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Abstract: In this study, a three-dimensional continuum percolation model was developed 
based on a Monte Carlo simulation approach to investigate the percolation behavior of an 
electrically insulating matrix reinforced with conductive nano-platelet fillers. The 
conductivity behavior of composites rendered conductive by randomly dispersed conductive 
platelets was modeled by developing a three-dimensional finite element resistor network. 
Parameters related to the percolation threshold and a power-low describing the conductivity 
behavior were determined. The piezoresistivity behavior of conductive composites was 
studied employing a reoriented resistor network emulating a conductive composite subjected 
to mechanical strain. The effects of the governing parameters, i.e., electron tunneling distance, 
conductive particle aspect ratio and size effects on conductivity behavior were examined. 
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1. Introduction 

The development of nano-scale electrically conductive fillers and associated low cost fabrication 
methods has stimulated considerable interest in employing such particles to render otherwise insulating 
polymers conductive. Conductive nano-fillers, such as graphene platelets and exfoliated graphite, were 
found to impart significant conductivity and piezoresistivity behavior to polymers, which makes such 
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material systems an excellent choice for electrical applications, such as strain sensors. Nano-platelet 
based conductive polymers have been the subject of a number of experimental studies [1–9]. Generally, 
these works were devoted to developing efficient fabrication methods and evaluate the conductivity 
and critical filler volume fraction at which a composite exhibits a transition from insulating to 
conductive behavior. Percolation theory has been a successful tool for describing the transition 
behavior of insulating polymers filled with conductive inclusions [10–14]. According to percolation 
theory a critical filler volume fraction exists at which a percolation network is formed that renders a 
composite conductive. The critical filler volume fraction at the onset of a percolation network is called 
the percolation threshold. Monte Carlo simulation techniques have widely been employed to evaluate 
the percolation threshold and conductivity behavior of conductive composites [10–16]. A large number 
of numerical and analytical investigations have been devoted to insulating polymers filled with 
spherical and stick-shaped conductive inclusions. The majority of works related to conductive 
composites with platelet fillers has been experimental, and only few numerical and analytical studies 
on this subject are described in the technical literature [17–24]. Some researchers used Monte Carlo 
simulation techniques to evaluate the conductivity of platelet based conductive polymers. Hicks et al. [17] 
developed a Monte Carlo-based computational model to predict the tunneling percolation behavior of a 
resistor network formed by rectangular conductive sheets that are oriented parallel to a substrate.  
Li and Morris [18] developed a two-dimensional (2D) computational percolation model to investigate 
the critical filler content and conductivity behavior for an adhesive filled with conductive flakes. They 
assumed the inclusions to be rectangular plates that are dispersed in a 2D space. The excluded volume 
method is another techniques employed for studying the percolation threshold of conductive platelet 
based composites. Xia and Thorpe [19], for example, investigated the percolation behavior of overlapping 
ellipses randomly located in a plane using the excluded volume method. Modeling based on the 
excluded volume method however has its limitations as it is unable to predict the effect of tunneling 
distance on the critical volume fraction. Consequently, for cases in which tunneling distance plays an 
important role in the conductivity behavior of composites (e.g., when particle dimensions and electron 
hopping distance become comparable in scale), excluded volume method based modeling is no longer 
efficient and cannot be employed to study the tunneling conductivity in conductive composites. 

Yi and Tawerghi [20] carried out a numerical Monte Carlo based study to evaluate the percolation 
threshold for 2D interpenetrating plates, i.e., circular, elliptical, square, and triangular plates dispersed 
in three-dimensional (3D) space. It was shown that noncircular geometries tend to produce higher 
percolation thresholds. The percolation behavior of penetrable disks has been the subject of several 
other studies [21–23]. Vovchenko and Vovchenko [24], for example, predicted the percolation threshold 
of composites filled with intersecting circular disks. Otten and Schoot [25] developed an analytical 
approach to investigate the percolation behavior of polydisperse nanofillers, specifically focusing on 
conductivity of needle-like filler nanocomposites. They also briefly investigated the percolation 
behavior of platelet-based composites. However, their modeling approach was subject to certain 
limitations, that is, the platelet thickness and the so-called tunneling decay length have to be of the 
same order of magnitude, and the diameter of disk-like fillers needs to be much larger than the disk 
thickness (tunneling decay length corresponds to inverse of the square root of the insulator barrier 
height in the present study). For monodisperse cases their model predicts the percolation threshold to 
be proportional to the ratio of filler thickness to decay length; interestingly, the percolation threshold 
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was independent of the filler diameter. Ambrosetti et al. [26] conducted a numerical study to 
investigate the percolative properties of a system of hard oblate ellipsoids of revolution surrounded 
with soft penetrable shells. For higher aspect ratios, oblates approach a disk-like geometry but still 
deviate from an ideal circular disk. As described in a latter part of the present text (Section 3.3), data 
from [26] was employed for comparison to platelet filler based tunneling percolation problems.  
In a later work by Ambrosetti et al. [27], their initial study was expanded to evaluate the conductivity 
of percolation networks formed by ellipsoids of revolution dispersed in an insulating matrix.  
Mathew et al. [28] conducted a Monte Carlo study on the percolation of hard platelets in a 3D 
continuum system. They represented the hard platelets by cut-spheres, which vary in shape from a 
platelet geometry. In their model, platelet-like geometries were generated through intersecting a sphere 
with two parallel planes at equal distance from the equatorial plane. Their findings indicate that lower 
aspect ratios are associated with a lower percolation threshold. Note that the majority of related works 
neglected the condition of impenetrable disks, and only a few studies in the technical literature are 
devoted to the percolation behavior of impenetrable hard disk-like inclusions. To the best of the 
authors’ knowledge, research on this subject matter is limited to the last four studies mentioned above, 
which focus mainly on the percolation properties. Conductivity behavior in terms of a critical exponent 
describing post-percolation behavior and, more importantly, piezoresistivity behavior have been  
out of their scope. Moreover, in these studies, circular disks were approximated by ellipsoids or  
cut-spheres. Hence, studies on the tunneling percolation behavior of impenetrable circular disks in 3D 
space are lacking. 

The limited quantity of published works related to the modeling of platelet based conductive 
polymers, and limitations associated with the employed techniques motivated the present authors to 
conceive an alternative approach for modeling the electrical behavior of polymers filled with 
conductive nano-platelet fillers. Published research on the electrical properties of nano-platelet based 
nanocomposites has further been limited to studying the electrical conductivity of polymers with 
exfoliated sheets with in-plane dimensions varying from a few to several hundred micrometer and 
thicknesses ranging from a few to several nanometers. To achieve further enhancements in composite 
properties the synthesis of submicron size single layer graphene sheets may be an attractive 
proposition, and information on the percolation and electrical behavior of such reinforced polymers is 
therefore desirable. The latter aspects are also addressed in the present contribution. 

A 3D Monte Carlo model was developed to study the percolation, conductivity and piezoresistive 
behavior of composites filled with randomly dispersed impenetrable conductive nano-disks. In the 
present study a Monte Carlo model was first developed to form a representative volume element filled 
with randomly dispersed nano-platelet conductive inclusions. In a second stage a 3D finite element 
based resistors network model was used to analyze the conductivity behavior of nano-platelet based 
conductive polymers. Previous studies have shown that conductivity of such polymers for volume 
fractions greater than the percolation threshold can be described by a power-low expression [29], i.e.: 

( )pρ∝ −
sV V  (1) 

where Vp is the percolation threshold, V is the volume fraction of the dispersed inclusions, and ρ and s 
are the resistivity and a critical exponent respectively. Parameters in Equation (1) were determined 
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through curve fitting using the results obtained from finite element modeling. The resistor network 
model was also used to study the piezoresistive behavior for reoriented and updated conductive 
platelets when a conductive composite is subjected to mechanical strain. 

2. Formulation 

2.1. Random Nano-Platelet Generation 

The developed 3D continuum Monte Carlo model is based on conductive inclusions that are 
randomly dispersed inside a cubic representative volume element (RVE) with side length L. Note that 
further details on the model described herein can be found in [30]. Conductive platelets were assumed 
as impenetrable circular disks with diameter D and thickness t. Circular disks were randomly generated 
and uniformly dispersed inside the RVE. Three random numbers (xc,yc,zc) were generated between 
(0,L) to establish the coordinates of the center of each disk. The random number generator algorithm 
developed by Matsumoto and Nishimura [31] was used for random number generation.  
Cornejo Díaz et al. [32] confirmed the suitability of this algorithm for Monte Carlo applications. In 
order to determine the disk orientation, i.e., the normal to the plane containing a disk, a point from the 
surface of a unit sphere was chosen employing the method presented by Marsaglia [33]. The point thus 
selected represents the end point of the normal vector with origin located at the center of the disk. 
Since, in this study, nano-platelets were assumed to be impenetrable rigid disks, the geometric 
feasibility of any generated disk needed to be validated so that only those disks were added to the RVE 
that have no intersection with existing disks. The intersection of two intersecting disks is a segment of 
a line, which is determined by the cross product of the normal vectors of the disk planes (L = n1 × n2). 
Two disks (i and j) are intersecting when the following inequality is satisfied: 

jijjii pppoRpoR ≤−+−
2222  (2) 

where oi is the center of the i-th disk and pi is a point on line L that is corresponding to the shortest 
distance of oi from line L. 

2.2. Electrical Conductivity, Clusters and Percolation Network 

Electrical connection between two conductive inclusions arises from two different mechanisms, i.e., 
(i) mechanical contact between conductive particles; or (ii) electron tunneling effects. Based on 
quantum mechanical tunneling theory, electrical current can flow under certain conditions through an 
insulator material. In other words, it can be assumed that a pair of conductive inclusions dispersed in 
an insulator matrix is electrically connected by a resistor formed by the matrix so that electrons can 
passage from one inclusion to the adjacent one. It was shown in different studies that tunneling 
conductivity plays the dominant role in the conductivity of insulating polymers filled with conductive 
inclusions [34]. For strongly conductive fillers the intrinsic filler conductivity has no appreciable 
contribution toward the nonlinear current-voltage behavior of nanocomposites, with nonlinearity 
arising from tunneling effects. Experimental research works devoted to studying the current-voltage 
behavior of carbon nanotubes (CNT) based [35,36] and graphene nano-platelet based [37,38] conductive 
nanocomposites indicate that nonlinear current-voltage behavior is more pronounced for disk-shaped 
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fillers. The significant dependency of conductivity on voltage in circular disks indicates that 
conductivity is indeed governed by tunneling mechanisms. As shown by Simmons [39], electron 
tunneling resistivity can be described by Equation (3) for a low-voltage range when eΔV << λ, where 
ΔV is the electrical potential, e is the quantum of electricity and λ is the barrier height of the insulator. 

2

tunl 2

4exp 2
2

π ρ = λ λ  
h d m

he m
 (3) 

where h is Planck constant, m is the mass of an electron and d is the tunneling distance. 
Equation (3) was numerically evaluated for different values of λ (λ = 0.5, 1.0 and 1.5 eV) and 

results are illustrated in Figure 1. It can be observed that tunneling conductivity (i.e., the inverse of 
resistivity) drastically decreases for an increasing tunneling distance. It can, thus, be concluded that a 
cut-off distance can be approximated at which resistors with length greater than this distance have no 
appreciable contribution to the overall conductivity of the nanocomposite. This cut-off distance is 
called electron-tunneling distance. In the developed model, nano-platelets with neighboring distance 
less than the tunneling distance are labeled a cluster. A cluster connecting two parallel faces of the 
RVE is called a percolation network, which enables electrical current to flow through the RVE, thus, 
rendering the nano-composite conductive. 

Figure 1. Tunneling conductivity vs. tunneling distance for electrons passing through an 
insulator matrix for different insulator barrier heights λ. 

 

The volume fraction of the conductive particles at the onset of the percolation network is called 
percolation threshold. This concept is illustrated by the schematic shown in Figure 2. It was assumed 
that current flow between two conductive inclusions would occur along the shortest possible path in 
between them. It is therefore necessary to determine the shortest distance between the inclusions. The 
algorithm developed by Almohamad and Selim [40] was employed in the present modeling approach 
to compute the shortest distance between two circular disks in 3D space. In order to estimate the 
conductivity of a conductive composite a 3D network of resistors was formed (see schematic in  
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Figure 3). As such, randomly dispersed conductive nano-platelets were modeled as circular disks 
generated and randomly dispersed inside the RVE using the methods described above, and disks in 
clusters were mutually connected by tunneling resistors which resistivity was approximated using 
Equation (3). Disks were assumed to be in contact with each other when the shortest distance between 
their center planes is less than the thickness of the disks. Finite element modeling was employed to 
evaluate the conductivity of a resistor network representing the nanocomposite. 

Figure 2. Schematic of representative volume element with individual nano-platelets 
(gray), and platelets forming clusters (white) and a percolation network (black). 

 

Figure 3. Schematic of three-dimensional percolation network modeled by tunneling 
resistors (A). 

 

2.3. Piezoresistivity Effects 

Subjecting a polymer with conductive inclusions to mechanical strain, as shown in Figure 4, is often 
accompanied by a change in resistivity. This behavior is known as the piezoresistivity effect, which is 
an interesting characteristic of conductive nano-composites rendering them good candidates for sensor 
applications. Generally, there are two main reasons for piezoresistive behavior of nano-composites, 
i.e., (i) changes in interparticular distance; and (ii) reorientation of conductive particles. 
Piezoresistivity of nanocomposites with conductive inclusions has been the subject of several 
numerical and analytical works [17,41–43]. In the present study, the described framework of Monte 
Carlo simulation and finite element modeling were employed to evaluate the piezoresistive behavior of 
conductive composites with nano-platelets. Most conductive nano-fillers have superior mechanical 
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properties in comparison to the matrix. As a consequence their deformation was neglected for a 
nanocomposite being subjected to mechanical strain, and conductive nano-platelets were assumed to 
undergo rigid body motion only. Note that nano-platelets such as graphene may be wrinkled or crumpled 
when dispersed in a host polymer. The probability of being non-planar increases as the size of the  
nano-disk is increasing. Since this study was conducted for small-size nano-disks, it was assumed that 
disks remain planar during dispersion and mechanical loading. Further work may be conducted to 
evaluate the effect of wrinkling and bending on the nanocomposite electrical behavior. The new 
position and orientation of the nano-platelets in the deformed matrix (for uniaxial tensile strain) were 
determined using affine transformation utilizing the formulation developed by Pham [43]. Filler 
reorientation and displacement inside the polymer matrix is also governed by lateral mechanical strain, 
which is induced by Poisson’s ratio effects. For numerical simulations the Poisson’s ratio was set at 
0.33, which was found to be the mean value reported in the literature for the Poisson’s ratio of  
nano-platelet based conductive composites. A 3D resistor network was then re-developed for the 
updated nano-platelet structure, and aforementioned finite element modeling was employed to evaluate 
the conductivity of the strained nano-composite. 

Figure 4. Schematic of nano-platelet composite subjected to tensile strain. 

 

3. Results and Discussion 

The computational code for the Monte Carlo simulation was developed in the FORTRAN language 
to numerically investigate the 3D continuum percolation problem of conductive nano-disks. Considering 
the high computational cost of the Monte Carlo simulation, multiple processor computation was 
employed to allow for rapid code execution on a Linux cluster. 

The developed model was evaluated numerically considering a polymer matrix such as epoxy 
containing conductive nano-disk filler comprised of graphene platelets. Hence a constant nano-disk 
thickness of 0.34 nm was assumed, which is equal to the thickness of a single graphene layer [44]. 
Considering the high conductivity of graphene predicted by experimental and numerical studies [45],  
it can reasonably be said that tunneling resistance dominates the conductivity properties of graphene 
nanocomposites. Hence, the electrical potential difference across graphene sheets was herein assumed 
negligible compared to the potential drop in the tunneling resistors. Ignoring the resistivity of the  
nano-disks in the present model also resulted in a considerable decrease in computational cost.  
The RVE size was set to be eight times 2R + dt, which was found large enough to minimize any  
errors introduced by finite size effects (dt and R are the tunneling cutoff distance and nano-disk  
radius, respectively). 
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3.1. Effective Electron Tunneling Distance 

As discussed earlier, a cut-off distance can be assumed at which the effect of tunneling resistors 
with length greater than this distance is negligible. The conductivity of nanocomposites was evaluated 
for different values of electron tunneling distance. Considering the results shown in Figure 5 it was 
concluded that for a barrier height of 0.5 eV (for epoxy polymer [42]), tunneling resistors with length 
greater than 2 nm have no appreciable contribution to the conductivity of the nanocomposite. It the 
present study the tunneling distance was, thus, assumed to be 2.5 nm. This value is conservatively 
larger than values given in the literature (e.g., 1.4 nm in [46]), ensuring that essentially all tunneling 
paths that may contribute toward nanocomposite conductivity have been taken into account. 

Figure 5. Effect of tunneling cut-off distance (1 nm, 2 nm and 3 nm) on the resistivity of 
nano-platelet composites for an insulator barrier height of λ = 0.5 eV and a platelet 
diameter of D = 10 nm. 

 

3.2. Effect of Matrix Electrical Properties on Nano-Composite Conductivity 

It was stated previously that the polymer matrix chiefly affects the electrical resistivity of a  
nano-composite, especially for lower filler volume fractions. As such, the contribution of matrix 
electrical properties, i.e., the barrier height λ should be investigated. Electrical resistivity was 
evaluated for three different barrier heights, i.e., 0.5, 1.5 and 2.5 eV, representing typical values 
reported as height of barrier for epoxy [42] filled with randomly dispersed nano-platelets. Results 
illustrated by Figure 6 indicate that the matrix barrier height strongly affects the nano-composite 
conductivity. For example, for a filler volume fraction of 7.5% the electrical resistivity of a  
nano-composite with λ = 1.5 eV is more than two orders of magnitude greater than for a matrix  
with λ = 0.5 eV. 
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Figure 6. Effect of insulator barrier height λ on the resistivity of conductive nano-platelet 
composites plotted vs. filler volume fraction for a platelet diameter of D = 10 nm. 

 

3.3. Percolation Threshold and Electrical Conductivity 

Figure 7 illustrates the resistivity of nanocomposites with respect to changes in nano-disks volume 
fraction. A critical volume fraction is recognizable at which a sharp drop in nanocomposite resistivity 
occurs. This region was considered the formation of a percolation network. 

Figure 7. Graph defining the percolation region depicted as nano-platelet composite 
resistivity vs. filler volume fraction for a platelet diameter of D = 100 nm. 

 

Balberg et al. [47] showed that tunneling percolation conductivity yields a staircase effect in both 
lattice and continuum percolation systems. They also reported that the existence of the staircase 
percolation behavior is validated by experimental data [1,47–53]. Based on these findings the 
resistivity/filler-loading curves cannot be described by a single percolation threshold and critical 
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exponent. In other words, Equation (1) cannot adequately describe any given set of  
resistivity/volume-fraction data, and each subset of data should be described with different values of s 
and Vp. The present study confirmed that a single expression with specific values of s and Vp is 
insufficient to represent the entire nanocomposite conductivity and percolation behavior. This is 
illustrated in Figure 8, where the power-law description with a universal value of s (su = 2) was fitted 
to the resistivity data for nanocomposites with filler diameter of 20 nm. For low volume fractions the 
data points deviate little from the universal description, while the deviation increases with filler 
concentration. Interestingly, a threshold can be inferred from the curve at which the critical exponent 
regime changes. Findings illustrated in Figure 9 are results obtained from fitting Equation (1) to a data 
subset with interval of (Vp, 1.4Vp). Figure 10 shows the power-law approximation for higher filler 
volume fractions. As illustrated by Figure 11, fitting Equation (1) to the dilute region of the curve 
yields values of s with small deviation from su. Employing the power-law equation to describe the 
composite behavior for higher volume fractions, on the other hand, yields a mean value of 5.56 for the 
critical exponent, i.e., s deviates strongly from su. Comparing Figures 9 and 10 reveals that the 
conductivity/filler-loading curves describe a rather smooth behavior for volume fractions well above 
the percolation region, while a somewhat “erratic” behavior can be observed near the percolation 
threshold. Assuming a single expression for the description of nanocomposite conductivity may 
necessitate ignoring the percolation neighborhood and considering its data outliers. As mentioned  
in [47,54], close agreement between s and su is expected to be restricted to a small region near the 
percolation threshold, and non-universal percolation behavior becomes dominant as the filler volume 
fraction is increasing. Based on the above considerations, results obtained in the present study for 
conductive circular nano-disks indicate a critical exponent that is filler content dependent and converges 
toward the universal value with filler loading approaching the percolation threshold. This conclusion  
is congruent with findings from Johner et al. [55]. Data for different nano-disk sizes given in  
Figures 9, 10 and 12 further indicate an increasing percolation threshold and electrical conductivity with 
increasing nano-disks size. Note that the trendline shown in Figure 12 only illustrates the data trend. 

Figure 8. Deviation of nano-platelet composite resistivity from a universal power-law 
description with s = 2 for increasing filler content. 
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Figure 9. Nano-platelet composite resistivity vs. filler volume fraction and best-fit curves 
for post-percolation power-law description for filler concentration near the percolation 
threshold (Vp, 1.4Vp). 

 

Figure 10. Nanocomposite resistivity vs. filler volume fraction and best-fit curves for a 
post-percolation power-law description (percolation region and erratic points are 
considered data outlier). 

 

Ambrosetti et al. [26] studied the percolation threshold for hard oblate ellipsoids of revolution 
surrounded by a penetrable soft shell, which is analogous to the electron tunneling concept employed 
in the present study. Nano-disks can be assumed as spheroids where the major axis a is much larger 
than the minor axis b (axis of symmetry). In [26], it was shown that the percolation threshold is 
governed by the ratio of the major axis to the minor axis, a/b, and the ratio of the soft shell thickness d 
to the major axis, d/a. In the present study, parameters a, b and d are equivalent to the nano-disk 
radius, thickness and tunneling distance, respectively. As illustrated in Figure 13, percolation 
thresholds for different oblate radii (i.e., 1.25, 1.88, 2.92, 5.00, 7.10, 11.25 nm) were computed 
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keeping b and d constant at 0.17 nm (disk thickness/2) and 1.25 nm (tunneling distance/2), 
respectively. Disk radii were chosen to correspond to percolation thresholds provided in [26]. Critical 
volume fractions provided in Figure 13 include the volume of the soft penetrable shell surrounding the 
hard oblates. As explained previously, the soft shell is equivalent to tunneling distance concept in this 
study, so the volume of the soft shell has been deducted from the volume fraction provided by  
Figure 13 using the correction factor a2b/((a + d)2(b + d)). Resulting percolation thresholds are given 
in Figure 14, which indicates an increasing percolation threshold for an increasing oblate major axis 
(tunneling distance and oblates thickness are constant). It worth noting that in the present study the 
percolation threshold was evaluated for circular nano-disks, while in [26] the percolation threshold of 
oblates was investigated, and results from [26] are provided herein to illustrate the qualitative 
agreement between trends. 

Figure 11. Values for the critical exponent, s, for data in the percolation region. 

 

Figure 12. Graph depicting filler volume fraction at the percolation threshold Vp vs.  
nano-platelet diameter D. 
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Figure 13. Percolation threshold of oblates of revolution as a function of aspect ratio and 
ratio of soft shell thickness to the major axis. The dashed line depicts the percolation 
threshold trend when b and d are constant. (adopted from [26]). 

 

Figure 14. Percolation threshold of oblates of revolution as a function of aspect ratio. The 
soft shell volume was deducted in order to make the data analogous to a tunneling 
percolation problem with platelet based nanocomposites. (adopted from [26]). 

 

In another work, Lee and Torquato [56] evaluated the critical area fraction for 2D circular disks 
with impenetrable radius of λR surrounded by a penetrable shell with thickness (1 − λ)R, dispersed in  
a 2D domain. Similar to Ambrosetti’s work [26], (1 − λ)R is equivalent to the tunneling distance used 
in the present study. In [56] the critical area fraction is given in term of λ. In Figure 15 percolation 
thresholds are replotted versus λ/(1 − λ), a parameter representing the ratio of disk diameter to 
tunneling distance. Values for the percolation threshold were multiplied by λ2 to exclude the area of 
the penetrable shell that is equivalent to the tunneling distance. As illustrated by Figure 15, the 
percolation threshold increases as the ratio of disk size to the tunneling distance is increasing. 
Furthermore, Mathew et al. [28] showed that the dependency of platelet based conductive composite 
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percolation threshold on the aspect ratio is in contradiction with that of needle-like fillers [57–59]. In 
other words, trends obtained for the relation between aspect ratio and percolation threshold of  
needle-like fillers cannot be generalized to a platelet-like filler percolation problem. 

Figure 15. Percolation threshold for 2D disks dispersed in a 2D domain. (adopted from [56]). 

 

3.4. Piezoresistivity of Nano-Platelet Nano-Composites 

Employing the methods described in Section 2.3, the piezoresistivity behavior of nanocomposites 
with nano-platelet inclusions was investigated. Simulation results shown in Figure 16 for unstrained 
nano-composites and three applied tensile strains (ε = 0.1%, 0.3%, 0.5%) demonstrate an increase in 
resistivity with applied strain. 

Figure 16. Resistivity vs. filler volume fraction demonstrating the response of an 
unconstrained nano-platelet composite to applied tensile strain ε for a platelet diameter of 
D = 70 nm. 

 

In Figure 17, the piezoresistivity behavior of nano-platelet based conductive composites with four 
different filler volume fractions is presented. According to prediction data shown in Figure 17a,  
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nano-composites exhibit somewhat erratic piezoresistivity behavior for low filler volume fractions, 
while the nanocomposite piezoresistivity behavior becomes smoother with increasing filler concentration. 

Figure 17. Graphs depicting the effect of filler volume fraction on piezoresistivity with 
tensile strain ε applied to unconstrained nano-platelet composites with particle size of  
D = 70 nm (Piezoresistivity values were normalized by dividing resistivity values by 
resistivity of unstrained samples). (a) Erratic piezoresistivity behavior for low filler 
loadings; (b) Piezoresistivity behavior for Vf = 7.5%; (c) Piezoresistivity graph with 
plateau region for Vf = 8.8%; (d) Piezoresistivity behavior for Vf = 11%. 

 

 

As mentioned above, piezoresistivity in conductive composites arises from two major mechanisms, 
that is, changing particle proximity and orientation. Increasing the tensile strain increases the average 
interparticular distance, so an increase in resistivity of the conductive nanocomposite is expected.  
On the other hand, tensile strain raises the propensity for the formation of clusters, leading to a decrease 
in electrical resistivity. This conjecture is supported by the results shown in Figure 17b,d. For small 
values of mechanical strain, piezoresistivity behavior is governed by changes in interparticular distance, 
causing resistivity to rise approximately linearly with strain. A critical strain can then be found at 
which the nanocomposite piezoresistivity behavior changes, that is, resistivity now decreases 
monotonically with increasing strain. Luheng et al. [41] reported similar behavior for silicone rubber 
composites filled with carbon black, i.e., a critical pressure was observed at which a change in the 
trend of the piezoresistivity effect occurred. The existence of a critical pressure was also described by 
Lu et al. [60] for the piezoresistive behavior of polyethylene nanocomposites with exfoliated graphite. 



Materials 2014, 7 2516 
 

 

Li et al. [61] also reported a critical strain for carbon nanotube–graphene nano-platelet hybrid composites. 
As illustrated by Figure 18, the electrical resistivity increased with mechanical strain up to a critical 
strain upon which resistivity begins to decrease with rising strain. The data presented in Figure 17b–d 
further reveals an increase in critical strain for increasing filler volume fraction. Additional studies are 
warranted to further evaluate the effect of the governing parameters such as filler size and concentration 
on the critical strain. 

Figure 18. Piezoresistivity behavior and critical strain for a CNT-graphene nano-platelet 
hybrid composite. (adopted from [61]). 

 

The observed “switching behavior” and the existence of a critical strain have been reported in 
several other studies. Kalanadhabhatla [62] conducted a comprehensive discussion and literature 
review on the switching piezoresistivity behavior of conducting filler based nanocomposites. Two 
different kinds of piezoresistivity behavior and variations of resistivity trends have been reported in the 
technical literature. Some studies described negative gauge factors at the onset of tensile strain application, 
followed by an increase in resistivity as strain is increasing. Some nanocomposites with fillers, such as 
carbon black [63], CNT [64,65], and graphite nanosheets [66] were found to have a positive gauge 
factor for lower strains, while some studies reported a decreasing resistivity up to a critical strain with 
increasing tensile strain [67–70]. The various studies devoted to piezoresistivity of conducting 
filler/polymer composites indicate that geometrical properties such as filler aspect ratio and filler 
concentration play a critical role in the piezoresistivity behavior of conductive nanocomposites.  
The role of aspect ratio on piezoresistivity behavior can be comprehended by comparing the findings 
in [67,69]. In [69], graphite particles with diameters between 5 and 15 μm and thicknesses ranging 
from 1 to 2 μm dispersed in silicone rubber yielded a decrease in resistivity for compressive strains, 
while in [67], silicone/graphite nanosheet specimens with filler thicknesses of 30 to 80 nm and aspect 
ratios of 100 to 500 showed an increase in resistivity. As illustrated by Figure 17, the sensitivity of 
piezoresistive nanocomposites (slope of the curve for strains lower than critical strains) is governed by 
filler concentration. In another study, Kost et al. [71] showed that carbon black based conductive 
composites display higher sensing sensitivity for lower filler concentrations, which is in agreement 
with findings in the present study. Near the percolation region there are few percolation clusters, and 
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the formation or destruction of percolation clusters caused by strain has thus a significant contribution 
toward the change in nanocomposite resistivity. 

It is interesting to note that for some intermediate filler volume fractions, i.e., volume fractions 
between those shown in Figure 17b, d, a diminished piezoresistivity effect can be observed for 
increasing strain as indicated by the plateau in the curve shown in Figure 17c. This behavior can be 
explained considering aforementioned piezoresistivity mechanisms in conductive nano-composites, 
that is, at strain levels within the plateau region none of the two-piezoresistivity mechanisms is 
dominant; thus their effects cancel each other, leading to diminutive piezoresistivity behavior. 

4. Conclusions 

Using a combined Monte Carlo and finite element modeling framework a theoretical study was 
carried out to investigate the electrical conductivity and piezoresistivity behavior of nano-composites 
filled with conductive nano-platelets such as graphene. The power law relationship describing the 
conductivity of such polymers for filler volume fractions greater than the percolation threshold was 
investigated and discussed. The critical exponent was approximately constant for all of the nano-disk 
sizes considered herein, which led to the conclusion that the exponent is controlled by filler geometry 
rather than size. In addition, the critical exponent in the power law description depends on the filler 
volume fraction. Near the percolation threshold, the exponent was found to match the often-cited value 
of 2, whereas the exponent deviates from this value for higher filler loadings. Modeling results further 
indicate a reduction in percolation threshold for decreasing nano-disks sizes and a strong effect of 
matrix electrical properties, i.e., the barrier height of the insulator. The investigation of the 
piezoresistivity behavior was performed through affine transformation. The filler volume fraction was 
found to play an important role in the piezoresitivity behavior. An erratic piezoresistivity behavior was 
observed for low filler volume fractions just exceeding the percolation threshold. For higher volume 
fractions an approximately linear correlation with strain was predicted up to a critical strain at which 
the resistivity behavior was found to change. For strains higher than the critical strain a monotonic 
decrease in electrical resistivity was observed. Overall, values of the critical strain were observed to 
rise with increasing filler volume fraction. Consequently, piezoresistivity behavior of nano-platelet 
based conductive composites can be tailored by adjusting the conductive filler content. 
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