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Abstract: Rammed earth is a sustainable material with low embodied energy. However, its 

development as a building material requires a better evaluation of its moisture-thermal 

buffering abilities and its mechanical behavior. Both of these properties are known to 

strongly depend on the amount of water contained in wall pores and its evolution. Thus the 

aim of this paper is to present a procedure to measure this key parameter in rammed earth or 

cob walls by using two types of probes operating on the Time Domain Reflectometry 

(TDR) principle. A calibration procedure for the probes requiring solely four parameters is 

described. This calibration procedure is then used to monitor the hygrothermal behavior of 

a rammed earth wall (1.5 m × 1 m × 0.5 m), instrumented by six probes during its 

manufacture, and submitted to insulated, natural convection and forced convection 

conditions. These measurements underline the robustness of the calibration procedure over 

a large range of water content, even if the wall is submitted to quite important temperature 

variations. They also emphasize the importance of gravity on water content heterogeneity 

when the saturation is high, as well as the role of liquid-to-vapor phase change on the 

thermal behavior. 
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1. Introduction 

The development of earth based buildings is of concern in the actual context of sustainable 

development, energy consumption and greenhouse gas reduction [1]. Indeed, industrial materials, such 

as concrete, are major energy consumers during their production and implementation (embodied 

energy) while their recycling is not always operational [2,3]. The major asset of earth lies in the fact 

that it is a local material that can be taken and used immediately on the construction site or nearby and 

does not require industrial processing [4]. It is not a renewable but a reusable material: it requires no 

treatment to be reused and therefore has a very low impact in terms of energy use [5]. In addition, earth 

is known to have moisture buffering and temperature controlling properties [6,7]. This is due to the 

microstructure of the earth, which enables hydric exchanges between the environment and water 

molecules on the pore surfaces through condensation/evaporation and sorption/desorption  

phenomena [8]. This affinity with water molecules also significantly impacts mechanical behavior of 

earth materials. For example, the decrease in strength with moisture, which is well known in soil 

mechanics [9,10] has been recently demonstrated for rammed earth [11]. 

Consequently, it appears that the liquid water content of a rammed earth wall is a key parameter in 

order to understand the behavior and the strength of this material. 

In normal conditions, the gravimetric water content of an earth wall (e.g., ratio between water and 

solid masses) is between 0.5% and 3%. However, when the walls are submitted to pathologies like 

capillarity (due to water ingress from the saturated soil of the foundation through the basement for 

example), their water content can drastically increase, up to values close to saturation. This situation 

cannot be neglected, especially when we consider vernacular buildings. In addition, the monitoring of 

the water content during the drying stage of the wall, just after its manufacture, is of the utmost 

importance. It indeed determines the mechanical stability throughout the construction, the risk of 

damage due to the frost action at early ages, and also significantly impacts the date at which the 

building can be delivered. Consequently, a proper assessment of an earth wall requires an accurate 

measurement of its water content whatever its saturation state. 

It is however impossible to have a direct access to the mass variation of an in-situ wall to measure 

its water content. It is needed to estimate it indirectly from the non-destructive measurement of 

physical values which are very sensitive to the presence of water, like the dielectric constant [12], the 

velocity of ultrasonic waves propagation [13], or the relative humidity [14]. This latter can be easily 

measured using electronic RH/temperature sensors, and its accuracy to estimate the water content on 

straw bale walls has already been demonstrated [15]. The relative humidity is linked to the water 

content by the sorption-desorption curve, which is a routine characterization test for porous materials. 

However, this relation is accurate only if the in-pore water remains in the hygroscopic domain, which 

commonly ranges between 0% and 5% of gravimetric water content for rammed earth [16]. In 

addition, a hysteresis is commonly observed between the sorption and the desorption branches of the 
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curve. This will then induce a loss in the results accuracy if the wall is submitted to repeated  

wetting-drying cycles of different magnitudes. This method is thus not suited to the present study. 

Among the alternative solutions, the use of TDR (Time-Domain Reflectometry) probes, commonly 

utilized to estimate the in-situ soil water constant, is especially appropriate. Indeed, these probes are 

known to be robust, not expensive, and easy to implement. In addition, they allow measuring the water 

content of the material whatever its saturation state. These sensors are based on the measurement of the 

soil dielectric constant   
 , which significantly changes with water content. This is due to the dielectric 

constant of pure water, equal to 80 at 20°C [17], which is far greater than that of air (=1), and of the 

solid matrix of a porous medium (up to 14 for clay minerals [18]). 

Several authors have proposed studies on mineral soils containing organic matter [19], on clay  

loam [20,21], on silty granulates [22] or on carbonates [23]. But the deriving relations between the 

dielectric constant and its water content are unique to these particular materials and cannot be directly 

used for earth. In addition they are valid only at a given temperature. [24,25] which is problematic in the 

case of on-site measurement on building walls where considerable fluctuations in temperature occurs. 

Moreover, a TDR probe does not directly measure the dielectric constant of the material but the 

travel time ( ) for the reflection of an electromagnetic wave between two conductive rods (waveguide) 

of length (L) (Figure 1). The relation between the time travel and the dielectric constant is 

(demonstrated in the Appendix): 

  
   

   

  
 
 

  
 

   
 
 

 
 

   
 
 

 (1) 

where    is the speed of light in vacuum (2.9979 × 10
8
 m∙s

−1
);   the electrical conductivity (S∙m

−1
) of 

the material;   the angular frequency (s
−1

) and    the permittivity of free space (8.85 × 10
−12

 F∙m
−1

). 

Figure 1. Operating principle of a TDR (Time-Domain Reflectometry) probe. 

 

For non-ferromagnetic and non-clay soils the second term in Equation (1) is negligible, which 

provides a direct relationship between the dielectric constant and the travel time. Regarding material 

such as rammed earth (or cob), which can contain up to 20% of clay [26], the influence of the electrical 

conductivity of the medium is not negligible, especially for large amounts of water [25]. In this case, 

the travel time of the wave no longer provides access to the dielectric constant, but provides an 

apparent physical quantity called “apparent permittivity”   
  [27], which is a function of the electrical 

conductivity of the media, and the angular frequency of the signal, both are highly dependent on the 

saturation ratio. In addition most of the TDR probes do not allow the simultaneous measurement of the 

travel time and the electrical conductivity of the medium. 

Consequently, the measurement of the in-situ water content within earth walls remains an issue that 

must be solved to have a proper assessment of the earth buildings sustainability. 
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In this context, the aim of this paper is to propose a simple calibration procedure, which requires 

minimum measurement points, feasible on site, and adaptable to different types of TDR probes, 

regardless of whether they provide access to the value of the electrical conductivity. 

Note that, the studied material is rammed earth, but this method can be extended to another 

construction technique like cob, since it is also a stack of soil layers. The only limitation for this 

method is the amount of clay present in the earth, since clay is a highly conductive material [27]. 

After a brief description of the probes and materials, the experimental protocol and sensor 

calibration methodology will be presented. This protocol is then validated on a drying test of earth 

blocks, and used to estimate the water content of a metric sized rammed earth wall instrumented with 

six probes. 

2. Probes and Material Characteristics 

2.1. Description of the Probes 

Two particular types of TDR probes are used: the CS650 which gives access to the electrical 

conductivity, and the CS616 which does not. Both probes are manufactured by Campbell Scientific 

and are widely used. Note that, the methodology presented can easily be extended to other types of 

sensors based on the dielectric permittivity measurement of the medium (other types of TDR probes 

but also capacitive probes). 

2.1.1. CS616 

The CS616 has been developed by Anderson and Campbell and operates in the time domain [28]. It 

is composed of a resin block of dimensions 63 mm × 85 mm × 18 mm and two stainless steel wave 

guides rods of dimension 300 mm in length, 3.2 mm in diameter and 32 mm spaced, along which an 

electromagnetic wave is emitted. 

The CS616 calculates the travel time    by measuring the number of reflections per second.    is 

divided by a scaling factor so that the datalogger can record the data. The measured travel time of the 

wave is [28]: 

  
 

 
 
  
  
      (2) 

where    (=1024) is a scaling factor;    is the travel time provided by the probe (µs) and    is the 

delay-time (= 5.5 × 10
−9

 s). 

The CS616 does not allow access to the electrical conductivity of the material or to the angular 

frequency. Thus, as already noted in [27,29] and as mentioned in the introduction, it is not directly the 

permittivity which is estimated, but an apparent permittivity equal to: 

  
    

  
  
     

  
  
 

 

 (3) 

In Equation (3),   is the effective length of the rods which is equal to 0.26m, according to the study 

of [30] on these sensors. 
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Note that, according to the manufacturer [31], if the sensor accuracy is ± 2.5% for σ < 0.5 dS∙m
−1

 

and a dry density of 1.55, a significant difference between   
  and   

  appears for values of   above  

0.5 dS∙m
−1

. 

2.1.2. CS650 

The CS650 works on the same principle of reflectometry and is physically identical to the CS616. 

This probe converts directly the measured response into a digital signal and sends it to the datalogger 

through a SDI-12 protocol. 

The CS650 determines the electrical conductivity by measuring the attenuation of the signal. It also 

measures the angular frequency—but does not give access to it—and automatically corrects the 

measured travel time (see Equation (2)). It gives access to the “real” dielectric permittivity   
  and not 

to   
 . 

2.2. Material Characteristics and Sample Preparation 

The studied material comes from the construction site of a rammed earth house built in 2011 in 

France. It is a local earth mixed with 2.5% (in dry weight) of NHL5 lime. Its characteristics are 

presented in Table 1 and particle-size distribution (following the NF P 94-056 and NF P 94-057 

standards [32,33]) in Figure 2. 

Table 1. Characteristics of the manufactured earth. 

Property Symbol Value Units Standard deviation 

Dry density   1730 kg∙m−3 0.04 

Porosity   0.347 m3∙m−3 0.015 

Dry electrical permittivity (20°C)   
  2.5 – – 

Clay content (<2 µm, NF P 94-057) – 16 % – 

Manufacturing gravimetric moisture content      0.183 kg∙kg−1 0.009 

Figure 2. Particle-size distribution. 
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As mentioned earlier, it is not possible to estimate directly the in-situ water content in the wall of 

the building. The first step for calibration is therefore to reproduce a small size sample, which can be 

easily transportable to be weighed, but is also representative of the relation between the water content 

and the dielectric constant of the rammed earth wall. For a given material this relation strongly 

depends on the volume and geometry of the porous network [34]. In the case of rammed earth, the pore 

volume can be controlled by the dry density, while for the same density, the geometry of the pore 

network will be affected by the compaction technic and the water content during compaction [35]. 

Thus in order to calibrate the probes we inserted them into two blocks of compacted earth of  

45 cm × 15 cm × 9 cm dimensions with the dry density of 1730 kg∙m−3 during the blocks manufacture. 

Probes are placed between two layers surrounded by one centimeter of loose material to avoid large 

granulates which could damage it. The blocks were made with a pneumatic rammer by the mason who 

built the house where the earth comes from and with gravimetric water contents   (ratio between the 

mass of water and the mass of dry earth), as close as possible:   = 20.1% for the block containing the 

CS616 and   = 19.6% for the block containing the CS650. 

This gravimetric water content is two times higher than that normally used in rammed earth and  

cob [36]. This is mainly due to the presence of 2.5 wt% lime NHL5 [37]. 

Let us emphasize here that the average dielectric constant of the material depends on the volume 

fraction of the several phases that form the porous material [34]. Thus, in the following, we will rather 

use the volumetric water content   (= volume of water/volume of the block), instead of the gravimetric 

water content   (= mass of water/mass of dry earth). The link between them is: 

      (4) 

where    is the ratio between the dry density of the sample and the water density. Thus considering  

   = 1.73, the initial volumetric water content for the blocks containing the CS616 and the CS650 are 

respectively equal to 34.8% and 33.9%. 

3. Calibration of the Probes 

3.1. Calibration of the Probes 

The CS650 directly provides a volumetric water content value according to the relation proposed by 

Topp for generic soil containing minerals [19]. However, this relation is not suited for rammed earth 

and cob. The CS616, for its part, does not provide direct access to the dielectric permittivity but to an 

apparent permittivity (see Equations (1–3)). 

In this context, the approach initially developed by [18] is followed. It consists of assuming that the 

measured permittivity (e.g. either   
  measured by the CS650 or   

  measured by the CS616) can be 

expressed as a bilinear function of volumetric water content of the material ( ) and its temperature ( , 

in °C): 

  
             ; for CS650 (5) 

  
                 ; for CS616 (6) 

where A, B, C, D and A , B , C , D  are respectively the calibration coefficients for the CS650 and the 

CS616 probes. Let us note that the applicability of this relation was already verified for  
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freezing-thawing clay-based materials [38]. Its major advantage is that it uses only four parameters 

(instead of ten for the Topp’s expression). Thus, the calibration coefficients are directly accessible via 

the measurement of the evolution of the permittivity with temperature for two determined volumetric 

water contents. 

Consequently, to calibrate the probes, blocks at given volumetric water content (0%, 7.1% and 

13.9% for the CS650 and 0%, 9.8% and 14.8% for the CS616) are wrapped in plastic film and put in 

an oven at a controlled and fixed temperature until the stabilization of the probe output signal. The 

temperature homogeneity is controlled by comparing the temperatures inside the oven and inside the 

sample. An additional volumetric water content is used, three instead of the two which are necessary in 

order to estimate the error on the coefficients. Results are reported in Table 2 for the CS650 and in 

Table 3 for the CS616.  

Table 2. Variation of   
  with temperature at three volumetric water contents with the CS650. 

Water content,   (m
3
∙m

−3
) Temperature,   (°C) Dielectric permittivity,   

  (1) 

0 
13.5 2.6 

50 3.1 

0.071 
20 7.2 

50 9.5 

0.139 
20 11.6 

50 15.3 

Table 3. Variation of   
  with temperature at three volumetric water contents with the CS16. 

Water content,   (m
3
∙m

−3
) Temperature,   (°C) Apparent permittivity,   

  (1) 

0 
13.5 2.6 

50 3.1 

0.098 
20 10.7 

50 14.5 

0.148 
20 14.2 

50 20.7 

The resulting calibration coefficients are: A = 0.84 ± 0.07; B = 0.014 ± 0.01; C = 47.07 ± 1.79;  

D = 2.41 ± 0.01; for the CS650 and to A  = 1.38 ± 0.18; B  = 0.014 ± 0.01; C  = 51.06 ± 4.69;  

D  = 2.40 ± 0.01 for the CS616. 

3.2. Verification of the Calibration 

The accuracy of the calibration procedure using the bilinear relations (5), and (6) is checked by 

performing a drying test on two rammed earth blocks with the same dimensions and manufacturing 

process as those used for calibration and respectively instrumented by a CS616 and a CS650. 

Immediately after their manufacture, the blocks are weighed and wrapped in a sealed plastic film. This 

step is necessary to homogenize the water content throughout their volume. The probes are then 

connected to the datalogger and a point is recorded every fifteen minutes. Once the signal returned by 

the probes is stabilized (i.e. the homogeneous water content in the volume) the blocks are weighed to 
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determine the moisture content and then are dried for five days in a room controlled at 20 °C. They are 

then wrapped again in a sealed plastic film until homogenization of the moisture content throughout 

their volume. This procedure is repeated until the mass variation during the drying stage becomes 

negligible. The blocks are finally oven dried at 50 °C to reach the reference dried state (   ). The 

drying is done concurrently and under the same conditions for both blocks. During the whole test the 

volumetric water content is monitored by both sample weighing (using a dry density of 1730 kg/m
3
) 

and probe measurements. The comparison between these two values for both probes is reported in 

Figure 3. 

Figure 3: Comparison between the volumetric water contents obtained by weighing 

(          ) and from the probes CS650 (         ) and CS616 (         ) calibrated with 

the bilinear relation. 

 

An average difference lower than 0.5% between the measured volumetric water content by 

weighing and the estimated one from the probes is then observed, which is broadly acceptable. Let us 

highlight that the calibration procedure presented in this paper allows the use of CS616 sensors, even if 

they are not recommended for these kinds of materials.  

4. Application on the Drying of a Rammed Earth Wall 

The calibration procedure was used to study the hydric behavior of a full scale earth wall of 

dimensions 1 m ×1.5 m × 0.5 m equipped with five TDR probes and five band-gap sensors. Three 

CS616 are positioned at the mid thickness and at three different heights: 0.9 m (top), 0.5 m (middle) 

and 0.1 m (bottom). At 0.5 m height, one CS616 and one CS650 are installed at 0.1 m of both faces of 

the wall. At this particular height, according to the manufacturer, probes are placed in a staggered 

configuration to prevent any electromagnetic interference. To avoid any damage, the probes are 

surrounded by loose material before ramming. In addition, three nails are used to keep the probes in 

their initial position. The temperature is measured by band-gap sensors placed just above each TDR 
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probe. Two other band-gap sensors are also installed on the right and left ambiances of the box. This 

implementation is illustrated in Figure 4.  

Figure 4. Side view and top view of the implementation of CS616 and CS650 probes in 

the rammed earth wall placed in a sealed box. 

 

The wall and the blocks used for the calibration were built by the same mason, using the same 

protocol and with a similar gravimetric water content (      = 18.9%). Probes are placed during the 

manufacture and in a staggered row to prevent any electromagnetic interference between them. For 

technical reasons, after its manufacture, the wall is protected by a waterproof plastic film to slow its 

drying over 22 days. It is then placed in a box, designed in the laboratory, with 10 cm thick cork for 

insulation (Figure 4). For 130 days, one data per hour is recorded. The natural drying periods (opening 
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of the “removable walls” of the box) are interspersed by periods of sealing tests of the boxes: from the 

44th to 51st day and from the 110th to 124th day. Forced drying experiments are also performed by 

forced air circulation with a fan on each surface. The corresponding dates are from 87th to 110th day. 

During the whole test, moisture and temperature conditions are identical on both sides of the walls. 

The volumetric water contents measured by the probes and the temperature within the box and the wall 

are reported in Figure 5. 

Figure 5. Evolution of (up) volumetric water content and (down) temperature of the wall. 

 

4.1. Verification of the Accuracy of the Probes 

The accuracy of the calibration procedure is estimated from the comparison between the volumetric 

water content measured by the CS616 and CS650 probes, located respectively at the left and right 

sides. Indeed, because the drying conditions on both sides of the walls are identical, the two probes 

should then provide the same value. The error in the volumetric water content can thus be  

quantified by: 
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 (7) 

The evolution of    with volumetric water content is reported in Figure 6. It shows a small average 

error of 3.3% with a peak value of 9% for    12.4%. The results remain then close, while the test 

conditions are not the same as the ones used for the calibration. In addition, as sketched in Figure 5, 

the wall is submitted to temperature variations (from 7 to 20 °C). However, it does not seem to disturb 

the measured value of volumetric water content, while the impact of temperature on the measured 

dielectric constant is different for the two probes. It gives some confidence of the accuracy of 

calibration. 

Figure 6. Deviation    on the values of volumetric water content between the CS616 and 

CS650 probes located respectively on the left and right sides 50cm high. 

 

4.2. Transient Behavior 

The first values were recorded just after the removal of the waterproof plastic film (e.g., 22 days 

after the manufacturing of the walls). Assuming that the effect of gravity is negligible and the plastic 

film is completely sealed, all the probes should provide the same value. It is however not the case. A 

water content gradient is measured between the center and the sides of the wall. It must be due to the 

fact that the drying of the wall from its sides is faster than the homogenization of the water content 

through the wall thickness (which is driven by water transport processes within the porous network of 

the material). The initial difference could then be explained by a defect in wrapping which would 

therefore slow the drying instead of stopping it during the storage phase of 22 days. 

However, the magnitude of this difference (up to 7% between the sides and the center of the wall) is 

surprisingly high. It suggests a very small water relative permeability of the material. This fact is also 

observed during the sealing tests (from 44th to 51st day and from 110th to 124th day). Indeed the 

closure of the box doors leads to a fast stabilization of the volumetric water content measured by the 
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probes located on the right and left sides while the volumetric water content in the center of the wall 

(top, middle and bottom CS616) still decreases. As drying almost stops during this stage, this 

volumetric water content variation is mainly due to liquid water transport from the core to the sides of 

the wall. However, even if these periods are quite long (respectively 7 days and 14 days), they are not 

sufficient to reach an equilibrium state (e.g. stabilization of the volumetric water content in the center 

of the wall). 

Thus, this first observation underlines that a variation of volumetric water content is expected 

within the thickness of a rammed earth wall. Accounting for the great dependency of the material 

properties with water content, this heterogeneity may have some impact on its global behavior and 

should be taken into account.  

4.3. Effect of Gravity 

In addition, a decrease with height in the measured volumetric water content is observed (i.e., 

                    ). As sketched in Figure 7, this difference decreases with time, and the 

volumetric water contents measured by the three probes converge to a mean value of 6.8% ± 0.15%.  

Figure 7. Volumetric water content depending on the height in the wall. 

 

Actually, when the wall is close to saturation, the capillary suction in the wall—i.e. water 

depression compared to air, due to the meniscus formed by the water/air interface which increases as 

the water content decreases [9,18]—is not sufficient to counter the gravity effect. Consequently, a flow 

occurs from the upper to the lower part of the wall.  

Figure 7 therefore highlights the importance of taking into account the effect of gravity, at least 

when earth buildings are submitted to quite high water contents (>10% gravimetric water content). 

This condition happens during the manufacture of the wall, at early ages (during its original drying, 

that lasts a few months according to Figures 5 and 7), and when the wall is submitted to some 
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pathologies like capillarity, which all represent significant economical stakes for the vernacular 

architecture throughout the world. 

Conversely, when the water content decreases, the capillary suction forces becomes predominant 

against gravity forces, which leads to the same moisture content throughout the height of the wall 

(Figure 7). 

4.4. Hygrothermal Behavior 

Let us now focus on the coupling between water content and temperature measurements. When the 

volumetric water content variation remains quite small (e.g. last sealing tests or end of the drying 

curve), no significant differences are observed between the temperature within the box and the one 

within the wall. However, as sketched in Figure 2, during the period where the water content 

significantly decreases (from 51st to 110th day), a significant decrease of temperature inside the wall is 

observed. A simple way to explain this temperature variation is to use the thermal equation in its 

uni-dimensional form for porous media with in-pore water phase change [39]: 

  
  

  
  

   

   
      (8) 

where    is the average heat capacity of the material, and   is its average thermal conductivity. They 

both vary with water content and temperature. However, it is assumed here that they are constant and 

respectively equal to 1500 J∙m
−3
∙K

−1 
and 1.6 W∙m

−1
∙K

−1
, which are their estimated values at 20 °C with 

   = 20%. 

Finally,    stands for the latent heat of evaporation/condensation and    is the rate of water mass 

which evaporates (resp. condensates) per unit of material volume. The last term of this equation is 

positive during condensation and negative during evaporation, and can thus be the cause of the wall 

temperature decrease during the drying stage. However, the quantification of this effect is not so 

simple. Indeed, a smaller decrease in temperature is observed during the forced drying period (from 

87th to 110th day) than during the second drying stage (from 51st to 87th day) while the volumetric 

water content variation rate is similar for the both stages (0.37%/day for the forced drying test between 

90th and 98th day and 0.33%/day for the natural drying test between 70th and 78th day). 

To understand this behavior, the partial differential Equation (8) is solved with COMSOL 

Multiphysics
®

 using the PDE module. The simulations are made for a 1D geometry of length L=0.5 m 

(x direction). It represents a lateral cross section of the tested wall.  

Boundary conditions of the simulations are set according to measurements within both sides of the 

insulated box. Thus, thermal exchanges on x = 0 and x = e are calculated by means of the  

following equation: 

 
  

  
            (9) 

where      and    are temperatures of respectively the ambient air in the box and on the side of the 

wall; while   is the heat transfer coefficient. It is assumed to be equal to 15 W∙m
−2
∙K

−1
 during the 

drying stage and equal to 250 W∙m
−2
∙K

−1
 during the forced drying stage, which are common values for 

resp. natural and forced convection conditions [40]. 
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Calculation are made either with    = 2260 kJ∙kg
−1

 (calculation with latent heat) and    = 0 kJ∙kg
−1

 

(calculation without latent heat). Finally,    is directly derived from the volumetric water content 

measurements through the relation: 

      
  

  
 (10) 

where    is the density of water. Let us remark that, strictly speaking, the variation of water content of 

the material is due to phase change and water transport. Thus, a precise evaluation of    requires a 

fully coupled hygrothermal model. However, as previously discussed, the water transport remains 

quite slow, and consequently, at first order, we may assume that the relation (10) can be used.  

The comparison between the calculated temperatures with the measured one within the wall at  

x = 0.25 m is reported in Figure 8. 

Figure 8. Focus on the temperature within the wall and within the boxes during (A) a 

drying stage and (B) a forced drying stage. 

 

First, for both simulations (e.g. natural drying and forced drying), the calculated values with latent 

heat are very close to measured values, which is not the case for simulations without latent heat. They 

however tend to overestimate the latent heat effect; this may be due to the use of Equation (10), which 

overestimates the evaporation rate by neglecting the effect of water transport on water content 

variations. This result is, by itself, another proof of the accuracy of the volumetric water content 

measured by the probes. Indeed, the temperature decrease due to phase change is very sensitive to the 

amount of water that evaporates, and thus to the measurement given by the probes. 

The second observation is the strong reduction of impact of the phase change phenomenon on the 

wall temperature when the forced drying conditions are considered. Actually, in this case, due to the 

high value of the heat transfer coefficient, the heat consumption by the liquid to vapor phase change is 

more than compensated by the incoming heat flow at the wall surface. 

Then, phase change phenomena appear to impact the thermal behavior of earth materials, and must 

be considered for a proper thermal assessment of earth buildings. However, the magnitude of this 

impact strongly depends on the wall solicitation (external/internal convections, wrapped), and should 

therefore require the use of a coupled hygrothermal model for its accurate evaluation.  
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5. Conclusion 

A calibration method of rammed earth and cob in-situ volumetric water content measurement with 

TDR sensors is presented. The main asset of this method is to allow a simple and fast calibration using 

only four parameters from the measurement of the evolution of the permittivity with temperature for 

two determined volumetric water contents. The accuracy of this methodology was tested on drying 

experiments of two rammed earth blocks. 

This calibration procedure was then used to measure the volumetric water content within a metric 

rammed earth wall instrumented with six TDR probes, and submitted to natural drying, forced drying 

and wrapped conditions with temperature variations. 

For a given height, the data from the probes on the left and right sides are almost identical. 

Knowing that the two probes operate differently and have been calibrated separately, this result 

confirms the robustness of the calibration protocol. 

The effect of gravity is observed at the beginning of the drying process and could involve an ad-hoc 

modeling. However, when the wall is drying, the volumetric water content between the top and bottom 

tends to homogenize after a few months. It highlights the importance of taking into account the effect 

of gravity to properly simulate the behavior of earth buildings during their manufacture, at early ages 

or when submitted to pathologies like capillarity.  

Finally, a decrease in temperature in the wall is observed during the drying stages. This effect, due 

to the latent heat of evaporation, was successfully linked to the measurements of volumetric water 

content variations through a uni-dimensional simulation. It emphasizes the importance of the coupled 

hygrothermal processes for an accurate assessment of the thermal behavior of earth buildings.  

In France, an inhabited rammed earth house sees gravimetric water content varied from 0.5% to 3%. 

The sensors studied in this paper seem to have sufficient accuracy to measure this type of variation. A 

new rammed earth house was built in France and equipped with CS616 probes to characterize its 

hygrothermal behavior. The calibration procedure performed in this paper will enable the water 

content of the new construction to be measured over time. 
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Appendix 

The principle of TDR measurement is of wave propagation in an absorbing medium. The solution 

of Maxwell's equation for the electric field E in a z direction is: 

     
           (A1) 

where   is the angular frequency and    the complex wave number defined as: 

   
 

  
   

  (A2) 

where    is the speed of light in vacuum (2.9979 10
8
 m∙s

−1
) and   

  the dielectric permittivity of  

the medium. 

If    and   
  are defined as: 
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Thus: 
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and the imaginary and real parts of   : 
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The electric field   can then be written as: 
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where      is the amplitude of the wave and    the wave velocity in a non-absorbent material. The 

travel time of the wave through the material thickness    is the smallest value of t,   , to cancel the 

imaginary part of E, which is: 
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  (A12) 

Then the real part of the dielectric permittivity   
  can now be written as: 

  
   

    

  
 
 

  
  

       
 
 

    
     (A13) 

The length of the rods of the probe is noted L and then is equal to: 

      (A14) 

If the losses due to dielectric relaxation are neglected (small compared to t), then: 

  
   

 

   
 (A15) 

and this leads to: 

  
   

    

   
 
 

  
 

      
 
 

 
 

    
 

 

 (A16) 

Conflicts of Interest 

The authors declare no conflict of interest 

References 

1. Williams, C.; Goodhew, S.; Watson, L. The feasibility of earth block masonry for building 

sustainable walling in the United Kingdom. J. Build. Apprais. 2010, 6, 99–108. 

2. Peuportier, B. Thiers, S.; Guiavarch, A. Eco-design of buildings using thermal simulation and life 

cycle assessment. J. Clean. Prod. 2013, 39, 73–78. 

3. Harris, D.J. A quantitative approach to the assessment of the environmental impact of building 

materials. Build. Environ. 1999, 34, 751–758. 

4. Morel, J.C.; Mesbah, A.; Oggero, M.; Walker, P. Building houses with local materials: means to 

drastically reduce the environmental impact of construction. Build. Environ. 2001, 36, 1119–1126. 

5. Habert, G.; Castillo, E.; Vincens, E.; Morel, J.C. Power: A new paradigm for energy use in 

sustainable construction. Ecol. Indic. 2012, 23, 109–115. 

6. McGregor, F.; Heath, A.; Fodde, E.; Shea, A. Conditions affecting the moisture buffering 

measurement performed on compressed earth blocks. Build. Environ. 2014, 75, 11–18. 

7. Liuzzi, S.; Hall, M.R.; Stefanizzi, P.; Casey, S.P. Hygrothermal behaviour and relative humidity 

buffering of unfired and hydrated lime-stabilised clay composites in a Mediterranean climate 

Build. Environ. 2013, 61, 82–92. 

8. Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in 

porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. 

9. Delage, P.; Howat, M.D.; Cui, Y.J. The relationship between suction and swelling properties in a 

heavily compacted unsaturated clay. Eng. Geol. 1998, 50, 31–48. 



Materials 2014, 7 3019 

 

 

10. Pereira, J.M.; Wong, H.; Dubujet, P.; Dangla, P. Adaptation of existing behaviour models to 

unsaturated states : Application to CJS model. Int. J. Numeri. Anal. Methods Geomech. 2005, 29, 

1127–1154. 

11. Bui, Q.B.; Morel, J.C.; Hans, S.; Meunier, N. Compression behaviour of non-industrial materials 

in civil engineering by three scale experiments: The case of rammed earth. Mater. Struct. 2009, 

42, 1101–1116. 

12. Cosenza P.; Tabbagh, A. Electromagnetic determination of clay water content: Role of the 

microporosity. Appl. Clay Sci. 2004, 26, 21–36. 

13. Rivera-Gomez, C.; Galàn-Marin, C. In situ assessment of structural timber elements of a historic 

building by moiture content analyses and ultrasonic velocity tests. Int. J. Hous. Sci. 2013, 37, 33–42. 

14. Lawrence, M.; Heath, A.; Walker, P. Determining moisture levels in straw bale construction. 

Construct. Build. Mater. 2009, 23, 2763–2768. 

15. Lawrence, M.; Heath, A.; Walker, P. Monitoring the moisture content of straw bale walls. 

Sustain. Energy Build. 2009, 2009, 155–164. 

16. Hall, M.R.; Allinson, D. Assessing the effects of soil grading on the moisture content-dependent 

thermal conductivity of stabilised rammed earth materials. Appl. Therm. Eng. 2009, 29, 740–747. 

17. Lide, D.R. Handbook of Chemistry and Physics 2001–2002; CRC Press: Boca Raton, FL, USA, 

2001. 

18. Fabbri, A.; Fen-Chong, T.; Coussy, O. Dielectric capacity, liquid water content, and pore structure 

of thawing–freezing materials. Cold Reg. Sci. Technol. 2006, 44, 52–66. 

19. Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: 

Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. 

20. Campbell, J.E. Dielectric properties and influence of conductivity in soils at one to fifty 

megahertz. Soil Sc. Soc. Am. J. 1990, 54, 332–341. 

21. Gardner, C.M. K.; Dean, T.J.; Cooper, J.D. Soil water content measurement with a  

high-frequency capacitance sensor. J. Agric. Eng. Res. 1998, 71, 395–403. 

22. Gaudu, J.C.; Mathieu, J.M.; Fumanal, J.C.; Bruckler, L.; Chanzy, A.; Bertuzzi, P.; Stengel, P.; 

Guennelon, R. Mesure de l’humidité des sols par une méthode capacitive: Analyse des facteurs 

influençant la mesure. Agronomie 1993, 13, 57–73 (in French Language). 

23. Fen-Chong, T.; Fabbri, A.; Guilbaud, J.P.; Coussy, O. Determination of liquid water content and 

dielectric constant in porous media by the capacitive method. Comptes Rendus Mécanique 2004, 

332, 639–645. 

24. Malicky, M.A.; Plagge, R.; Roth, C.H. Improving the calibration of dielectric TDR soil moisture 

determination taking into account the solid soil. Eur. J. Soil Sci. 1996, 47, 357–366. 

25. Gong, Y.; Cao, Q.; Sun, Z. The effects of soil bulk density, clay content and temperature on soil 

water content measurement using time-domain reflectometry. Hydrol. Proc. 2003, 17,  

3601–3614. 

26. Minke, G. Earth Construction Handbook—The Building Material Earth in Modern Architecture; 

WIT Press: Ashurst, UK, 2000. 

27. Bittelli, M.; Salvatorelli, F.; Pisa, P.R. Correction of TDR-based soil water content measurements 

in conductive soils. Geoderma 2008, 143, 133–142. 



Materials 2014, 7 3020 

 

 

28. Campbell, G.S.; Anderson, R.Y. Evaluation of simple transmission line oscillators for soil 

moisture measurement. Comp. Electron. Agric. 1998, 20, 31–44. 

29. Černy, R. Time-domain reflectometry method and its application for measuring moisture content 

in porous materials: A review. Measurement 2009, 42, 329–336. 

30. Kelleners, T.J.; Seyfried, M.S.; Blonquist, J.M.; Bilskie, J.; Chandler, D.G. Improved 

interpretation of water content reflectometer measurements in soils. Soil Sci. Soc. Am. J. 2005, 69, 

1684–1690. 

31. Campbell Scientific. CS616 and CS625 Water Content Reflectometers; Campbell Scientific Ltd.: 

Logan, UT, USA, 2011. 

32. Association Française de Normalisation (AFNOR). NF P 94-057 : Analyse Granulométrique des 

Sols—Méthode par Sédimentation; AFNOR: Puteaux, France, 1992 (in French Language). 

33. AFNOR. NF P 94-056 : Analyse Granulométrique—Méthode par Tamisage à Sec Après Lavage; 

Association Française de Normalisation (AFNOR): Puteaux, France, 1996 (in French Language). 

34. Zakri, T.; Laurent, J.P.; Vauclin, M. Theoretical evidence for “Lichtenecker’s mixture formulae” 

based on the effective medium theory. J. Phys. D Appl. Phys. 1998, 31, 1589–1594. 

35. Mesbah, A.; Olivier, M.; Morel, J.C. Clayey soil behaviour under static compaction test. Mater. 

Struct. 1999, 32, 687–694. 

36. Bui, Q.B.; Morel, J.C. Assessing the anisotropy of rammed earth. Constr. Build. Mater. 2009, 23, 

3005–3011. 

37. Chabriac, P.A. Comportement Hygrothermique des Constructions à Base de Matériaux Premiers: 

Le Pisé. PhD Thesis, Ecole Nationale des Travaux Publics de l’Etat, Lyon, France, 2014  

(in French Language). 

38. Fabbri, A.; Fen-Chong, T.; Azouni, A.; Thimus, J.F. Investigation of water to ice phase change in 

porous media by ultrasonic and dielectric measurements. J. Cold Reg. Eng. 2009, 23, 69–90. 

39. Coussy, O. Poromechanics; Wiley-VCH: Weinheim, Germany, 2004. 

40. Doumenc, F. Eléments de Thermodynamique et Thermique; Université Pierre et Marie Curie: 

Paris, France, 2009; p. 79 (in French Language). 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


