dynamic process. Here, the loading of hydrophobic Pc 

molecules into pNIPAM microgel spheres is facilely achieved by simple mixing of them. The 

incubation time dependence of Pc loading in pNIPAM particles will be further discussed later. 

The steady-state fluorescence emission spectra of Pc without and with pNIPAM addition (also after 

being stabilized for 30 min) were analyzed as shown in Figure 2b. Both of them show two typical 

peaks at ~670 and ~710 nm, being associated with the loss of symmetry of Pc monomers in THF, and 

no distinguishable difference in fluorescence intensity was observed between the two systems [22]. 

This indicates that with the addition of pNIPAM, no much disturbance has occurred to the quantity or 

stabilization of the Pc monomers in the system. FT-IR spectra of these systems were also measured 

(Supporting Information, Figure S3). The characteristic peaks in Pc or pNIPAM were maintained in 

the Pc@pNIPAM composite and no new peaks were observed, indicating that no new covalent bond 

was formed in the composite. Thus, the loading of Pc into pNIPAM particles is probably due to the 

hydrophobic interactions between Pc and the nonpolar groups of pNIPAM polymers. 

Figure 2. (a) UV–vis absorbance profiles of saturated Pc solution (in 3 mL THF) with  

the addition of increasing volumes of pNIPAM dispersion. Insets demonstrate the  

pNIPAM-quantity dependence of the intensity of the characteristic absorbance peak of Pc 

monomers at around 690 nm; (b) Fluorescence spectra of Pc solution before and after 

pNIPAM addition (pNIPAM = 15 µL, λexc = 630 nm). 1 µL pNIPAM dispersion contains 

~10
9
 particles. 
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2.2. Incubation-Time and Lipid-Quantity Dependence of Pc Loading in the pNIPAM (with Lipid 

Decoration)Microspheres 

As mentioned above, the adsorption of Pc into pNIPAM microgel particles, i.e., the formation of 

Pc@pNIPAM composite, is a time-dependent process, so is the Pc@pNIPAM/lipid system. We 

prolong the incubation time of Pc in the pNIPAM/lipid solution during the composite preparation 

process to a few hours and measure the quantity of Pc loaded in the composite as a function of the 

incubation time. Here, the changes in the quantity of Pc loaded in the Pc@pNIPAM/lipid composites 

are demonstrated through calculating the fluorescence intensity of Pc in model composite spheres in 

the confocal micrographs (an average of three model spheres was calculated in each experiment and 

four independently repeated experiments were performed). All these micrographs were acquired under 

the same equipment settings [20,24]. As shown in Figure 3A, within the first 20 h, the fluorescence 

intensity of Pc keeps on increasing with time. However, the increase in intensity is much faster within 

the initial 2 h than after that. This indicates fast adsorption of Pc at the initial stage followed by slow 

adsorption. No further increase occurred after a prolonged incubation time of 48 h, indicating the 

adsorption is saturated. On the basis of this information, in the following experiments, we chose an 

incubation time of 20 h for the Pc@pNIPAM/lipid composite preparation. On the other hand, we found 

that for the Pc loading in the pNIPAM/lipid composite system, the quantity of Pc loaded can be 

modulated through controlling the amount of lipid. Profile B in Figure 3 shows the lipid-quantity 

dependence of fluorescence intensity of Pc in the Pc@pNIPAM/lipid composite microspheres. In 

comparison with the pristine pNIPAM particles (i.e., lipid = 0 point), the addition of lipid significantly 

promotes the loading of Pc (about twice more). The quantity of Pc loaded increases with the amount of 

lipid in an approximately linear manner, until the lipid reaches 2.0 V (equals 0.4 mg). Such a linear 

dependence indicates that almost all the lipid has been incorporated into the composite microspheres. 

At the point of lipid = 2.0 V (i.e., lipid molecules:pNIPAM particles = 1.4 × 10
8
 by mol), the 

microspheres achieve a maximal loading capacity, after which no further increase in Pc quantity 

occurs. This indicates that the incorporated Pc has been saturated in the composite system.  

Here, the addition of lipid significantly enhanced the physical encapsulation of hydrophobic drug 

Pc into pNIPAM microgel particles and resulted in a higher drug loading efficiency. The loading of Pc 

into the interior of pNIPAM microgel particles prevented aggregation of the encapsulated Pc in 

aqueous solutions and thereby preserved their photophysical properties required for efficient 

fluorescence imaging and PDT applications [5]. The remarkable efficiency of lipid to facilitate the 

loading of hydrophobic Pc into pNIPAM particles might be attributed to two reasons. Apart from the 

hydrophobic interactions between the large hydrophobic skeleton of Pc and the hydrophobic tails of 

lipid, the zwitterionic (both negatively and positively charged) head groups of lipids reduce the 

electrostatic repulsion between the identically charged Pc and pNIPAM particles, which also enhance 

the loading of Pc into the microspheres.  
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Figure 3. (A) Pc-incubation time dependence of the red fluorescence intensity (referring to 

the quantity of Pc loaded) of the as-prepared Pc@pNIPAM/lipid microspheres;  

(B) Fluorescence intensity distribution of Pc in the Pc@pNIPAM/lipid microspheres with 

different quantities of lipid during the composite preparation process. Here, 1 “V” 

corresponds to an amount of 0.2 mg lipid (see Experimental Section). The data of 

fluorescence intensity was obtained through integrating the fluorescence intensity of Pc in 

the Pc-loaded microspheres in the confocal micrographs acquired under the same 

equipment settings. An amount of 0.2 mg lipid and a Pc-incubation time of 20 h were 

generally used in the experiments unless stated otherwise.  

 

2.3. Thermo-Triggered Pc Release from the Pc@pNIPAM or Pc@pNIPAM/Lipid Microspheres 

To further explore the ability of the composite as an advanced drug carrier, the release of Pc  

(and lipids) from the composite at body temperature was investigated. Figure 4 show the  

temperature-triggered dynamic release process of Pc from the Pc@pNIPAM and Pc@pNIPAM/lipid 

systems. Noting that no much quenching of Pc or NBD occurs under similar experimental conditions 

(Supporting Information, Figure S4), the changes of red (or green) fluorescence intensity of the 

composite microsphere were employed to monitor the release of Pc (or lipid) from the composite. At a 

constant temperature of 22 °C, the fluorescence intensity of both the Pc@pNIPAM and the 

Pc@pNIPAM/lipid microspheres hardly changed, indicating that the incorporated Pc and lipids could 

be stably localized within the particles. For the Pc@pNIPAM system, when the temperature was 

increased from 22 to 37 °C, a burst decrease occurred to the fluorescence intensity of the composite 

(i.e., an increase in the cumulative Pc release from 0% to ~80%, Profile A in Figure 4). After that, the 

fluorescence intensity remained constant, even after a long time of 6 h. This means that the increase of 

temperature would trigger the release of most of the incorporated Pc from the inside of the particles, 

while the left Pc remains stable within the pNIPAM microspheres. In contrast, for the 

Pc@pNIPAM/lipid composite, a different release manner of Pc occurred. When the temperature was 

increased from 22 to 37 °C, the fluorescence intensity of Pc decreased with time quickly 

(corresponding to an increase in the cumulative Pc release from 0% to ~38%, Profile C in Figure 4). 
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However, after that, the fluorescence intensity kept on decreasing in an approximately linear manner 

even after a long time of 4 h (to an ultimate Pc release of ~47%). Meanwhile, the changes in 

fluorescence intensity of the NBD-doped lipid in the composite microsphere were also monitored to 

learn about the dynamic process of lipid release from the composite. The release behavior of the lipid 

is similar to that of Pc (Profile B in Figure 4).  

Figure 4. Release kinetics of Pc (and lipid) from the model Pc@pNIPAM and 

Pc@pNIPAM/lipid microspheres upon increasing the temperature from 22 to 37 °C. The 

release profiles were obtained through integrating the residual fluorescence intensity of Pc 

(or lipid) within the microsphere at certain time, as shown in the insets. The white circles in 

insets represent the area for integration of a model Pc@pNIPAM sphere while the red 

fluorescence originates from Pc. Averages were taken from four replicates. 

 

It noted that when the temperature is increased from 22 to 37 °C (crossing the LCST of the 

pNIPAM polymers), volume phase transition occurs to the pNIPAM microgel particles. During this 

phase transition process, the hydrogen bonds between the amide groups of polymer molecules and the 

surrounding water molecules break down and water is expelled from the vicinity of the polymer 

chains, leading to a significant volume contraction of the pNIPAM particle. The initial burst release of 

Pc and lipid in Figure 5 might result from such temperature-triggered volume contraction of the 

pNIPAM particle. After that, the lipid in the pNIPAM/lipid composite further decreases along with the 

release of Pc. Concerning that the incorporation of lipid in the pNIPAM particles facilitates the 

encapsulation of Pc within the particles, the further decrease of Pc might result from the release of 

lipid from the pNIPAM/lipid composite. An initial burst release followed by a sustained slow release 

provides the potential benefit to achieve improved therapeutic effect [25]. This indicates that the  

lipid-decorated pNIPAM sphere can function as a slow release vehicle for entrapped hydrophobic 

species at body temperature, in which the pNIPAM scaffold serves as a drug carrier and the lipids act 

to modulate the release of drug molecules. 
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Figure 5. PDT effect of (a) pNIPAM/lipid; (b) Pc@pNIPAM; and (c) Pc@pNIPAM/lipid 

microspheres to HeLa cells, after light irradiation of 20 min. The confocal images of the 

cells (with the incorporated microspheres) before light irradiation were also shown for 

comparison. Red: Pc; green: NBD-labeled lipid; yellow in (c) overlaid of red and green. 

 

 

Besides being an important component of cell membranes, it has been reported that lipid has a great 

diversity in molecular decoration which enables its functionalization for advanced biological 

applications including targeted drug release and gene therapy [26,27]. In this work, both Pc and lipid 

show stimuli-responsive release from the Pc@pNIPAM/lipid composite, indicating this composite can 

be potentially used as an advanced multi-drug carrier for both lipid and some hydrophobic drugs. 

2.4. PDT Effects of Pc@pNIPAM and Pc@pNIPAM/Lipid Microspheres in HeLa Cells  

The cellular uptake and PDT effect of the Pc@pNIPAM and Pc@pNIPAM/lipid microspheres were 

evaluated on HeLa cells. The pristine pNIPAM (with decorated lipid), Pc@pNIPAM and 

Pc@pNIPAM/lipid composite microspheres were incubated with HeLa cells at 37 °C for 2 h. Red 

(referring to Pc) and/or green (NBD-labeled lipid) fluorophores were found within the targeted cells 

(Figure 5, upper images in Figure 5a–c). This means that all the three types of particles are able to be 

internalized into HeLa cells [21]. Then, the PDT effects of these particles to the cells were checked 

after being irradiated by light for 20 min (Figure 5, bottom ones in Figure 5a–c). For the pNIPAM/lipid 

system, no change of the cellular morphology was observed. However, for both the Pc@pNIPAM and 

Pc@pNIPAM/lipid systems, significant morphological changes occurred to the targeted cells, 

 

 

 

 

 

 

 

 

 



Materials 2014, 7 3489 

 

 

indicating that the cells had been greatly destroyed. Singlet oxygen generated through the 

photosensitization process of Pc is believed to be the major cytotoxin responsible for the damage 

(Figure S5). Pc can generate ROS to injure cells upon laser activation without the need to be released 

from the carrier [5]. Furthermore, the intrinsic fluorescence properties of encapsulated Pc validate its 

role as an effective imaging agent for therapy or diagnosis applications. 

3. Experimental Section  

3.1. Materials 

Silicon phthalocyanine dichloride (SiPcCl2, stated as Pc in this work) was bought from Sigma-Aldrich 

(St. Louis, MO, USA) and used as received (Figure 6a). The monomer N-isopropylacrylamide 

(NIPAM) was obtained from Acros (Geel, Belgium). 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC, 

Figure 6c) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) 

(NBD-PE) were purchased from Avanti Polar Lipids (Alabaster, AL, USA). Chloroform (99.7%), 

tetrahydrofuran (THF, 99.0%), ethanol (99.0%) and the other chemicals used in the experiment 

(analytical reagent) were purchased from Shanghai Chemical Reagents Company (Shanghai, China) 

and used without further purification. Distilled water (>18 MΩ·cm) was produced using a Millipore 

filter system (Billerica, MA, USA). HeLa cells were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) at 37 °C and equilibrated in 4% CO2 and air. 

Figure 6. Chemical structure of (a) Pc; (b) pNIPAM (with hydrated water molecules);  

and (c) DOPC. 

 

3.2. Fabrication of pNIPAM, Pc@pNIPAM, and Pc@pNIPAM/lipid Microspheres 

The pNIPAM microgel particles were synthesized using a semi-batch precipitation polymerization 

method, as reported in reference [28] and described in the supporting information (φ ~ 0.5,  

Section S2). 

For the Pc@pNIPAM composite, a volume of 5 µL pNIPAM dispersion in water (containing  

about 3.6 ×10
9 
pNIPAM particles) was added to 1.5 mL saturated Pc solution in THF. The mixture was 

stirred for 20 min and dried under N2 flow. The product was rehydrated with 100 µL distilled water 

and vigorously stirred for dispersion. The obtained suspension was then centrifuged at 6000 rpm for  

12 min. The precipitates (including Pc@pNIPAM composite) were re-suspended in 100 μL distilled 

water for use. 
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The Pc@pNIPAM/lipid composite was fabricated via a facile solvent-exchange method [29]. An 

amount of 0.2 mg lipid (DOPC labeled by 1 mol% NBD-PE, green fluorescence) was first dissolved in 

chloroform (2.0 mg mL
−1

) and dried overnight under vacuum. The dry lipid film was rehydrated with a 

100 µL mixture of 40 vol% ethanol and 60 vol% Pc/pNIPAM mixed solution in water (prepared as 

mentioned above, before centrifuging). A volume of 1 mL distilled water was then added to the 

mixture. The bulk solution was centrifuged at 6000 rpm for 12 min. The wash and centrifugation were 

repeated three times. The precipitates (containing Pc@pNIPAM/lipid composite) were also  

re-suspended in 100 μL distilled water for use. 

3.3. Characterization 

UV-vis absorbance spectrum was collected with a SHIMADZU UV3600 spectrometer (Kyoto, 

Japan). Fluorescence measurements were performed with a HORIBA Jobin Yvon FluoroMax-4 

Fluorescence Spectrometer (Paris, France). The zeta potential and size distribution of pNIPAM 

particles was determined using a Zeta Potential Analyzer (Zetasizer Nano ZS90, Malvern Instruments 

Ltd., Worcestershire, UK). All these tests were carried out at room temperature of 22 °C. Morphology 

of the microspheres was characterized on scanning electron microscope (Raith Pioneer, Dortmund, 

Germany, and HITACHI SU8010, Tokyo, Japan) after being freeze-dried. 

The optical observation was performed on an inverted confocal fluorescence microscope (Carl 

Zeiss, LSM 710, Jena, Germany) equipped with an oil immersion objective (100×). Pc was excited at 

543 nm and its fluorescence was collected in the red channel. The NBD-PE labeled lipid was excited at 

488 nm and observed in the green channel.  

3.4. Drug Release Test 

The Pc-loaded microsphere (i.e., Pc@pNIPAM and Pc@pNIPAM/lipid) suspensions were 

transferred to a homemade sample cell for Pc release test under optical microscopic observation. The 

temperature of the system was set and stabilized with the native temperature control components from 

Zeiss. Throughout the release period, the settings including the laser power and amplifier offset were 

maintained constant [20,24]. The fluorescence intensity of Pc integrated from a model Pc-loaded 

particle was used to calculate the cumulative Pc release percentages, as: Cumulative Pc release at 

certain time (%) = (1−fluorescence intensity integrated from the Pc-loaded particle at certain 

time/fluorescence intensity at initial state) × 100%. The same method was used for the lipid release 

statistics [20].  

3.5. Interactions between Particles and Cells and the PDT Effect Test 

A volume of 500 μL buffer solution (including HeLa cells) was transferred to a homemade chamber 

equipped with the cell cultivation systems from Zeiss. After stabilization for 5 min (~4 cells per mm
2
 

on the chamber substrate), 100 μL of pNIPAM/lipid, Pc@pNIPAM, or Pc@pNIPAM/lipid particle 

dispersion was injected slowly. The following interactions between particles and cells were monitored 

in situ with the confocal microscope. To test the PDT effect of the Pc-loaded composite microspheres 
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to HeLa cells, a 633 nm laser at 2% power intensity was irradiated on the microsphere under 

monitoring with an exposure area of 20 × 20 µm
2
 for 20 min before observations.  

4. Conclusions 

We demonstrated that a model hydrophobic theranostic agent, Pc, can be efficiently encapsulated 

into pNIPAM microgel particles, without or with lipid decoration, for near-infrared photodynamic 

therapy (PDT) of cancer in vitro. The addition of lipid enhanced the loading efficiency of Pc in the 

pNIPAM particles. The Pc-loaded composite microspheres dispersed stably in aqueous solution. 

Temperature-triggered volume phase transition of pNIPAM led to a significant release of Pc (~80%) 

from the Pc@pNIPAM microspheres. However, for the Pc@pNIPAM/lipid composite, an initial burst 

release followed by a sustained slow release of both Pc and lipid occurred instead. Both the 

Pc@pNIPAM and Pc@pNIPAM/lipid composite spheres can be encapsulated by HeLa cells. Upon 

light irradiation, the cells were significantly destroyed due to the PDT effect of Pc. Such 

pNIPAM/lipid system promises applications as carriers for other hydrophobic drugs for imaging, 

diagnose and treatment of diseases. 

Acknowledgments 

This work was financially supported by the National Science Foundation of China (Nos. 91027040, 

31061160496, 21106114, 11104192 and 21204058), the National Basic Research Program of  

China (No. 2012CB821500), and the Natural Science Foundation of Jiangsu Province of China  

(Nos. BK2012177 and BK20131194). 

Author Contribution 

Jiaojiao Liu carried out most experiments; Jingliang Li supervised and finally checked the writing 

of the manuscript; Zexin Zhang synthesized the pNIPAM particles; Yuyan Weng did the SEM 

characterization; Gaojian Chen supplied the Pc and assisted in the DLS and UV–vis absorbance 

spectra tests; Bing Yuan designed the experiments, analysed data and wrote the manuscript; Kai Yang 

was involved in manuscript preparation; Yuqiang Ma is principal investigator of the main  

supporting grants. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Josefsen, L.B.; Boyle, R.W. Unique diagnostic and therapeutic roles of porphyrins and 

phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012, 2,  

916–966. 

2. Master, A.; Livingston, M.; Sen Gupta, A. Photodynamic nanomedicine in the treatment of solid 

tumors: Perspectives and challenges. J. Control. Release 2013, 168, 88–102. 



Materials 2014, 7 3492 

 

 

3. Cook, M.J.; Chambrier I.; Cracknell, S.J.; Mayes, D.A.; Russell, D.A. Octa-alkyl zinc 

phthalocyanines: Potential photosensitizers for use in the photodynamic therapy of cancer. 

Photochem. Photobiol. 1995, 62, 542–545. 

4. Nunes, S.M.T.; Sguilla, F.S.; Tedesco, A.C. Photophysical studies of zinc phthalocyanine and 

chloroaluminum phthalocyanine incorporated into liposomes in the presence of additives. Braz. J. 

Med. Biol. Res. 2004, 37, 273–284. 

5. Taratula, O.; Schumann, C.; Naleway, M.A.; Pang, A.J.; Chon, K.J.; Taratula, O.  

A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided 

drug delivery and photodynamic therapy. Mol. Pharm. 2013, 10, 3946–3958. 

6. Siqueira-Moura, M.P.; Franceschi-Messant, S.; Blanzat, M.; Ré, M.I.; Perez, E.; Rico-Lattes, I.; 

Lattes, A.; Tedesco, A.C. Gelled oil particles: A new approach to encapsulate a hydrophobic 

metallophthalocyanine. J. Colloid Interface Sci. 2013, 401, 155–160. 

7. Robinson, J.T.; Hong, G.; Liang, Y.; Zhang, B.; Yaghi, O.K.; Dai, H. In vivo fluorescence 

imaging in the second near-infrared window with long circulating carbon nanotubes capable of 

ultrahigh tumor uptake. J. Am. Chem. Soc. 2012, 134, 10664–10669. 

8. Sekkat, N.; van den Bergh, H.; Nyokong, T.; Lange, N. Like a bolt from the blue: 

Phthalocyanines in biomedical optics. Molecules 2012, 17, 98–144. 

9. Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L.T.; Choyke, P.L.; Kobayashi, H.  

Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane 

molecules. Nat. Med. 2011, 17, 1685–1691. 

10. Obaid, G.; Chambrier, I.; Cook, M.J.; Russell, D.A. Targeting the oncofetal thomsen-friedenreich 

disaccharide using Jacalin-PEG phthalocyanine gold nanoparticles for photodynamic cancer 

therapy. Angew. Chem. Int. Ed. 2012, 51, 6158–6162. 

11. Lu, H.L.; Syu, W.J.; Nishiyama, N.; Kataoka, K.; Lai, P.S. Dendrimer phthalocyanine-encapsulated 

polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic 

therapy and overcomes drug-resistance in vivo. J. Control. Release 2011, 155, 458–464. 

12. Tao, X.; Yang, Y.J.; Liu, S.; Zheng, Y.Z.; Fu, J.; Chen, J.F. Poly(amidoamine) dendrimer-grafted 

porous hollow silica nanoparticles for enhanced intracellular photodynamic therapy. Acta Biomater. 

2013, 9, 6431–6438. 

13. Peng, J.; Zhao, L.; Zhu, X.; Sun, Y.; Feng, W.; Gao, Y.; Wang, L.; Li, F. Hollow silica 

nanoparticles loaded with hydrophobic phthalocyanine for near-infrared photodynamic and 

photothermal combination therapy. Biomaterials 2013, 34, 7905–7912. 

14. Zhen, Z.; Tang, W.; Guo, C.; Chen, H.; Lin, X.; Liu, G.; Fei, B.; Chen, X.; Xu, B.; Xie, J.  

Ferritin nanocages to encapsulate and deliver photosensitizers for efficient photodynamic therapy 

against cancer. ACS Nano 2013, 7, 6988–6996. 

15. Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 

2008, 60, 1638–1649. 

16. Dou, Y.; Li, J.; Yuan, B.; Yang, K. Lipid merging, protrusion and vesicle release triggered by 

shrinking/swelling of poly(N-isopropylacrylamide) microgel particles. Appl. Surf. Sci. 2014, 296, 

95–99. 

  



Materials 2014, 7 3493 

 

 

17. Lu, N.; Liu, J.; Li, J.; Zhang, Z.; Weng, Y.; Yuan, B.; Yang, K.; Ma, Y. Tunable dual-stimuli response 

of a microgel composite consisting of reduced grapheme oxide nanoparticles and  

poly(N-isopropylacrylamide) hydrogel microsphere. J. Mater. Chem. B 2014, doi:10.1039/ 

C4TB00070F. 

18. Guan, Y.; Zhang, Y. PNIPAM microgels for biomedical applications: From dispersed particles to 

3D assemblies. Soft Matter 2011, 7, 6375–6384. 

19. Makino, K.; Hiyoshi, J.; Ohshima, H. Kinetics of swelling and shrinking of  

poly(N-isopropylacrylamide) hydrogels at different temperatures. Colloids Surf. B 2000, 19, 

197−204. 

20. Lu, N.; Yang, K.; Li, J.; Weng, Y.; Yuan, B.; Ma, Y. Controlled drug loading and release of a 

stimuli-responsive lipogel consisting of poly(N-isopropylacrylamide) particles and lipids. J. Phys. 

Chem. B 2013, 117, 9677–9682. 

21. Liu, J.; Lu, N.; Li, J.; Weng, Y.; Yuan, B.; Yang, K.; Ma, Y. Influence of surface chemistry on 

particle internalization into giant unilamellar vesicles. Langmuir 2013, 29, 8039–8045. 

22. Ogunsipe, A.; Maree, D.; Nyokong, T. Solvent effects on the photochemical and fluorescence 

properties of zinc phthalocyanine derivatives. J. Mol. Struct. 2003, 650, 131–140. 

23. Ball, D.J.; Wood, S.R.; Vernon, D.I.; Griffiths, J.; Dubbelman, T.M.; Brown, S.B.  

The characterisation of three substituted zinc phthalocyanines of differing charge for use in 

photodynamic therapy. A comparative study of their aggregation and photosensitising ability in 

relation to mTHPC and polyhaematoporphyrin. J. Photochem. Photobiol. B 1998, 45, 28–35. 

24. Ungaro, F.; Biondi, M.; d’Angelo, I.; Indolfi, L.; Quaglia, F.; Netti, P.A.; La Rotonda, M.I. 

Microsphere-integrated collagen scaffolds for tissue engineering: Effect of microsphere 

formulation and scaffold properties on protein release kinetics. J. Control. Release 2006, 113, 

128–136. 

25. Ahmed, A.; Hearn, J.; Abdelmagida, W.; Zhang, H. Dual-tuned drug release by nanofibrous 

scaffolds of chitosan and mesoporous silica microspheres. J. Mater. Chem. 2012, 22, 25027–25035. 

26. Bolinger, P.Y.; Stamou, D.; Vogel, H. Integrated nanoreactor systems: Triggering the release and 

mixing of compounds inside single vesicles. J. Am. Chem. Soc. 2004, 126, 8594–8595. 

27. Seida, J.C.; Mager, D.R.; Hartling, L.; Vandermeer, B.; Turner, J.M. Parenteral omega-3 fatty 

acid lipid emulsions for children with intestinal failure and other conditions: A systematic review. 

JPEN J. Parenter. Enter. Nutr. 2013, 37, 44–55. 

28. Kwok, M.-H.; Li, Z.; Ngai, T. Controlling the synthesis and characterization of micrometer-sized 

PNIPAM microgels with tailored morphologies. Langmuir 2013, 29, 9581−9591.  

29. Hohner, A.O.; David, M.P.; Radler, J.O. Controlled solvent-exchange deposition of phospholipid 

membranes onto solid surfaces. Biointerphases 2010, 5, 1–8. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


