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Abstract: The performance of strained silicon (Si) as the channel material for today’s 

metal-oxide-semiconductor field-effect transistors may be reaching a plateau. New channel 

materials with high carrier mobility are being investigated as alternatives and have the 

potential to unlock an era of ultra-low-power and high-speed microelectronic devices. 

Chief among these new materials is germanium (Ge). This work reviews the two major 

remaining challenges that Ge based devices must overcome if they are to replace Si as the 

channel material, namely, heterogeneous integration of Ge on Si substrates, and developing 

a suitable gate stack. Next, Ge is compared to compound III-V materials in terms of  

p-channel device performance to review how it became the first choice for PMOS devices. 

Different Ge device architectures, including surface channel and quantum well configurations, 

are reviewed. Finally, state-of-the-art Ge device results and future prospects are also discussed. 

Keywords: germanium; heterogeneous integration; passivation; buffer; high mobility;  

gate stack; quantum well 

 

1. Introduction 

The motivation to replace strained silicon (Si) with higher mobility channel materials in  

today’s metal-oxide-semiconductor field-effect transistors (MOSFETs) is well documented [1,2].  

Saturation drive current (Ion), a critical performance metric for FET devices, is intimately linked with 

carrier mobility. While this link has become less clear as devices are scaled down into quasi-ballistic 
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and ballistic regimes, the general relation continues to hold [3]. In light of this relationship, future 

transistor scaling will require the introduction of new high mobility channel materials, including 

germanium (Ge) or III-V semiconductors. The higher carrier mobility offered by these materials 

compared to strained silicon presents a practical means to push Ion higher, even at lower supply 

voltages. On the other hand, even with the change in device architecture from planar to F in FET, 

continued scaling of today’s Si transistors is expected to provide only a few additional generations of 

technology. As seen in Figure 1, the hole mobility enhancement as a function of strain is much flatter 

in Si than for Ge. This suggests that if the challenges associated with Ge channel transistors can be 

overcome, the technology may continue to be scalable for decades. 

The effort to move to higher mobility channel materials is complicated by the fact that it must, in a 

sense, be done twice, once for n-channel FETs (NMOS) and once for p-channel FETs (PMOS). The 

nature of complementary MOS logic (CMOS) requires comparably performing NMOS and PMOS 

devices working in tandem. Historically, NMOS transistors have outperformed PMOS since electron 

mobility (μe) is generally significantly higher than hole mobility (μh). Circuit designers have adapted to 

working with PMOS devices with about one third the performance of NMOS, so preferably the 

performance gap in the next generation of technology should be no larger than this [1]. Additionally, it 

is strongly favorable to use the same material system for both n-channel and p-channel devices (either 

Ge for both, or for example, InGaAs for both) since this substantially simplifies device 

processing [4,5]. Due to the exceptionally high μh of Ge, and the progress made in Ge based p-channel 

MOSFETs (pMOSFETs) [6–14] and p-channel quantum well FETs (pQWFETs) [2,15–19] over the 

last decade, there appears to be a consensus in the device research community and in industry that Ge 

offers the best option for PMOS devices [1,2,20]. In light of this, there is heightened incentive to 

develop Ge based NMOS devices that perform comparably. There are, however, significant additional 

engineering challenges to achieving this, such as overcoming Ge’s tendency for have a higher interface 

state density (Dit) near the conduction band edge [21,22] and developing low resistance ohmic contacts 

to n-type Ge [23,24]. 

High mobility III-V materials present an alternative to Ge for future CMOS technology nodes. In 

III-V material systems, experimental outcomes have been the inverse of that seen with Ge—i.e., 

excellent III-V based NMOS devices have been demonstrated [25,26], whereas a comparably 

performing PMOS device using the same channel material is still elusive to date [1]. This is in large 

part due to the significant disparity in electron and hole mobility in III-V materials; with μe typically 

being at least several times larger than μh [1]. For this reason, it is not unlikely that a future CMOS 

technology node will involve co-integration of Ge based PMOS and III-V based NMOS devices 

together. Unfortunately, such a path would also entail finding ways to deal with the increased 

processing complexity that comes with having multiple material systems with different chemistries and 

thermodynamic stability on the same chip. 
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Figure 1. Hole mobility of Si and Ge as a function of stress and wafer orientation.  

Ge offers both better intrinsic hole mobility and better scalability compared to Si, reprinted 

with permission from [20]. Copyright 2012, IEEE. 

 

The above discussion has led to a choice of two paths, the dual-Ge path (for both NMOS and 

PMOS) or the III-V/Ge path (NMOS/PMOS). To be sure, there is also a possibility of a dual-III-V 

path; or it may be found the performance benefit of Ge and III-V over strained silicon (which is itself a 

moving target) fails to justify the increase in complexity and cost. The former seems the least likely of 

all alternatives, and the latter falls outside the scope of the present article. This review first summarizes 

the two major challenges that must be overcome to succeed in either path involving Ge: heterogeneous 

integration of Ge on Si, and developing a suitable gate stack. After this, a major challenge to the  

dual-Ge path, achieving low resistance ohmic contacts on n-type Ge, is briefly discussed. The basis for 

Ge’s selection over III-V for PMOS is also summarized. Finally, Ge device architectures and  

state-of-the-art results are reviewed. Many excellent review articles already exist for Ge based devices, 

with most focusing on the MOSFET architecture [2,11,27–30]. This review article presents recent 

advancements in the field of Ge based nanoscale MOSFETs and QWFETs. 

2. Challenges 

2.1. Heterogeneous Integration on Silicon 

Due to low economic availability, any long-term widespread utilization of Ge for electronic device 

applications will almost certainly be in the form of thin epitaxial films grown on cheaper and more 

abundant Si substrates. Integration on Si is doubly important due to the expectation that other Si 

components, such DRAM and non-volatile memory, will be included on the same chips [31]. As a 

consequence, perhaps the most significant hurdle to the widespread adoption of Ge in devices is the 

lattice mismatch with respect to Si. This problem is further aggravated by the thermal expansion 

coefficient mismatch in these two materials. Lattice mismatch is defined as: 
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where ae is the lattice parameter of the epitaxial layer and as is that of the substrate material. The lattice 

mismatch leads to a large buildup of strain energy in Ge layers epitaxially grown on Si. This strain 

energy is primarily relieved by two mechanisms: (i) generation of lattice dislocations at the interface 

(misfit dislocations) and (ii) elastic deformation of both the substrate and the Ge islands which form on 

the surface during early stages of growth (following the Stranski-Krastanow growth mode) [32]. In 

general, elastic deformation cannot accommodate all the strain and as a result, misfit dislocations 

nucleate at the island edges [33]. Many dislocations bend toward the growth direction and propagate, 

or thread, to the surface during growth. These threading dislocations severely degrade carrier transport 

properties by lowering carrier mobility and decreasing carrier lifetime. This dilemma necessitates the 

development of means to more gracefully bridge the lattice constants of the two materials. To 

accomplish this, several buffer architectures have been proposed and experimentally demonstrated. 

These approaches are summarized in Table 1. While not complete, Table 1 does highlight the wide 

variety of methods that have been explored for Ge on Si heteroepitaxy. Thinner buffers are generally 

preferred to reduce cost and facilitate heat dissipation. For FET applications, the buffer should be 

comprised of wide bandgap materials to (i) provide device isolation and (ii) suppress parallel 

conduction—two phenomena discussed in more detail later. A good buffer is further characterized by a 

low threading dislocation density (TDD) and low root-mean-square (RMS) roughness at the surface so 

that it may serve as a smooth template for active layer growth. It is believed that for device quality 

growth, a starting surface with a TDD of 10
6
 cm

−2
 or less, and a RMS roughness of 1 nm or less, is 

required. The approaches summarized in Table 1 generally fall into five categories: (i) direct epitaxy of 

Ge on Si, (ii) growing layers of Si1–xGex where x is graded from zero to one, (iii) surfactant mediated 

epitaxy (SME), (iv) aspect ratio trapping (ART), and (v) the oxide buffer. Each of these architectures 

is briefly reviewed in the following sections. It should be pointed out that buffer architectures 

demonstrating heterogeneous integration of GaAs on Si may also prove useful for Ge. This is due to 

the close lattice match between GaAs and Ge (0.07%), which significantly reduces the complexity of 

Ge on GaAs growth [34]. An excellent review of GaAs on Si epitaxy can be found in [35]. The higher 

bandgap of GaAs (1.42 eV) compared to Ge (0.67 eV) suggests that GaAs-based buffers should 

exhibit less parallel conduction than Ge-based ones. One exciting GaAs/Si work been added to  

Table 1 [25]. 

Table 1. Summary of buffer architectures for Ge epitaxy on Si-based substrates. 

Category Approach Details Substrate 

Bandgap of 

buffer 

material (eV) 

Total  

thickness 

(nm) 

Ref. 

Direct 

Epitaxy 

Multiple hydrogen 

annealing for 

heteroepitaxy (MHAH) 

direct epitaxy of Ge; multiple cycles of 

growth (400 °C) and high temperature 

hydrogen annealing (700–800 °C) 

standard bulk 

Si 
0.67 400 [36,37] 

Multiple cycles of low 

temp, high temp, 

hydrogen annealing 

(i) deposit Ge directly on Si at low temp;  

(ii) deposit Ge at high temp onto low temp 

layer; (iii) high temperature hydrogen 

annealing; (iv) repeat (i) to (iii) 3 or 4 times 

Si(100) 4° 

offcut towards 

<110> 

0.67 

2400  

(4 cycles) 

1400  

(3 cycles) 

[38] 
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Table 1. Cont. 

Category Approach Details Substrate 

Bandgap of 

buffer 

material (eV) 

Total  

thickness 

(nm) 

Ref. 

Graded 

SiGe 

Buffer 

Step graded Si1–xGex 

buffer 

0.8 um Si0.1Ge0.9, followed by 0.8 um 

Si0.05Ge0.95, followed by 1 um Ge (all at  

400 °C); 750 °C annealing between layers. 

Si (100) 6° 

offcut towards 

<110> 

0.67–1.12 3600 [39] 

Step graded Si1–xGex 

buffer 

(i) 0.5–1.0 um Si0.7Ge0.3 layer grown on Si; 

(ii) 0.3 to 1.0 um Si0.3Ge0.7; (iii) 10–50 nm 

phos. doped Si0.3Ge0.7 to suppress parallel 

conduction; (iv) 0.5–3.0 um Si0.3Ge0.7. 

Si 0.67–1.12 

~1550 (est. 

from TEM 

image) 

[15] 

Continuously Graded  

Si1–xGex and chemical-

mechanical polishing 

(CMP) 

(i) Graded from Si to Si0.5Ge0.5 at 10% Ge  

um-1; (ii) 1.5 m Si0.5Ge0.5 cap; (iii) top 5 m 

removed by CMP; (iv) Si0.5Ge0.5 graded to 

Si0.08Ge0.92 at 10% Ge um−1; (v) 1.5 um Ge 

cap. 

Si(100) 6° 

offcut towards 

<110> 

0.67–1.12 12000 [40] 

Surfactant

-Mediated 

Epitaxy 

A surfactant (Sb) is used 

to alter the strain-relief 

mechanism in Ge on Si 

epitaxy 

One monolayer (ML) of Sb is deposited on 

the Si substrate followed by 1 m of Ge; a 

high Sb flux of ~2.4 ML/min is maintained 

during Ge growth. 

Si(100) 0.67 ~1000 [41] 

Aspect 

Ratio 

Trapping 

ART combined with 

epitaxial lateral 

overgrowth (ELO) and 

CMP 

Ge is grown in patterned trenches in 

thermally grown SiO2; dislocations terminate 

on trench sidewalls; lateral Ge growth begins 

beyond trench height; CMP used to flatten 

the surface. 

Si(100) 0.67 ~1000 [42] 

Oxide 

Buffer 

Ge condensation 

technique 

Epitaxial SiGe layers are grown on  

silicon-on-insulator (SOI) substrates 

followed by successive thermal oxidation. 

strained and 

unstrained 

SOI 

not reported 
not 

reported 
[43] 

Epitaxial SHTO buffer 

(i) Epitaxial SrTiO3 is deposited using 

method in ref. [44]; (ii) epitaxial  

SrHfxTix-1O3 grown; (iii) Ge grown in two 

steps, 610 °C for nucleation, then 350 °C for 

homogenous coverage. 

Si(100) 

3.5 (STO)  

6.5 (SHO) 

[45] 

~ 20 (est. 

from TEM 

image) 

[46] 

GaAs 

Buffer 

GaAs nucleation and 

buffer layer 

An InGaAs QWFET heterogeneously 

integrated on Si was demonstrated using this 

buffer. 

Si(100) 4° 

offcut towards 

<110> 

1.42 500 [25] 

2.1.1. Direct Epitaxy 

The direct epitaxy approach is attractive due to its relative simplicity, and with the aid of high 

temperature hydrogen annealing, this method has demonstrated films with low RMS surface roughness 

(less than 1 nm) [38]. In regards to defect density however, direct epitaxy methods have had mixed 

results [47]. This method often involves a two-step low temperature then high temperature (LT/HT) 

Ge growth process. First a low temperature, low growth rate “seed” layer is grown which is intended 

to confine most of the defects. Together with Ge’s low surface diffusivity, lowering the growth 

temperature tends to prevent the impinging Ge from forming islands on the surface, resulting in flatter 
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and more homogenous coverage of the Si substrate. After approximately 30 nm of growth the strain in 

the Ge surface will be fully relaxed due to the generation of misfit dislocations [48]. After the low 

temperature layer, a high temperature and high growth rate layer is deposited and is expected to be of 

higher crystalline quality since (i) the higher growth temperature annihilates defects and dislocations 

associated with strain relaxation, and (ii) the Ge is growing on a fully relaxed Ge “seed” layer instead 

of Si. 

Separately from the two-step LT/HT approach, Nayfeh et al. [37] clearly demonstrated the benefit 

of hydrogen annealing of Ge layers on Si. The group reported an 88% reduction in RMS roughness for 

a 200 nm thick Ge layer grown on Si (at 400 °C) that was annealed for 1 hour at 825 °C in H2, 

compared to no reduction for a sample annealed in N2. They attributed the improved flatness to the 

increased surface mobility of the Ge-H cluster compared to Ge alone. Interestingly, the group found 

the ratio of optimal annealing temperatures for Si and Ge (1423 K/1073 K = 1.326) to be nearly equal 

to the ratio of their melting points (1687 K/1211 K = 1.393). In a separate paper [36] the same group 

used this approach to fabricate a Ge pMOSFET. They have grown a second Ge layer (400 °C, 250 nm 

thick) on top of a Ge layer produced by the method described in their previous work [37].  

The resulting structure is shown in Figure 2. They observed a 2× increase in effective low-field 

mobility and a 3× increase in effective high-field mobility in a fabricated Ge pMOSFET compared to 

Si. Recently, this Ge on Si growth method was used in combination with a patterned SiO2 mask to 

achieve selective-area growth of Ge on Si and obtained a TDD of 1 × 10
7
 cm

−2
 and RMS roughness  

of 0.61 nm [49]. Hartmann et al. [50] reported a Ge surface with a TDD of 6 × 10
6
 cm

−2
 and RMS 

roughness of ~1 nm. The group used a similar two-step LT/HT growth process (400 °C/750 °C) and 

the total buffer thickness was 2.5 µm. Following growth, the structure was cyclically annealed (eight 

times 750 °C−10 min/900 °C−10 min) in H2. The hydrogen annealing was found to be critical for 

minimizing TDD, lowering it by nearly one order of magnitude (from ~4 × 10
7
 to 6 × 10

6
 cm

−2
), but at 

the cost of a small increase in RMS roughness (increasing it from ~0.7 to ~1.1 nm). It should be noted 

that the group has assumed TDD to be equal to pit density measured by atomic force microscopy 

(AFM). Kobayashi et al. [51] observed more than one order of magnitude difference between the TDD 

measured by plan-view transmission electron microscopy (TEM) and the pit density measured by 

AFM. Choi et al. [38] have grown multiple two-step LT/HT dual layer stacks and have used 30 min 

hydrogen annealing at 800 °C between each set. They found the AFM pit density reduced by 80% 

between the first and second sets of LT/HT layers. After three sets of growth and H2 annealing (and a 

total Ge thickness of ~1.81 µm) they achieved a TDD measured by plan-view TEM of 0.8–1 × 10
7
 cm

−2
 

and RMS roughness of 0.4–0.6 nm. This is encouraging since additional sets of LT/HT growth and 

annealing could result in even lower TDD and RMS roughness, albeit with decreasing gains and 

additional buffer thickness. 

Having a buffer composed of high bandgap material helps ensure that performance characteristics 

of a given device in an array are as much as possible independent of the on/off states of adjacent 

devices, or that is it electrically isolated from them. A pure Ge based buffer directly on Si would be 

expected to have poor device isolation characteristics due to the low bandgap of Ge. This alone is not 

necessarily mark against the direct epitaxy approach since it could be combined with commercially 

available silicon-on-insulator (SOI) substrates to improve device isolation, although this would also 

require that the buffer be quite thin to facilitate etching down to the buried oxide. A more serious 
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concern for this approach is the prospect of parallel conduction of current through the buffer between 

the source and drain. An excellent review on the nature of parallel conduction can be found in [52]. 

The existence of additional higher conductivity paths between the source and drain, such as that 

provided by low bandgap buffer layers, has two primary consequences. First, it provides the means for 

a higher off-state current in FET devices, which in turn reduces the Ion/Ioff ratio and contributes power 

losses. This is exacerbated by the fact that the conductivity of these secondary paths is not effectively 

modulated by the gate voltage. Second, it undermines the device’s ability to confine carriers to the 

layer or path of highest mobility, which is particularly important in QWFET applications (discussed in 

section three). Failure to confine carriers to the highest mobility layer decreases on-state current, which 

also further reduces the device Ion/Ioff ratio. More investigation is needed to determine if parallel 

conduction is serious issue for the direct epitaxy approach. 

Figure 2. Cross-sectional TEM images of heteroepitaxial-Ge layers on Si; (a) 155 nm of 

Ge grown in single growth cycle with one H anneal step and (b) 400 nm of Ge layer grown 

in two growth cycles with two H annealing cycles (MHAH method), reprinted with 

permission from [36]. Copyright 2005, IEEE. 

 

2.1.2. The Graded Si1–xGex Buffer 

The graded SixGe1–x buffer approach aims to introduce the 4.2% lattice mismatch gradually rather 

than abruptly as in the direct epitaxy approach. This is possible since the lattice mismatch of Si1–xGex 

on Si is roughly proportional to the Ge composition (x). Furthermore, the threading dislocations 

created during growth of the initial low-Ge composition layers can be preserved and reused to relieve 

additional strain generated in subsequent higher-Ge composition layers by carefully controlling the 

grading rate and the growth temperature. The gliding of existing threading dislocations suppresses 

nucleation of additional dislocations. A notable implementation of this approach was carried out by 

Currie et al. [40]. The group achieved a remarkable TDD of 2.1 × 10
6
 cm

−2
. However, the total buffer 

thickness was 12 µm and the RMS roughness was 24.2 nm. Additionally, the group introduced a  

chemical-mechanical-polish (CMP) step near the growth midpoint since it was observed that the 

dislocations had a tendency to pile-up and become trapped, and therefore unable to continue to 

facilitate strain relief in subsequent layers. Samples with this added CMP step showed lower TDD of 

~2.1 × 10
6
 cm

−2
 and lower RMS roughness of 24.2 nm (compared to 1–5 × 10

7
 cm

−2
 and 47 nm 
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without the CMP). Loh et al. [53] later combined the graded SiGe buffer approach and the LT/HT 

approach to obtain an estimated TDD of 6 × 10
6
 cm

−2
 (estimated by etch pit density) and RMS 

roughness of 1.4 nm using a buffer of only about 160 nm. 

To help address the concern of device isolation, the graded SiGe buffer approach could be carried 

out on silicon on insulator (SOI) substrates, as shown by the Loh group [53]. As with the direct epitaxy 

approach, more experiments are need to investigate to nuisance of parallel conduction. 

2.1.3. Surfactant Mediated Epitaxy (SME) 

The amount of strain in epitaxial layers strongly influences the growth mode of the film. In the case 

of Ge on Si, the growth is flat (2D) for the first few monolayers. As the built-in strain energy increases 

with increasing film thickness, there is a sudden transition from 2D to 3D growth modes, also known 

as island growth [33]. It has been shown that this 2D-to-3D growth mode transition can be suppressed 

by deliberate introduction of a surfactant to alter the surface free energy, resulting in smoother  

layer-by-layer growth [54]. 

The general procedure for SME is as follows. The Si substrate is first capped with ~1 ML of the 

surfactant. The first surfactant investigated for Ge/Si growth was As. The extra valence electron from 

the As in the capping layer fills the dangling bonds at the Si surface, resulting in a stable, or 

energetically favorable termination. Following capping layer deposition, Ge growth begins. Surface 

termination with As remains energetically favorable since the Ge surface also contains dangling bonds. 

As a result, Ge atoms on the surface efficiently exchange sites with As in the capping layer. By this 

process the As capping layer “floats” on the surface even as Ge atoms continue to impinge on the 

surface, and the surface mobility of the growing species is strongly diminished, effectively suppressing 

the ability of the Ge to form islands. A drawback of the SME approach is that some of the surfactant 

inevitably incorporates into the film bulk, leading to a moderate (10
16
–10

19
 cm

−3
) n-type  

background doping. 

In thicker films where islanding occurs, many defects thread towards the surface where the islands 

eventually coalesce. Using a surfactant to preserve the 2D growth mode also alters the defect structure 

that forms to relieve the lattice strain. LeGoues et al. [33] found that when As is used as the surfactant 

during Ge on Si(100) growth it results in V-shaped defects that can generate stacking faults and twins 

that extend throughout the entire film. Horn-von Hoegen et al. [55] showed that when Sb is used as the 

surfactant for Ge/Si(111) heteroepitaxy the threading defects generated to relieve stain during initial 

stages later self-annihilate as growth proceeds. This results in a network of dislocations confined at the 

Ge/Si(111) interface, and comparatively much fewer defects in the bulk of the film. A TDD of less 

than 10
8
 cm

−2
 and background doping of 3–4 × 10

19
 cm

−3
 were estimated. More recently,  

Wietler et al. [41] used Sb for Ge on Si(100) growth to achieve fully relaxed Ge layers with a TDD  

of 1.6 × 10
8
 cm

−2
 measured by plain-view TEM. The group used a relatively high substrate growth 

temperature of 670 °C and Sb flux of 2.4 ML/min. The high temperature helped facilitate Sb 

segregation to the surface, leading to a relatively low background doping of 3–4 × 10
16

 cm
−3

 in the  

Ge film. To further address the issue of surfactant incorporation in the Ge layer, it has recently been 

proposed to use carbon as the surfactant in place of Sb since carbon in Ge (i) does not act as a dopant 

and (ii) has very low solid solubility [56,57]. 
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2.1.4. Aspect Ratio Trapping (ART) 

The ART approach, also called “epitaxial necking” [58], for Ge-on-Si heteroepitaxy is built on the 

premise that most threading dislocations do not run normal to the Ge/Si interface. Therefore,  

by growing Ge on Si within narrow trenches formed by patterned oxide, dislocations angled away 

from the normal are likely to eventually collide with and become “trapped” by the trench sidewall. 

ART begins by thermally growing 0.5–1 μm of oxide on the substrate. Trenches are formed in the 

oxide using standard lithography and reactive ion etching (RIE). Bai et al. [59] developed a model to 

determine the optimal dimensions, or aspect ratio (AR=height/width), of the trenches. Park et al. [60] 

showed that trenches with AR > 1 were needed to effectively trap defects within the sidewalls. A 

drawback of ART growth is that, while the length of trenches is arbitrary, the width of the area 

available for Ge devices is restricted to less than 1 m by the AR > 1 requirement and the need for 

relatively thin buffers. To obtain a larger area of high-quality Ge for device growth, the Ge can be 

overgrown beyond the trench height, resulting in epitaxial lateral overgrowth (ELO). However, when 

ELO emerging from adjacent trenches coalesces, it forms new defects, as shown in Figure 3c(3). 

Defects originating at the Ge/Si interface in the trench (1) do not appear to propagate beyond the 

trench height (2). To avoid the  defects formed by ELO coalescence, Park et al. [42] later used a 

growth process optimized for lateral growth, and CMP, to develop long 20 μm wide regions of Ge, 

grown from a single trench, with a TDD of 1.6 × 10
6
 cm

−3
, shown in Figure 3a,b. For some device 

applications long 20 μm wide patches of high quality Ge may be sufficient [61]. If device area 

continues to improve, ART may become a viable method for creating Ge/Si virtual substrates for 

future high-performance Ge CMOS devices. 

Figure 3. XTEM micrographs of Ge/Si heteroepitaxy using the ART method.  

(a,b) Uncoalesced Ge grown by epitaxial lateral overgrowth (ELO) from a single trench 

(indicated by a black arrow). The surface has been flattened using CMP; (c) ART Ge/Si in 

which growth from adjacent overgrown trenches has coalesced, reprinted with permission 

from [42]. Copyright 2009, The Electrochemical Society. 

 

2.1.5. The Oxide Buffer 

Two distinctly different oxide-based approaches have emerged for heterogeneous integration of Ge 

on Si: (i) the epitaxial oxide buffer [46,62–64], and (ii) heteroepitaxial growth of Ge on high Ge 

content SiGe-on-insulator (SGOI) substrates [43,65–67]. 
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The epitaxial oxide based buffers are especially appealing due to (i) device isolation and (ii) the 

natural suppression of parallel conduction being inherently built-in to the structure. However, there is 

limited literature available on this method and more experiments are needed to clearly demonstrate  

its merit. Bojarczuk et al. [64] obtained a single-crystalline fully-relaxed layer (4 nm) of Ge on a  

(LaxY1–x)2O3/Si(111) template. Amorphous Ge was deposited on the crystalline (LaxY1–x)2O3 and 

subsequently heated to 450 °C under an Sb flux to induce an amorphous to crystalline transformation 

of the Ge. The Sb flux was found to reduce surface roughening during recrystallization. The quality  

of the Ge surface, in terms of RMS roughness and TDD, was not reported. Seo et al. [46]  

used a two stage SrHfxTi1–xO3 buffer on Si(100) to obtain a continuous and flat epitaxial Ge  

film, shown in Figure 4. The group conveyed that the method needed improvement due to low  

Hall-mobility (100–300 cm
2
/Vs) and a high density of stacking faults and twin structures (10

9
 cm

−2
). 

Giussani et al. [63] used PrO2/Si(111) as a template for Ge(111) epitaxy and obtained a smooth  

single-crystalline Ge layer. However, an extended Ge deposition time was needed. Quantitative 

measurements of the surface quality were not provided. 

Figure 4. HRTEM image of Ge grown on SHO. The interface between Ge and SHO is 

atomically sharp and contains no interfacial layer (inset), reprinted with permission  

from [46]. Copyright 2007, Elsevier. 

 

The second oxide based approach, Ge on high Ge content SGOI substrates, is relatively new but has 

produced encouraging results. The method usually involves using the Ge condensation technique, 

proposed by Tezuka et al. [67], to convert a standard SOI substrate into a SGOI substrate. In this 

technique, a layer of low Ge content Si1–xGex (x  0.15) is epitaxially grown on a SOI substrate. A 

thinner layer of Si is grown on this SiGe layer, and then the structure is cycled through oxidizing and 

annealing stages. Due to the preferential oxidation of Si over Ge [68], the original Si1–xGex layer 

recedes at the upper and lower bounds to leave behind SiO2. After oxidation and additional annealing 

in N2 to homogenize the Ge distribution, a thinner layer of Ge-enriched Si1–xGex is left sandwiched 

between thicker layers of SiO2 as seen in Figure 5. In the last step the top layer of SiO2 is etched with 

HF to reveal the crystalline Si1–xGex surface. Ma et al. [65] used an optimized oxidation and annealing 

sequence to achieve a Si0.19Ge0.89 (16.8 nm thick) surface with a RMS roughness of 0.8 nm and a TDD 
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of 1.7 × 10
4
 cm

−2
. While the surface is not pure Ge, with the high Ge fractional content and 

exceptional surface quality it may prove to be a suitable template for Ge growth, or strained Ge in 

particular. Further experiments are needed to determine if this is the case. Due to the thick layer of 

SiO2 under the Ge rich Si1–xGex, devices grown on this platform should be well isolated. However,  

Ge rich Si1–xGex would be expected to have a bandgap near 0.8 eV, low enough to be a potential 

pathway for parallel conduction. Hutin et al. [8] showed this parallel conduction could be reduced by 

ensuring the Ge rich Si1–xGex layer is very thin (8 nm). Encouragingly, they reported an Ion/Ioff ratio of 

approximately 10
5
, the one of the best reported for a pMOSFET fabricated using the Ge condensation 

technique. Recently, even more encouraging results have been obtained [69]. 

On the topic of heterogeneous integration of Ge on Si substrates, there does not yet appear to be a 

clear winner for the best approach. However, many promising results have been obtained so far.  

The challenge of Ge on Si growth remains an important and ongoing area of research to unlock the 

potential of Ge based devices. 

Figure 5. HRTEM images of Ge-rich SiGe layer produced by the Ge condensation 

technique. The Ge composition is 89%, reprinted with permission from [65]. Copyright 

2009, Elsevier. 

 

2.2. Developing a Suitable Gate Stack 

The era of high- oxides has brought with it many exciting opportunities and challenges of its own. 

High-k materials deposited on Ge, in particular, have poised a special challenge due the higher 

reactivity of Ge (compared to Si) and the instability of the semiconductor’s native oxide, a subject 

discussed in more detail below. A number of excellent reviews which include a discussion of high-k 

oxides on Ge exist currently in the literature [2,11,27–29,70–73]. However, with the rapid pace of 

development in this area, recent advancements merit further review. 

2.2.1. Overview 

The critical function of high-k oxides is to permit a greater physical thickness of dielectric material 

between the gate and channel (compared to SiO2) without sacrificing gate capacitance. The charge 

component, Q, of Ion is summoned by the combination of the gate voltage and gate capacitance, 
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therefore a high gate capacitance is desired to increase Ion. For decades this capacitance could be 

scaled higher by making the oxide thinner. However, there is a lower limit beyond which the oxide 

thickness cannot be reduced since tunneling current (leakage) increases exponentially with decreasing 

thickness. Oxides with a physical thickness less than ~2 nm exhibit a unacceptably large gate leakage 

current leading to excessive power dissipation [74]. The gate capacitance is: 

   
      

   
 (2) 

where A is the area, k is the dielectric constant,    is the permittivity of free space, and tox is the oxide 

thickness. The relation above motivates the implementation of high-k materials into gate stacks.  

The only way to increase C, when tox cannot be reduced further, is to increase k (assuming A is fixed). 

An important fundamental concept in discussing gate stacks is equivalent oxide thickness (EOT). 

Since industry used SiO2 as the gate oxide for decades, researchers and device engineers have grown 

accustomed to using the thickness of the SiO2 as the primary metric to gauge the strength of the gate 

capacitance. Today, this remains the preferred means to assess gate capacitance, even after SiO2 is no 

longer the primary oxide used in today’s microprocessors. EOT is computed as: 

          
   

    
      (3)  

where khiK and thiK are the dielectric constant and physical thickness of the high-k material respectively. 

For Ge and III-V devices, the ITRS calls for a manufacturable EOT of 0.68 nm by  

2018 [31]. This is a good target for today’s research efforts. For a material with a dielectric constant of 

20, this corresponds to a physical oxide thickness of 4.36 nm. 

In truth, the description of the gate capacitance provided by Equations (2) and (3) is oversimplified. 

Today’s deep-submicron MOSFETs have entered a regime in which quantum mechanical effects and 

the gate electrode (degenerately doped poly-Si) depletion depth can no longer be neglected.  

These effects are reviewed in number of excellent works [74–76] and are not discussed in detail here. 

The thin depletion region in the poly-Si and the finite displacement of the charge centroid (in the 

channel) from the oxide interface both contribute an additional capacitance term appearing in series 

with the oxide capacitance. Therefore, the gate capacitance is more accurately modeled as: 

 

 
  

 

   
  

 

     
  

 

        
   (4)  

Then the effective capacitance thickness (ECT, also called the electrical EOT in some literature) 

follows as a sum of three effective thicknesses as shown below: 

                          (5)  

where tpoly and tchannel are the effective SiO2 equivalent thicknesses of Cpoly and Cchannel respectively.  

These thicknesses can each contribute few Å to the ECT. tpoly can be reduced to about 0.5 Å by 

replacing the poly-Si gate electrode with a metal (which is itself separate technical challenge). 

However, tchannel is an intrinsic phenomenon, and likely intractable. For Ge FET devices, the ITRS calls 

for an ECT of 1.18 nm by 2018. 

High-k materials can be deposited on Ge using a variety of methods. The most common are 

chemical vapor deposition (CVD) [77,78], physical vapor deposition (PVD) [79], molecular beam 
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deposition (MDB) [80,81], and atomic layer deposition (ALD) (two variations: thermal [82], and 

plasma [83]). Among these four, ALD is the most popular since it has many advantages. In addition to 

allowing precise thickness control on the sub-nm scale, ALD offers superior step-coverage and 

conformity, which is doubly important as we move into the era of multi-gate and 3D transistor 

configurations [84]. 

Experimentally, poor performance has been obtained when high-k oxides are deposited directly 

onto the Ge channel due to a high density of defects that create electronic states in the bandgap. High-k 

materials intrinsically have a higher concentration of defects compared to SiO2 due to their higher 

coordination number. Bonds in high-k materials cannot relax and rebond at defect sites as well as SiO2. 

The concentration of defects, particularly those near the interface, has serious consequences for 

channel mobility. Charge trapped in the defect centers scatter carriers in the channel leading to 

degradation of channel mobility [74]. To address this issue, an interfacial layer (IL) is usually inserted 

between the high-k material and the channel. The IL material generally has a much lower dielectric 

constant and tends to form a higher quality interface (fewer defects) with the channel material.  

The reduction of the defect concentration at the interface is often called surface passivation and so 

these layers are also called passivating layers. The metric most commonly used to judge the quality of 

an interface is the interface trap density Dit, which can be measured using methods reviewed in refs. [85,86] 

(the terms interface traps, interface charge, and interface states are all used interchangeably in the 

literature). Dit represents the number of trapped charges per cm
2
 per eV. The term eV appears since the 

energy levels of the traps are distributed across the bandgap. Therefore, trap density is reported as a 

function of energy level. Usually, however, only the density near the midgap is reported (unless 

otherwise stated). 

In addition to interface passivation, a critical role of the IL is to put some distance between carriers 

in the channel and the high-k material. This is highly desirable since high-k materials have been shown 

to strongly impact channel mobility even when not in direct contact with it [87]. The reasons for this 

are not entirely clear, however three mechanisms have been put forward (listed without details here 

since they are beyond the scope this this article): remote optical phonon scattering (RPS) [88,89], 

remote Coulomb scattering (RCS) [90,91], and remote surface roughness scattering [92,93]. Whatever 

the mechanism, one thing is clear, the presence of a high-quality IL is critically important to preserving 

the intrinsically high carrier mobility of Ge in the channel. The importance of the IL channel-shielding 

effect must be carefully balanced with the EOT cost of including the IL. Since ILs have lower 

dielectric constants, they generally increase the total EOT presented by the high-k material and the IL 

in series. This is seen from the equation for adding capacitors in series (same form as in Equation (5)). 

Neglecting poly-Si depletion and quantum mechanical effects we have: 

 

   
  

 

     
  

 

   
   (6) 

Combining Equations (2), (3), and (6) we can derive: 

           
   

     
         

   

   
     (7) 

where kIL and tIL are the dielectric constant and physical thickness of the IL material respectively.  

To further illustrate the notion of the IL EOT cost, consider the following example. Consider an IL 



Materials 2014, 7   2314 
 

which is 1 nm thick and is comprised of material with a dielectric constant of 4.5. Assume at least 1 nm IL 

thickness is needed to give low Dit and good channel mobility. Since a physical thickness of greater 

than 2 nm is strongly desired to suppress gate leakage, 2 nm of high-k material with a dielectric 

constant of 20 is deposited on top of the IL for a total physical oxide thickness of 3 nm.  

This configuration gives a total EOT of 1.26 nm, approximately double the ITRS target indicated earlier. 

The EOT cost of including an IL has motivated many experiments to find alternate passivation 

methods, usually wet chemical approaches that do not involve a physical layer of lower k material in 

the gate stack. These methods have generally been unsuccessful due to high Dit [94,95]. One of the 

primary goals of Ge gate stack research today is to simultaneously achieve low EOT, high channel 

mobility, and low leakage current. Such a device, however, has thus far proven to be exceedingly 

elusive. In fact, a general trend has been observed: as EOT is scaled down, peak channel mobility is 

degraded [11,74]. 

Another important consideration in developing gate stacks is band offsets. Both the conduction and 

valence band offsets (CBO and VBO respectively) must be at least 1 eV in order to suppress Schottky 

emission of electrons or holes into the oxide bands (another source of leakage current) [96]. Figure 6 

shows predicted Ge CBOs and VBOs with an array of common gate oxides. Almost always, the CBO 

is the smaller of the two offsets, so it is generally of greater interest. 

The requirements from the gate oxide stack are summarized as follows: 

1. Low EOT (should approach or exceed the targets set by the ITRS); 

2. Low leakage current density (should not be higher than 1.5 × 10
−2

 A/cm
2
) [74]; 

3. Sufficient CBO and VBO (at least 1 eV for both); 

4. Low Dit (less than 10
11

 cm
−2

·eV
−1

 is good, greater than 10
12

 cm
−2

·eV
−1

 is poor); 

5. Minimally diminished channel mobility (although this is usually expected if Dit is low); 

6. Sufficiently high dielectric breakdown electric field EBD [73]; 

7. Thermodynamic and kinetic stability [74]. 

Figure 6. Calculated band offsets of oxides on Ge, reprinted with permission from [97]. 

Copyright 2013, AIP Publishing LLC. 

 

In regards to thermodynamic and kinetic stability, the parameters listed in requirements 1–6 should 

be relatively immune to high temperature device processing steps (for example if the gate oxide is 

amorphous it must not recrystallize during processing); 400 °C Ge MOSFET process technology has 



Materials 2014, 7   2315 
 

been demonstrated [98]. Following from this process, Ge gate stacks should be able to endure thermal 

budgets of at least 400 °C for 30 min. Although this is substantially less than typical thermal budgets 

for Si, it remains a serious challenge since (i) key high-k oxides, such as HfO2, are known to 

recrystallize at 400 °C [99], (ii) GeO2 (sometimes used as an IL for gate stacks on Ge) is highly 

unstable at this temperature (this is discussed in more detail in the next section), and (iii) Ge can 

interdiffuse with important high-k materials like HfO2 and ZrO2, even at temperatures as low as 300 °C, 

contributing to higher Dit values [71]. The most common materials used as high-k dielectrics on Ge are 

Al2O3, HfO2, and ZrO2. These materials have been selected since they have (i) relatively high k values 

as shown in Table 2, (ii) sufficient CBO and VBO, (iii) reasonable thermodynamic and kinetic stability, 

and (iv) adequately high breakdown electric field. Other materials are also being investigated such as 

Y2O3 [100], TiO2 [13], and La2O3 [101]. 

With the ground work covered, the following sections will review methods for implementing an IL 

on Ge surfaces. The role of the IL is twofold: (i) passivate the surface effectively (i.e., have low Dit and 

give undiminished channel mobility), and (ii) accomplish role (i) at the lowest EOT cost possible.  

The quality of the IL layer is determined by its ability to achieve the above stringent requirement.  

In the case of Ge, two IL approaches have emerged as the most successful over recent years: the GeO2 

passivation layer [102–104], and the Si passivation layer [6,105–108]. Other approaches exist, such as 

surface nitridation [77], and sulfur passivation [109], however these approaches are not reviewed in 

this paper. 

Table 2. Static dielectric constant k and experimental bandgap for gate dielectrics common 

in the literature (reproduced from ref. [74]). 

k Gap (eV) 

SiO2 3.9 9 

Si3N4 7 5.3 

Al2O3 9 8.8 

Ta2O5 22 4.4 

TiO2 80 3.5 

SrTiO3 2000 3.2 

ZrO2 25 5.8 

HfO2 25 5.8 

HfSiO4 11 6.5 

La2O3 30 6 

Y2O3 15 6 

α-LaAlO3 30 5.6 

Before proceeding, a word of caution must be issued to the reader. One of the greatest issues 

plaguing gate stack research is the lack of consensus on the procedure for measuring and extracting  

Dit [85,86,110–113]. Without standardization of the Dit measurement, comparing outcomes for 

different gate stack approaches is difficult. This also increases the challenge in identifying a clear 

relationship between Dit, channel mobility, and subthreshold slope. 
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2.2.2. The GeO2 Passivation Layer 

The success of Si native oxide SiO2 as an interface passivation scheme for Si devices helped sustain 

the growth of the microelectronics industry for decades. This has led many to investigate using Ge’s 

native oxide as a passivation layer in Ge devices. Ge’s native oxide is usually written as GeOx. The x is 

intended to emphasize that GeO2 is not always dominant (this is in contrast to Si where SiO2 is 

dominant). It is primarily composed of a mixture of GeO and GeO2 [114]. Prabhakaran et al. [115] 

showed that as annealing temperature is increased from 250 °C to 420 °C the GeO2 on the surface 

undergoes the following transformation: 

GeO2 + Ge → 2GeO (8) 

Furthermore, at approximately 425 °C the GeO desorbs from the surface. This marks a stark contrast to 

the SiO2/Si interface in which the monoxide species is transformed to the dioxide species as annealing 

temperature approaches the oxide desorption temperature. The transformation is as follows: 

2SiO → SiO2 + Si (9) 

Relations (8) and (9) illustrate the distinctly thermal decomposition pathways of native oxide layers on 

Si and Ge. Additionally, SiO2 does not desorb until ~760 °C. By comparison to the SiO2/Si interface, 

the GeOx/Ge interface is far less thermodynamically stable. Ge’s poor stability is exacerbated by the 

fact that GeO2 is soluble in water. This stark contrast in behavior helps explain why there is a 

substantial difference in quality (in terms of Dit) between the SiO2/Si and the GeOx/Ge interface. For 

the SiO2/Si interface a Dit of ~10
10

 cm
−2

·eV
−1

 is routinely obtained [116]. However, for the GeOx/Ge 

interface, even 10
11

 cm
−2

·eV
−1

 is very difficult to achieve [117,118]. More recently, it has been found 

that GeO2 can serve as an effective IL, and the quality of the interface is strongly dependent on how 

the interfacial oxide is formed [102–104]. A wide variety of oxidation methods are being explored, 

including thermal oxidation [12,71,102,119–130], ozone or atomic oxygen exposure [131–136],  

high-pressure oxidation [103,104,137], radical oxidation [138], and plasma techniques [9,14,139]. 

Perhaps the greatest challenge of the GeO2 IL approach is controlling (i) the thickness of the GeO2, 

and (ii) the diffusion of Ge into high-k material. It is desirable to keep the GeO2 no thicker than is 

needed to passivate the interface (to minimize the IL EOT cost). This is made more difficult by the fact 

that Ge has a tendency to diffuse into the high-k material [103,140]; although some materials have 

shown to be more resistant to Ge up-diffusion and can even act as a barrier to it (Al2O3 is an example) [14]. 

Some works have observed that suppressing Ge interdiffusion with the high-k material results in 

improved performance [14,140]; suggesting defects are created during the interdiffusion process. 

Recently, researchers have shown some success in improving interface quality by capping the 

GeO2/Ge interface with diffusion resistant high-k material [13,14,138]. 

Recently, Zhang et al. [13] demonstrated an EOT of 0.65 nm using a gate stack of TiO2/Al2O3/Ge. 

The group reported their expectation that there were a few monolayers of GeO2 at the Al2O3/Ge 

interface. Previous analysis [141] of a device made using the same process found a Dit of about  

3 × 10
11

 cm
−2

·eV
−1

 near the midgap. TiO2 is an attractive dielectric material since it has a very high 

dielectric constant of 80. However, it is rarely used since its CBO on Ge is almost zero. Al2O3 on the 

other hand has a relatively low dielectric constant of 9 and a CBO of 1.58 eV on Ge, which meets the  

1 eV minimum to suppress gate leakage. For this work, a fair leakage current of about 1 × 10
−2

 A/cm
2
 at  
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Vg = −1 V is reported for the combined TiO2/Al2O3/Ge stack. This is notable since a very poor leakage 

current might be expected due to the near zero CBO of TiO2 on Ge and the Al2O3 layer is fairly thin  

(~1 nm). Since it seems no single dielectric material can achieve everything required for an excellent 

gate stack, composite gate stacks provide some much needed flexibility, as well as many exciting and 

unexplored possibilities for Ge gate stack design. 

Another recent and promising development is post-plasma oxidation. Zhang et al. [14] 

demonstrated an EOT of about 1 nm and midgap Dit on the order of 1 × 10
11

 cm
−2

·eV
−1

 using a 

Al2O3/GeOx/Ge gate stack. What is unique about their approach is that the Al2O3 is deposited before 

the plasma oxidation. The plasma-oxidation process then grows the GeOx at the Al2O3/Ge interface. 

Therefore, the GeOx is confined from the very start. Since Al2O3
 
also acts as a diffusion barrier for 

oxygen, the group found that by controlling the thickness of the Al2O3 they could control the thickness 

of the GeOx interfacial layer. Additionally, the group reported a clear relationship between Dit and the 

thickness of the GeOx, shown in Figure 7. The group noted Dit increased sharply if the GeOx IL  was 

reduced below 0.5 nm and also reported a high leakage current density of ~1 A/cm
2
, which is likely 

due to the relatively thin combined oxide thickness of ~2.5 nm. 

Figure 7. (a) Thicknesses of GeOx ILs with different Al2O3 thicknesses and plasma  

powers; (b) Dit of Au/Al2O3/GeOx/Ge MOS capacitors as a function of the GeOx IL 

thickness. The Dit reported is for 0.2 eV above the valence band, reprinted with permission 

from [14]. Copyright 2012, IEEE. 

 

2.2.3. The Si Passivation Layer 

The challenge of achieving high quality GeOx/Ge interfaces that are comparable to that of  

state-of-the-art SiO2/Si has inspired interest in the oxide/Si/Ge passivation scheme. In this approach, 

the Si is not always deliberately oxidized to form SiO2/Si/Ge. However, typically 2–3 ML of Si is 

consumed during processing to form a thin (~0.5 nm) layer of SiO2 at the Si surface [10,15]. The 

difficulty of overcoming the 4% lattice mismatch between Ge and Si has already been discussed at 

length. However, even extremely thin layers (less than 1 nm) of Si have been shown to passivate 

effectively and suppress the growth of Ge’s unstable native oxide [107]. This is below the critical layer 

thickness of Si on Ge, which has been reported to be between 1 and 2 nm [142]. The effectiveness of 

Si passivation has been shown to be sensitive to the Si growth parameters. It was found that diffusion 

of Ge into the Si layer was resulting in increased Dit and degraded device performance. Caymax et al. [6] 
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showed this Ge diffusion could be suppressed with careful selection of Si precursors and the growth 

temperature, with lower temperatures helping to restrict diffusion. 

Intel used Si passivation to demonstrate one of the best performing Ge PMOS planar devices to  

date [15]. A peak hole mobility of 770 cm
2
/V-s and equivalent oxide thickness of 1.45 nm was 

reported. Figure 8a shows a high resolution TEM image of the HfO2/SiO2/Si/Ge gate stack. A control 

sample in the Intel work without the Si IL showed more than a 10x reduction in mobility compared to 

the sample with a 0.6 nm Si cap. Figure 8b shows the capacitance voltage characteristics for Ge 

MOSFET samples with Si caps of different thicknesses. In addition to limiting carrier spill-out, 

thinning the Si cap from 1.4 nm to 0.6 nm also increases the gate capacitance in the inversion region. 

This is expected since thinning an IL comprised of a lower k material always reduces the IL EOT cost. 

Interestingly, the group found that increasing the Si cap thickness beyond 0.6 nm resulted in a 

reduction in peak hole mobility, even though it also resulted in a reduction of Dit from 9.0 × 10
11

  

to 1.8 × 10
11

 cm
−2

·eV
−1

. This is due to insufficient VBO between the Si and Ge. The potential barrier 

to holes is not large enough to fully confine the carriers to the high-mobility Ge channel, resulting in 

carrier spill-out and a reduction in overall effective mobility. This presents a critical consideration in 

applying the Si passivation scheme for Ge. The Si thickness must be controlled on the angstrom scale 

to curb carrier spill-out. Considering one lattice constant of Si is 5.431 angstroms, controlling growth 

at this scale is quite challenging. This task is made more difficult since some portion of this Si layer is 

typically consumed in the formation of SiO2. This process must be carefully controlled as well to 

ensure a contiguous layer of crystalline Si remains on the Ge surface. The optimum thickness of this 

layer appears to be approximately 6–8 ML [10,15]. 

Figure 8. (a) Cross-sectional TEM image of a high-k metal gate stack with a thin Si cap on 

a Ge QWFET. Part of the Si cap is oxidized due to thermal cycles during the transistor 

fabrication process; (b) Capacitance-voltage characteristics of Ge pQWFETs with different 

Si cap thicknesses, reprinted with permission from [15]. Copyright 2010, IEEE. 

 

(a) (b) 

2.3. Achieving Low-Resistance Ohmic Contacts to n-type Ge 

A key challenge in developing Ge-NMOS devices that perform comparably to the best Ge-PMOS 

devices today, is obtaining low-resistance ohmic contacts to n-type Ge. Low-resistance contacts are 

essential for a high drive current Ion. Interface states can have either donor-like or acceptor-like 
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behavior. Depending on this behavior, these interface states can pin the Fermi level at the 

metal/semiconductor interface. For a helpful and informative review of Fermi energy pinning see [23]. By 

inserting an ultrathin dielectric layer between the metal and the n-doped Ge, the Fermi level can be 

unpinned. Fermi-level pinning close to the Ge valence band edge at the metal/Ge junction [143,144] 

results in a large electron Schottky barrier, which translates to a high specific contact resistivity to  

n-type Ge. It has been demonstrated that thin potential barriers with low CBO on Ge could enable a 

high tunneling current. By deliberately facilitating a high tunneling current, the effective contact 

resistance at the junction is reduced. This is the primary mechanism behind the  

metal-insulator-semiconductor (MIS) contact to Ge [145]. The insertion of thin potential barriers, such 

as that provided by thin layers of Al2O3 [146], SiN3 [147], TiO2 [145,148], ZnO [24], Ge3N4 [149], 

GeOx [150,151], MgO [152,153], and Y2O3 [154] have been shown to reduce the Schottky barrier 

height as well as facilitate the unpinning of Fermi-level in n-type Ge. 

It has been recently reported that the lower CBOs obtained for the crystallographic oriented 

TiO2/Ge system, irrespective of the Ge crystallographic orientation, presents a potential for employing 

a TiO2 insulating layer for MIS contact applications. Crystallographic-orientation agnostic TiO2-based 

MIS contacts may be particularly useful in the next generation of Ge FinFETs, where different Ge 

orientations can be exploited to facilitate mobility enhancement for n- and p-channel devices [148]. 

3. Opportunities 

3.1. A Comparison: Ge versus III-V for PMOS 

High-performance n-channel InGaAs quantum well field effect transistor (QWFET) on Si has been 

demonstrated [25,26,155,156]. However, the demonstration of an equally high-performance p-channel 

QWFET within the same material system, which is needed for energy efficient complementary logic 

circuits, remains elusive till date due to low μh in InGaAs. Strained III-Sb materials  

(i.e., InSb [157,158], InGaSb [159–167], and GaSb [160,165,168–173]) are potential p-channel 

candidates due their high hole mobilities. These materials have low in-plane heavy-hole effective mass 

when applying a biaxial compressive strain of 1%–2%. By comparison Ge has much higher bulk hole 

mobility (µh =1900 cm
2
/Vs) even without strain. A μh higher than 2400 cm

2
/Vs was achieved for Ge 

using biaxial strain, as shown in Figure 9. Theoretical investigations of hole transport in 1.5%–2% 

biaxial strained III-V semiconductors show an increase in μh up to a factor of 2 over unstrained value 

may be possible [174–178]. However, μh in 2% biaxial-strained Ge can be increased up to  

4000 cm
2
/Vs [179–181], which is significantly higher than any III-V materials. Considering several 

material choices and strain engineering in the channel, Ge is the best choice to obtain high μh  

p-channel devices that can be heterogeneously integrated on Si. In order to realize a Ge QWFET 

configuration, high bandgap barrier layers are essential in order to (i) eliminate parallel conduction to 

the channel [25,26,155,156]; (ii) provide a large VBO for hole confinement; (iii) achieve a high-quality 

high-k/barrier interface [182–185]; (iv) control the lattice mismatch [25,186]; (v) provide strain to the 

active channel; (vi) give superior interface properties; and (vii) improve ohmic contacts [187,188]. 
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Figure 9. Room temperature hole mobility vs. sheet carrier density in biaxially compressed 

QWs: InSb [157,158], In0.4Ga0.6Sb, In0.35Ga0.65As [189,190], In0.83Ga0.17As [191],  

Ge [15,192–197]. 

 

The biaxial compression in the channel causes splitting of the heavy hole (hh) and light hole (lh) 

valence bands, and causes the in-plane hh mass to behave as a light hole. This results in an increase in 

μh by reduction of hh mass. By utilizing biaxial compression during the growth of p-channel device 

structures, high μh (at 300K) in antimonide QWs has been achieved. μh is reported as a function of 

sheet carrier density (Ns). In GaSb, a μh of 1350 cm
2
/Vs was reported (at Ns = 1.1 × 10

12
 cm

−2
 with 1% 

strain) [168]. In InGaSb, a μh of 1500 cm
2
/Vs was reported (at Ns = 7 × 10

11
 cm

−2
 with 2% strain) [198].  

In InSb, a μh of 1230 cm
2
/Vs was reported (at Ns = 1.1 × 10

12
 cm

−2
 with 2% strain) [157]. These works 

all used GaAs substrates. The reported values are far below the theoretical predictions by Hinckley and 

Singh [175]. Moreover, these are lower than the μh of 2700–3100 cm
2
/Vs (at Ns = 0.5–3 × 10

12
 cm

−2
) 

that is reported for Ge QW devices, as shown in Figure 9 [192–197]. In addition, the μh for arsenide-based 

materials (InGaAs) is much lower than for Ge or Sb-based QWs [15,173,189–191]. Figure 10 shows 

the in-plane hh effective mass as a function of Ns in biaxially compressive strained QWs from 

Shubnikov-de Haas or cyclotron resonance measurements at low temperature for several materials. 

These results strongly suggest that the best p-channel material is either InSb or Ge. Utilizing Ge, with 

its lower lattice mismatch to Si (InSb is ~19% versus ~4% for Ge), as the channel material in a 

QWFET configuration appears to be the most attractive option for high-mobility low-power PMOS logic. 

Figure 10. Effective mass vs. sheet carrier density in biaxially compressed QWs. 
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3.2. Ge Device Architectures 

In the post-Si CMOS era, Ge is attractive due to its 2× higher µn and 4× higher µh (compared to Si), 

and its lower bandgap allows for better supply voltage scalability. However, a lower supply voltage 

results in (i) a lower operating electric field which then lowers carrier velocity (resulting in lower Ion), 

and (ii) a lower gate voltage swing (effecting the transistor’s ability to switch off and resulting in 

increased leakage power). Therefore, new materials and innovative device architectures are required to 

continue transistor miniaturization. Figure 11 shows the Ge device research vehicle and compares 

three different device architectures: (i) conventional MOSFET, (ii) the QWFET, and  

(iii) metal-oxide quantum well FET (MOS-QWFET). MOS-QWFETs are a hybrid architecture in 

which an oxide layer replaces the upper barrier, or is deposited on top of the upper barrier, in the 

QWFET architecture. In the conventional MOSFET, the oxide is directly on the channel, and gate 

electrode is on top of the oxide. Mitard et al. [10] demonstrated a conventional Ge pMOSFET with a 

gate length of 65 nm, good Ion/Ioff, and scalable EOT. 

Figure 11. Device research vehicle for Ge on Si for low-power logic, and comparison of 

MOSFET, QWFET, and MOS-QWFET structures. 

 

The QWFET architecture employs a modulation doped ultra-high mobility Ge channel which 

facilitates efficient carrier transport at high velocity ((x) = µ × (x)) between the source and the drain, 

even at very low electric field. The channel is sandwiched by large bandgap barrier materials (SiGe or 

Si) to reduce the leakage. In this case, the Ge channel is biaxially compressive-strained by the barrier 

layers. The barrier layers must also provide a VBO sufficiently high to confine holes inside the Ge 

channel. A modulation doping layer, separated by spacer or barrier layer, eliminates the ionized 

impurity scattering with holes inside the Ge channel. Therefore, the Ge channel itself is undoped, and 

the amount of modulation doping is carefully selected such that no charge exits underneath the gate in 
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the absence of voltage applied to gate electrode. The important parameters in designing Ge QWs to 

enhance hole mobility are (i) the percentage of strain induced in the Ge channel, (ii) the VBO between 

the narrow bandgap Ge channel and the wide bandgap SiGe buffer (which determines the maximum 

number of holes confined in the QW), (iii) the number and effective mass of the carriers in the lh and 

hh bands, and (iv) the energy split between the hh and the lh bands. Using this approach, high 

performance Ge pQWFETs have been demonstrated at low supply voltage of −0.5V [15]. 

There are two varieties of QWFET architecture commonly employed in the device research 

community: normal and inverted. In the normal QWFET the modulation doping layer is placed above 

the channel. In the inverted QWFET this doping layer is placed underneath the channel. The planar 

(not Fin-FET or multigate design) Ge pQWFET, though it has been demonstrated, still falls short of 

expectations due to large separation between the source and drain metal electrodes [15]. To fabricate 

ultra-scaled devices below sub-22nm gate length with improved short-channel performance several 

issues must be overcome, namely, (i) the 1:1 ratio between the lateral to vertical scaling, (ii) the 

reduction in upper barrier thickness (A) (need to be less than 2 nm), and the (iii) reduction of  

source-to-drain spacing. The reduction in upper barrier thickness reduces the barrier resistance,  

which in turn improves (i) Ion, (ii) switching speed, and (iii) the delay of the transistor. However, the 

reduction in upper barrier thickness results in increased gate leakage current for Schottky-gate  

(no oxide layer) QWFETs, shown in Figure 11b. The gate leakage current can be overcome with the 

integration of a high-k dielectric oxide, as discussed in earlier, resulting in the MOS-QWFET 

architecture, shown in Figure 11c, although the distinction between the QWFET and MOS-QWFET is 

not usually made. MOS-QWFETS exhibit significantly decreased EOT and reduced gate leakage  

(JG) [15]. Therefore, the combination of the QWFET structure and the high-k gate dielectric is 

currently the best option for low-power logic (supply voltage of −0.5 V). In order to implement Ge 

MOS-QWFETs in future high-performance logic applications, scalability (both in terms of physical 

gate length and the overall footprint) is mandatory. A thinner upper barrier is needed for ultra-scaled 

buried-channel devices. Due to this stringent requirement, the modulation doping layer sometimes 

placed underneath the channel, resulting in the inverted QWFET structure. This results in a more 

scalable device with faster switching, lower dynamic power consumption and minimized Ioff [15]. 

3.3. State-of-the-Art Ge MOSFETs and MOS-QWFETs 

Figure 12a,b show the cross-sectional TEM micrograph of a conventional surface channel 65 nm Ge 

pMOSFET [10] and the Ge pMOS-QWFET with in-situ boron-doped SiGe raised source/drain [15], 

respectively. Figure 13a shows the transfer characteristics of a 65 nm Ge pMOSFET at low and high 

VDS with superior reproducibility [10]. Figure 13b shows the transfer characteristics for a 100 nm Ge 

QWFET at VDS = −0.05V (open circle) and −0.5V (solid circle) [15]. The QWFET device exhibits a 

subthreshold slope (SS) of 97 mV/dec enabled by the phosphorus junction layer underneath the 

channel, which suppresses parallel conduction through the SiGe buffer as reported in [15].  

Figure 14 compares saturation current (Idsat, also called Ion) vs. off-state leakage current (Ioff) 

characteristics of 65 nm Ge pMOSFET [10], 40 nm InSb QWFET [157], and 100 nm Ge  

MOS-QWFET [15] at supply voltage of −0.5 V. The Ge MOS-QWFETs exhibited 2 × Idsat for the 

same Ioff, demonstrating its potential for PMOS on a Si substrate. However, shorter gate length  

(<50 nm) Ge QWFETs in a planar configuration will be a significant challenge due to the self-aligned 
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gate architecture needed for scalable enhancement mode devices for low power and high-speed digital 

logic applications. 

Figure 12. (a) Cross-sectional TEM micrograph of a 65 nm Ge- pMOSFET, reprinted with 

permission from [10]. Copyright 2008, IEEE; (b) Cross-sectional TEM micrograph of a Ge 

pQWFET, reprinted with permission from [15]. Copyright 2010, IEEE. Note the raised 

source/drain (RSD) in the QWFET which allows for reduction/removal of the  

S/D implantation. 

 

Figure 13. Transfer characteristics of measured (a) 65 nm Ge pMOSFET at low and high 

VDS with superior reproducibility, reprinted with permission from [10]. Copyright 2008, 

IEEE; (b) 100 nm Ge pQWFET at VDS = −0.05 V (open circle) and −0.5 V (solid circle). 

The device exhibits a subthreshold slope (SS) of 97 mV/dec enabled by the phosphorus 

junction layer underneath the channel, which suppresses parallel conduction through the 

SiGe buffer, reprinted with permission from [15]. Copyright 2010, IEEE. 

 

Furthermore, a list of well-established device metrics used for benchmarking logic transistors is 

essential [199]. These includes (a) CV/I delay as a function of transistor channel length for studying 

intrinsic speed of the proposed technology, (b) energy-delay product as a function of transistor channel 

length for optimizing switching energy and power consumption, (c) SS and drain-induced barrier 

lowering behavior as a function of transistor channel length which is critical for establishing the 

scalability, and (d) intrinsic delay CV/I vs. Ion/Ioff ratio to understand the performance and leakage 
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tradeoff. At present, p-channel Ge MOS-QWFETs show great promise. Co-integration with n-channel 

InGaAs based MOS-QWFETs, as shown in Figure 15, offers an attractive pathway to extreme-high 

mobility CMOS. Ge based FinFET technology has recently been demonstrated [69,200].  

Very recently, a Ge FinFET device obtained record Ion/Ioff characteristics with a highly scaled gate 

length and EOT of 35 nm and 0.8 nm respectively, representing a considerable breakthrough [200]. 

Figure 14. Benchmarking relation (Ioff vs. Idsat) of 65 nm Ge pMOSFET, 40 nm  

InSb QWFET and 100 nm Ge QWFET at a supply voltage of 0.5 V. The Ge QWFET 

demonstrated the highest ON current at a given OFF-state leakage current, reprinted with 

permission from [2]. Copyright 2011, Nature Publishing Group. 

 

Figure 15. Schematic of extremely-high mobility NMOS and PMOS co-integrated for 

complete CMOS heterogeneously integrated on Si. 

 

4. Conclusions and Outlook 

In summary, germanium based p-channel devices are beginning to show signs of readiness for 

production, especially in light of recent breakthroughs [200]. Ge n-channel devices continue to lag 

behind, but are also making progress due to improved ohmic contacts [24,145]. The dual-Ge path for 

post-Si CMOS is becoming an increasingly viable option. However, to achieve the highest 
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performance possible, the III-V/Ge path (NMOS/PMOS) is the most attractive (as shown in Figure 15), 

although it comes at the cost of increased processing complexity. 

Five categories of buffer architectures for heterogeneous integration on Si have been discussed. 

Among them, the Ge condensation method has produced promising initial data, but now must 

demonstrate suppression of parallel conduction, and high Ion/Ioff ratios at scaled gate lengths. The  

low-temperature/high-temperature method combined with hydrogen annealing has also shown good 

results and now must also demonstrate that parallel conduction can be controlled to achieve low Ioff 

currents and high Ion/Ioff ratios. The SME method also offers an interesting alternative approach for 

Ge/Si heteroepitaxy, especially if the matter of unintentional background doping can be resolved.  

The ART approach has been shown to produce narrow regions of excellent quality Ge, and has already 

been used in a commercial product [61]. 

Ge gate stacks have made tremendous strides thanks to many years of international collaborative 

effort. Two passivation schemes have emerged from over a decade of research. GeOx passivation has 

shown it can deliver interfacial layers with Dit comparable to today’s state-of-the-art Si devices. These 

methods must now (i) be demonstrated at scaled gate lengths, and (ii) focus on improving the 

thermodynamic stability and reliability characteristics of these gate stacks. The approach of capping 

the GeOx with a layer of diffusion-resistant high-k material is an excellent step in achieving this. 

The metal-insulator-semiconductor (MIS) approach has shown it can effectively reduce the contact 

resistance to n-type Ge. These n-Ge low resistance ohmic contacts are needed to develop Ge NMOS 

devices which can perform on par with Ge PMOS devices already established. If comparably 

performing Ge NMOS and PMOS can be obtained at scaled gate lengths it unlocks the dual-Ge CMOS 

path, which will substantially simplify device processing procedures (resulting in reduced costs). 

The advantages of Ge over III-V for p-channel devices have been reviewed. As a result of many 

years data-driven analysis, there appears to be strong consensus in the device research community that 

Ge is the best alternative for PMOS devices (if current strained-Si PMOS technology stalls). InSb 

appears to be the best III-V alternative, however its lattice mismatch with Si is 19%, requiring more 

complex and expensive buffer architectures compared to Ge (4% lattice mismatch). 

Ge device architectures have also been reviewed, along with important design considerations for Ge 

MOSFETs and QWFETs. The hybrid architecture, the MOS-QWFET, shows clear advantages in terms 

of higher Ion and lower Ioff. However, these devices are also difficult to scale down to gate lengths of 

less than 50 nm due to the challenge of developing a self-aligned gate. New Ge FinFET devices have 

shown they can overcome this limitation. 
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