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Abstract: The role of iron in two modes of integration into alumina catalysts was studied 

at 0.39 wt% Fe and tested in trichloroethylene combustion. One modified alumina was 

synthesized using the sol-gel method with Fe added in situ during hydrolysis; another 

modification was performed using calcined alumina, prepared using the sol-gel method and 

impregnated with Fe. Several characterization techniques were used to study the level of Fe 

modification in the γ-Al2O3 phase formed and to correlate the catalytic properties during 

trichloroethylene (TCE) combustion. The introduction of Fe in situ during the sol-gel 

process influenced the crystallite size, and three iron species were generated, namely, 

magnetite, maghemite and hematite. The impregnated Fe-alumina formed hematite and 

maghemite, which were highly dispersed on the γ-Al2O3 surface. The X-ray photoelectron 
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spectra (XPS), FT-IR and Mössbauer spectroscopy analyses revealed how Fe interacted 

with the γ-Al2O3 lattice in both catalysts. The impregnated Fe-catalyst showed the best 

catalytic performance compared to the catalyst that was Fe-doped in situ by the sol-gel 

method; both had better catalytic activity than pure alumina. This difference in activity was 

correlated with the accessibility of the reactants to the hematite iron species on the surface. 

The chlorine poisoning for all three catalysts was less than 1.8%. 

Keywords: alumina; impregnation; sol-gel; trichloroethylene 

 

1. Introduction 

The catalytic activity of aluminas depends on their physicochemical properties, which can be 

controlled by the preparation method [1–6]. Different methods create different surface properties on 

aluminas, even though the final crystalline structure is the same. The sol-gel method provides an 

attractive, convenient route to manipulate the structural and textural properties and purity of a 

compound [7–10]. One of the main advantages of metal oxide materials obtained using the sol-gel 

method is that the properties can be altered by manipulating any of the processing steps during the 

formation of the precursors. This fact allows for the homogeneous mixing of transition metal cations at 

a molecular level and enhances the formation of polycrystalline particles with special properties. 

Product purity is among sol-gel’s advantages, because this method enables the straightforward study of 

every variation performed and its effect on the materials. 

Doping refers to modifying the structural and physicochemical properties of a material, usually by 

adding small quantities of some metal to obtain improvements in the catalytic properties. Doping is 

generally performed with less than 2% by weight of the metallic agent [11]. The doping of an 

inorganic matrix like that of alumina can be performed by adding small amounts of a metal during 

synthesis. This in situ procedure allows the doping agent to be uniformly dispersed and closely 

associated with the inorganic matrix. The result is the ability to adjust the overall surface properties, 

crystallographic arrangements and texture among other properties [12,13]. The classic, commercial 

method to dope an oxide catalyst with metallic agents is the incipient wetness impregnation technique. 

Impregnation consists of introducing the oxide catalyst (generally as a powder) into a solution 

containing the metallic agent. The oxide is then recovered with the metallic agent adsorbed through 

chemical and physical interactions to the oxide catalyst for drying [12,14]. Both methods of doping, in situ 

and impregnation, create interactions with the oxide matrix and, depending on the method, the doping 

agent is available at the surface to some extent [6]. 

To compare both methods, achieving the same weight percentage of doping and observing the 

catalytic activity and selectivity are necessary. Previously, we reported alumina prepared using the sol-gel 

method and doped with iron at 5 wt% or without iron doping, and then the performance of both 

catalysts was compared in the combustion of the chlorinated volatile organic compound (VOC) 

trichloroethylene [15]. Catalytic combustion is a good alternative to eliminate VOC emissions 

(substances that damage the ozone layer), because catalytic combustion is considered to be a sustainable 

technology [16] and catalyzes the reaction to the complete oxidation products CO2 and H2O [17–19]. 
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Recent reports have described the characterization of alumina doped with Fe (greater than 5%) and 

characterized by techniques, such as X-ray diffraction (XRD) and scanning electronic microscopy 

(SEM) [15,20,21]. This work reports for the first time the role of iron at very low concentration in 

alumina (0.39%), using different characterization techniques. The main purpose of this work is to 

study the role of iron over the physicochemical properties of alumina and its catalytic performance in 

trichloroethylene combustion and the influence of iron incorporation using the two methodologies. 

2. Results and Discussion 

2.1. Thermal Analysis 

The thermogravimetric analysis (TGA)/differential thermal analysis (DTA) results for the pure 

alumina xerogel were previously discussed and reported elsewhere [15]. Figure 1 shows the DTA and 

TGA in the same plot for xerogels of alumina doped with Fe in situ (Figure 1a) and alumina doped 

with Fe by impregnation (Figure 1b). 

Figure 1. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) of 

(a) alumina doped with Fe in situ using the sol-gel method (AFSG) and (b) alumina doped 

with Fe by impregnation method (AFI). 

 

In Figure 1a, the first weight loss region (50–200 °C) is characterized by three endothermic events 

attributed to the physically adsorbed water (60 and 130 °C) and to formation of boehmite (173 °C). 

The second region (200–300 °C) has the greatest weight loss, due to the decomposition of nitrates, 

boehmite-alumina conversion and formation of iron oxide. The weight loss events were very similar to 

the pure alumina sample (not shown). The derivative of the DTA curve (not shown) allowed the 

identification of nitrates removal at 264 °C and boehmite conversion to γ-Al2O3 at 291 °C. A small 

shoulder at 246 °C was also visible in the derivative of the DTA and was identified as an endothermic 

event at 242 °C, corresponding to the dehydroxylation of Fe(OH)3 to γ-Fe2O3 (maghemite) [22]. Thus, 

the formation of iron oxide species allows the creation of the γ-Al2O3 phase at a lower temperature. 

Another short endothermic event at 495 °C without weight loss was observed on the TGA curve and 
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attributed to the γ-Fe2O3 to α-Fe2O3 (hematite) phase transition [22]. Although the alumina phase of AFSG 

(alumina doped with Fe in situ using the sol-gel method) influenced the effects of strain release, the  

α-Fe2O3 particles were expected to be smaller than 60 nm. 

In Figure 1b, the TGA shows an initial weight loss of 11% between room temperature and 230 °C, 

which can be attributed to physically absorbed water. Two pronounced slope changes were observed, 

the first from 230 to 260 °C (0.6%) and the second from 431 to 509 °C (1.3%). The first weight loss 

was related to the endothermic event at 242 °C; the decomposition of ferric acetate has been reported to 

occur between 240 and 300 °C and is accompanied by the desorption of acetone and carbon dioxide [23]. 

The second weight loss is related to an exothermic event at 445 °C; Kluchova et al. conducted detailed 

isothermal experiments at selected temperatures in the range of 320–400 °C for 1 h and proved that 

maghemite is the only formed Fe2O3 polymorph [24]; and Tae et al. reported that a weight loss occurring 

beyond 450 °C would be related to the decomposition of the residual organic acetate group [25,26].  

The TGA/DTA of the AFI (alumina doped with Fe using the impregnation method) catalysts do not 

present other events (509–800 °C) and for the event at 445 °C this result could not be related with the 

hematite phase in accordance with what has been reported before. 

2.2. X-Ray Diffraction (XRD) Patterns 

Figure 2 shows the XRD patterns obtained for the pure alumina (A), alumina doped with iron in situ 

using the sol-gel method (AFSG), alumina doped with iron by impregnation (AFI) and a commercial 

sample of alumina (CA) (commercial ketjen alumina) before and after trichloroethylene combustion. 

The γ-Al2O3 phase was the only crystalline structure identified (JCPDS 00-050-0741). The crystalline 

iron oxide species could not be detected due to the low content (<4 wt%) in AFSG and AFI. Table 1 

presents the percentages of Fe determined in AFSG and AFI by X-ray fluorescence spectroscopy 

(XRFS). Table 1 also contains the mean crystallite size for all of the samples, calculated with the 

Scherrer equation [27]. 

Figure 2. X-ray diffraction (XRD) patterns of the catalysts before (a1, b1, c1 and d1) and 

after combustion (a2, b2, c2 and d2), where the catalysts are identified as (a) A; (b) AFSG;  

(c) AFI; and (d) commercial sample of alumina (CA). 
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Table 1. Characteristics of the alumina catalysts. 

Sample 

Crystallite 

size (nm) 

Fresh sample 

Crystallite 

size (nm)  

Used sample 

Fe 

(wt%) 

ABET 
a
 

(m
2
/g) 

Average pore 

size 
b
 (nm ) 

O/Al 
d
 

Fresh 

sample 

O/Al 
d
  

Used 

sample 

Cl 
d
 wt%  

Used 

sample 

T50% 

(°C) 

mgFe/  

gAl2O3 

(rA) 

molTCE/  

(kgFe-s) 

A 9 10 – 248 6.1 1.54 1.24 0.72 349 – – 

AFSG 7 11 0.37 242 6.1 1.66 1.18 1.78 315 3.7 1.18 × 10−2 

AFI 11 16 0.39 195 8.8 1.72 1.32 1.01 285 3.9 1.82 × 10−2 

CA 9 9 – 191 6.1 1.50 1.51 1.28 378 – – 

Note: a BET surface area; b BJH Method for desorption pore diameter; c T50% Temperature at 50% conversion of TCE; d EDAX TSL® 

advanced microanalysis solutions AMETEK. A: Pure alumina by the sol-gel method; AFSG: Alumina doped with Fe in situ by the  

sol-gel method; AFI: Alumina doped with Fe by impregnation; AC: Commercial Ketjen alumina. 

The signal with the highest intensity was used (2θ ≈ 67) for all XRD patterns, which corresponded 

to the crystalline plane 440. The mean crystallite size value from the Scherrer equation for the AFSG 

sample was lower compared with pure alumina, while the value for AFI was higher. The inclusion of 

iron during the sol-gel process (AFSG) influenced the γ-Al2O3 mean crystallite size. The larger 

crystallite size for AFI compared to sample A could be explained by the calcination of sample A at  

600 °C followed by impregnation with iron acetate solution and re-calcination at 600 °C, which led to 

sintering. The Fe or iron oxide species were highly dispersed in the γ-Al2O3 phase in the AFSG and 

could have spread into the crystal lattice to yield the crystallite size reported (Table 1). It is important 

to note that AFI was the only γ-Al2O3 catalyst affected after performing the trichloroethylene  

(TCE) oxidation. 

2.3. Scanning Electronic Microscopy (SEM) Images and Energy Dispersive Spectra (EDS) Analysis 

Figure 3 shows scanning electron micrographs of both modified alumina catalysts (AFSG and AFI) 

at two magnifications. For AFSG at 1000× (Figure 3a), a very regular morphology and a wide particle 

size distribution of grain was observed. The grains in the micrograph were formed from overlapping 

flakes; the low Fe content in AFSG led to this typical grain morphology for pure alumina. Figure 3b 

shows the same AFSG sample but at 15,000×, where the nanoparticles can be seen to have a very 

irregular size and shape. The individual particles were in the range of 200–600 nm. Some of these 

nanoparticles were agglomerated, and others were perfectly separated. In addition, a system of 

interconnected pores could be observed, which allowed the percolation of fluid and promoted 

permeability, favoring heterogeneous reactions. For AFI, the micrograph at 1000× (Figure 3c) showed 

grains of different sizes and a morphology similar to AFSG, but very small particles covering the 

surface of the grains were present. These particles were presumably impregnated iron oxide species. At 

20,000× (Figure 3d), the AFI sample had nanoparticles that were less flat than the AFSG sample 

(Figure 3b). The nanoparticles were in the range of 200–610 nm. In particular, the nanoparticles were 

more connected with irregular borders than the AFSG nanoparticles, which could decrease the 

percolation of fluids compared to the AFSG sample. 
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Figure 3. Scanning electronic microscopy (SEM) micrographs using two magnifications of 

AFSG (a,b) and AFI (c,d). 

 

Energy dispersive spectra (EDS) (data not shown) allowed the determination of the chemical 

composition of the samples [28,29]. These data were used to calculate the O/Al atomic ratios for all the 

fresh samples as shown in Table 1 [30]. The stoichiometric ratio of O/Al in the Al2O3 formula is 1.5; 

however, only the commercial catalyst had this value, while all of the synthetic fresh samples had 

higher values. The values of samples A, AFSG and AFI were 3%, 10.8% and 15.2%, respectively. This 

is higher than the stoichiometric value, likely due to excess oxygen from AlO(OH), iron oxides and 

surface nitrates. For example, γ-Al2O3 made by sol-gel synthesis was reported to be deficient (referring 

to atomic%) in aluminium [31]. In addition, γ-Al2O3 made by sol-gel synthesis was not totally 

dehydroxylated, with some hydroxyls from boehmite persisting in the alumina structure [15,31]. To 

preserve electron neutrality, some cationic defects must therefore be created in the structure. The 

number of cation defects must be equal to the number of OH ions left in the structure. 

Table 1 also contains the O/Al ratios for all of the samples to be used in combustion tests with TCE 

(light-off curve tests). Importantly, EDS spectrometry allows for characterization of the first 

micrometres (≈ 2 µm) of the surface depth of solids [32]. The synthetic samples decreased the O/Al 

ratio by 20%, 29% and 23% for the A, AFSG and AFI samples, respectively. Notably, the fresh 

catalysts doped with Fe had a higher O/Al ratio on the surface (AFSG = 1.66 and AFI = 1.73) than 

without doping (A = 1.54 and AC = 1.5). The X-ray photoelectron spectra (XPS) spectral results of the 

O 1s show that relative area assigned to Al-O (Table 2) for the aluminas containing Fe are less  

(< 50%) than those without Fe. Therefore, the relative area for oxygen in Al-O was reduced due to the 

iron species decrease in the exposed alumina; however, the oxygen in iron oxide increases the presence 
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of oxygen groups on the catalyst surface, resulting in a higher O/Al ratio, which favors TCE 

combustion. Iron oxide oxygen species have been reported to adsorb CO, transforming it into CO2 [33]. 

For this reason, the used catalysts, which had a higher activity (Fe-doped alumina), showed a decrease 

in the oxygenated groups in the EDS analysis, because these catalysts participated in the reaction 

forming CO2. 

Table 2. Deconvolution parameters for the alumina catalysts; FWHM: Full width at half maximum. 

Sample Cation peak. assignation Position (eV) FWHM (eV) Relative area (%) 

A 

Al 2p 
Al-AO3 76.70 2.7 79 

Al(OH)n 74.30 3.0 21 

O 1s 

O/γ-Al2O3 531.96 2.0 19 

Oads 530.83 2.1 5 

O2−/hydroxyl 530.10 2.3 56 

O-Al 527.70 2.5 20 

AFSG 

Al 2p 
Al-AO3 76.70 2.9 78 

Al(OH)n 74.00 3.2 22 

O 1s 

O/γ-Al2O3 531.96 2.0 20 

Oads 530.83 2.1 7 

O2−/hydroxyl 530.10 2.3 63 

O-Al 527.70 2.5 10 

AFI 

Al 2p 
Al-AO3 76.10 2.4 87 

Al(OH)n 74.00 2.5 13 

O 1s 

O/γ-Al2O3 531.96 1.9 16 

Oads 530.83 2.1 4 

O2−/hydroxyl 530.00 2.3 67 

O-Al 527.70 2.5 13 

Furthermore, Table 1 reports the Cl wt% and degree of chlorine poisoning (AFSG was the most 

affected, followed by commercial alumina). The deposition of iron in the sol-gel sample (AFSG) 

proved to be more vulnerable to TCE combustion than the other samples, but this also meant a better 

interaction during the employment period (working time was 14 h for all of the samples). The attack of 

chlorine was very low, less than 1.8 wt% for all of the samples, which might have been due to the 

humid conditions favouring the Deacon reaction to form HCl. 

The O/Al ratios for all of the samples were lower than the stoichiometric Al2O3 formula. The fresh 

samples were deficient in aluminium, and the used samples were deficient in oxygen, suggesting that 

TCE also reacted with oxygen in the solid samples. This oxygen might have come from the OH ions or 

reticular atoms in the γ-Al2O3 lattice in the case of the synthetic samples. The commercial sample had 

a slightly increased O/Al ratio, but contained chlorine atoms in the elemental analysis, indicating the 

formation of oxychlorine compounds. 

2.4. High Resolution Transmission Microscopy (HRTEM) 

The images obtained by high resolution transmission microscopy (HRTEM) for the three synthetic 

samples are reported in Figure 4. The pure alumina sample (labelled as A) is included for comparison 
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with the AFGS and AFI samples. Perpendicular lines were drawn for the interplanar distances (IDs) in 

the micrographs, and the average is reported on the micrographs. 

Figure 4. High resolution transmission microscopy (HRTEM) micrographs of (a) A;  

(b) AFSG and (c) AFI. 

 

For sample A (Figure 4a), a series of IDs revealed well-developed crystallite growth. This ID group 

occupied the central part of the image and measured up to 18 nm in length. One ID of 0.24 ± 0.02 nm 

and two of 0.25 ± 0.02 nm matched the (311) plane according to JCPDS 00-050-0741 for a γ-Al2O3 

crystalline phase. Another zone with IDs of 0.15 ± 0.01 nm in the other direction was identified and 

matched the plane (511) of the same γ-Al2O3. At the top of the image in an area slightly out of focus, 

the background can be observed with accommodations for points in a hexagonal shape. This 

appearance was related to the carbonaceous layer on which particles from sample A were deposited. 

The pure alumina catalyst crystals were noted to grow well in a unidirectional mode. 

Figure 4b shows the HRTEM for AFSG and different measured IDs. The four identified IDs were 

in different directions, so there were several directional growths of crystals. This growth yielded 

crystallite sizes smaller than 8 nm, which was consistent with the average AFSG crystallite size found 

in the XRD analysis (Table 1). The IDs measured were related to the crystalline phase of γ-Al2O3, but 

some of them might also correspond to crystalline phases of iron oxides. This result was the case for 

IDs of 0.20 ± 0.02 nm, which could be related to the (400) planes of iron oxides, such as magnetite or 

Fe3O4 (JCPDS 88-0866) and maghemite or γ-Fe2O3 (JCPDS 24-0081) (Fe8
III

 A[Fe40/3
III

 ◊7/3]BO32, 

where ◊ represents a vacancy, A is a tetrahedral positioning and B an octahedral positioning). The 

(202) plane of hematite or α-Fe2O3 (JCPDS 87-1165) could also be implicated, as could the (400) plane 

of γ-Al2O3 (JCPDS 00-050-0741). Furthermore, the IDs of 0.28 ± 0.05, 0.14 ± 0.01 and 0.21 ± 0.03 nm 

could correlate to different planes of the three iron oxides but also with some planes of γ-Al2O3. The 

IDs of 0.25 ± 0.01 and 0.12 ± 0.01 nm could only be related to the three types of iron oxide. At this 

point, the introduction of Fe in situ during synthesis by sol-gel to form the AFSG sample decreased the 

crystallite size compared to the pure alumina sample (A). The introduction of Fe also produced several 

directions of growth of the γ-Al2O3 crystallites along the borders. Some iron oxide phases may have 

grown epitaxially on some planes of the γ-Al2O3 phase. Another difference between sample A and 

AFSG was that the black spaces (vacancies) of A were very regular in size and frequency along the 

IDs. The Fe in the AFSG sample produced a variety of defects in the crystalline γ-Al2O3 phase. 
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Figure 4c shows the HRTEM of the AFI sample and contains a nanoparticle morphology identical 

to that found in previous work on 5 wt% Fe-doped Al2O3 by sol-gel for different iron oxides [15].  

The morphology of the nanoparticles was roughly spherical, which was dissimilar to the morphology 

of pure alumina shown in Figure 4a. Thus, these roughly spherical particles could not correlate to the 

γ-Al2O3 phase. Different IDs were measured and identified. The IDs of 0.37 ± 0.03 nm and  

0.27 ± 0.03 nm, found in an ellipsoidal particle (7.32 and 10.1 nm diameters). The ID of  

0.37 ± 0.03 nm was related to the (012) plane for hematite and the (210) plane for maghemite. The ID 

of 0.27 ± 0.03 nm was related to the (104) plane for hematite and the (221) plane for maghemite. Any 

ID in the AFI HRTEM image could be correlated to a magnetite iron oxide phase. The iron oxide 

species found was hematite (α-Fe2O3) and maghemite is another phase that has been reported as a 

product of iron (II) acetate oxidation of γ-Al2O3. The latter matched the DTA analysis of the AFI sample. 

The IDs 0.20 ± 0.04 correlated with the plane (202) for the hematite and with the plane (400) for 

magnetite, maghemite and alumina. 

Figure 5 presents the Fourier transform mode transmission electron microscopy (TEM) spot 

electrons for the AFGS and AFI samples. This analysis confirmed the crystalline nature of both 

catalysts and suggested some signals were related to different iron oxide phases. The incorporated iron 

in the AFSG sample could be present as iron oxide crystalline arrays, as substitutions or at interstitial 

positions in γ-Al2O3. The iron in the AFI surface was clearly presented as hematite and maghemite 

phases, but some Fe cations could have been introduced into γ-Al2O3 by diffusion from iron (II) 

acetate impregnation. 

Figure 5. Fourier transform mode for (a) AFSG and (b) AFI. 

 

2.5. X-Ray Photoelectron Spectra (XPS) Measurements 

Figure 6 presents the high resolution Al 2p XPS spectra for all of the synthetic catalysts. The 

catalysts A (Figure 6a) and AFSG (Figure 6b) had deconvoluted peaks at 76.7 eV and AFI at  

76.1 eV (Figure 6c), which were attributed to aluminium cations in association with the  

surface-adsorbed nitrate when the sol-gel alumina samples were heated to high temperatures  

(600 °C) [34]. The AFI catalyst had the deconvolution with the lowest binding energy (BE) (Table 2,  

Al-AO3, where A is nitrogen of the NO3
−
). All the synthetic catalysts (A, AFSG and AFI) were made 

from a nitrate precursor to form the alumina phase at 600 °C, so a residual NO3
−
 anchored on the 

surface was not surprising. Importantly, to prepare the AFI catalyst, A was impregnated with iron 
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acetate and calcined at 600 °C, which could explain the lower BE. The other deconvoluted Al 2p XPS 

peak (74.3 eV) for A and AFI was associated with an aluminium hydroxide species (marked as 

Al(OH)n in Table 2) [35]. For the AFSG sample, the deconvoluted XPS peak showed a BE below  

74.0 eV. The in situ insertion of Fe species during the sol-gel synthesis of AFSG influenced the 

aluminium hydroxide species by substitution of Al
3+

 or insertion into interstitial sites in the lattice. 

Figure 6. High-resolution Al 2p X-ray photoelectron spectra (XPS): (a) A; (b) AFSG;  

(c) AFI. O 1s XPS spectra; (d) A; (e) AFSG and (f) AFI. 

 

Table 2 shows the relative percentages of both types of deconvoluted Al 2p XPS peaks, Al-AO3 and 

Al(OH)n. The AFI sample had the lowest percentage of Al(OH)n, likely explained by either of the two 

following reasons: (a) the oxide iron species formed on the alumina surface blocked the Al(OH)n 

species or (b) the extra heat treatment evaporated the iron acetate impregnated over sample A and 

caused a greater degree of dehydroxylation. 

Figure 6 presents the high-resolution O 1s XPS spectra for all of the synthetic catalysts. Four types 

of deconvoluted XPS peaks were resolved, and their BE values were assigned to the three samples.  

The first peak in the O 1s spectra at 531.96 eV was assigned to atomic oxygen in the γ-Al2O3  

lattice [34,36]. The peak at 530.83 eV was assigned to the dissociatively adsorbed oxygen and implied 
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a stronger bond between the adsorbed oxygen atoms and aluminium atoms [36]. The peak at  

530.10 eV (for A and AFSG) was assigned to the hydroxyl oxygen (represented as O2-/hydroxyl in 

Table 2). This peak area was the largest of the four deconvoluted peaks. Only the peak in the AFI 

sample had a BE value below 530.0 eV [34]. The oxygen in the hydroxyl groups interacted with the 

iron oxide species over the alumina surface, as observed in the HRTEM and SEM images. The O-Al 

bond has been reported at 527.7 eV [37], which was deconvoluted in the O 1s XPS signal for the three 

catalysts. The relative percentage for the peak for AFSG and AFI decreased compared to A, indicating 

that the iron species decreased the amount of exposed alumina on the surface (Table 2). 

Due to the low Fe concentration in the AFSG and AFI samples, the collected experimental XPS 

data were highly dispersed and the Fe 2p signal showed a very low intensity and signal-to-noise ratio; 

thus it was difficult to analyze its components by curve-fitting. 

2.6. Fourier Transform Infrared (FT-IR) Spectroscopy Studies 

Figure 7 presents the Fourier transform infrared (FT-IR) spectra for the three synthesized catalysts 

in the low frequency range (400–1700 cm
−1

). A band at 1637 cm
−1

 was characteristic of the bending 

mode of H-O due to the deformation vibration mode of physisorbed water for the A and AFI samples. 

For AFSG, this band shifted to 1636 cm
−1

 as a consequence of the lower vibrational coupling energy 

of the H-O functional group. The sharp band at 1385 cm
−1

 in the three catalysts corresponded to nitrate 

ions and was consistent with the Al 2p XPS signal. The Al-O vibrations in the AlO6 octahedra and 

AlO4 tetrahedra were characterized by vibrational frequencies in the ranges of 500–700 and 700–900 cm
−1

, 

respectively. For the pure alumina catalyst (Figure 7a), the spectrum showed a band at 912 cm
−1

 associated 

with tetrahedral AlO4 and a band at 541 cm
−1

 corresponding to octahedral AlO6. Both bands showed the 

same intensity, which means equal amounts of both types of these sites in the γ-Al2O3 crystal. 

Figure 7. Fourier transform infrared (FT-IR) spectra for (a) A; (b) AFSG; and (c) AFI. 
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The AFI catalyst (Figure 7c) displayed a broad, strong band at 906 cm
−1

 related to the tetrahedral 

AlO4 sites and a lower vibrational coupling energy than the A sample. This shift could have occurred 

upon heating of the AFI after iron impregnation. A broad band in the range of 1000–1200 cm
−1

 was 

reported for the Fe-O-Fe species of γ-Fe2O3 (maghemite) [38] and was observed in the TEM analysis. 

Hematite and maghemite nanoparticles were identified on the AFI catalyst surface, which might have 

contributed to the widening of the band reported at 906 cm
−1

 for this catalyst. Bands for maghemite 

were also identified at 795 cm
−1

 and 892 cm
−1

 [39]. The AFSG sample had a strong, broad band in the 

range of 700–900 cm
−1

, centered at 856 cm
−1

 and all three bands mentioned for maghemite. The band 

related to tetrahedral AlO4 for γ-Al2O3 had a lower wavenumber than usual for this type of site, 

suggesting the aluminium was in a tetrahedral site with a lower energy on the surface of the AFSG 

catalyst. For the AlO6 octahedral site in the AFI catalyst, a strong, broad band was observed at  

563 cm
−1

. This site in the AFSG catalyst was one of three bands: 563, 590 or 626 cm
−1

. Clearly, the 

concentration of AlO6 octahedral sites in the AFI catalyst was greater than that for A or AFSG. At 

wavenumbers less than 640 cm
−1

, broad dual bands at 586 and 632 cm
−1

 were observed for the 

maghemite phase, and two strong, separated bands at 465 and 539 cm
−1

 were observed for the hematite 

phase [39]. The bands for both iron oxide materials were assigned in the AFSG spectra (Figure 7b) at 

626, 590, 563 and 491 cm
−1

. For the AFI sample, the indicated band at 457 cm
−1

 was related to the 

hematite phase. 

2.7. Textural Analysis from N2 Isotherms 

Figure 8 shows the N2 adsorption/desorption isotherms at 77 K corresponding to each sample of the 

alumina substrates synthesized in this work. For the isotherms of N2, the filled symbols indicate 

adsorption, and the open symbols indicate desorption. The shapes of the adsorption isotherms for the 

three alumina samples, according to International Union of Pure and Applied Chemistry (IUPAC) 

classification, correspond to type IV isotherms [40–43]. These shapes were likely a result of the rapid 

decrease in the interaction potential energy with increasing distance from the molecules adsorbed on 

the surface. 

The adsorption isotherms for typical A and AFSG samples (Figure 8a,b) were virtually identical, 

with only a very slight difference in the range of 0.9–1 p/p°. The adsorption isotherm for AFI also 

developed in a manner very similar to the other two samples, but in the range of 0.9–1 p/p°, the 

isotherm reached a higher adsorption volume and produced a greater quantity of macropores (>500 Å). 

Although iron oxide species were deposited on the surface of AFI, the pores smaller than 500 Å 

coalesced into macropores upon extra heat treatment at 600 °C. 

Observing the adsorption and return effects together, the desorption isotherms showed hysteresis 

loops with intermediate behavior for types H1 and H2, reflecting the transition from H2 to H1 with 

increasing calcination temperature for the A and AFSG catalysts (Figure 8a,b) [44]. The most likely 

morphology is of large chambers delimited by narrow necks formed from pore cavities inside the solid 

mass by water vapour during the hydrothermal dehydration of the precursory gel. The AFI catalyst had 

a H3 type hysteresis loop, which is typically given for aggregates of plate-like particles or adsorbents 

containing slit pores. The hysteresis loop for AFI was also noticed to be more closed than for A or 

AFSG, likely a result of nearly ideal pores without interconnections. The desorption isotherms are the 
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same for the three samples; the main difference is that the AFI catalyst has a different hysteresis loop, 

indicating the pores are blocked by impregnated Fe. In case of Fe incorporated in situ, this phenomenon 

was not observed, which indicates that fairly uniform cylindrical pores were obtained. 

Figure 8 shows the pore size distribution (PSD) using the Barrett-Joyner-Halenda (BJH) model for 

the desorption isotherm for the three synthetic catalysts. The AFSG PSD was noticeably narrower 

compared to catalyst A. The integration of Fe in the sol-gel helped to form more homogenous 

microstructured material, which led to good catalytic performance in TCE combustion. Both catalysts 

A and AFSG were mesoporous material (20–500 Å porous diameter). The PSD for AFI had significant 

quantities of macropores (>500 Å), confirming the conclusions of the isotherm analysis. 

Table 1 reports the average pore size calculated using the BJH desorption method and the Brunauer, 

Emmett and Teller (BET) method to calculate the specific area. As observed, the AFI catalyst had the 

highest average pore size and the lowest specificity among the catalysts. A lower performance for the 

AFI catalyst was expected for TCE combustion compared to A and AFSG, but the difference in iron 

oxide distribution might counteract this deficiency. 

Figure 8. N2 adsorption/desorption isotherms at 77 K for (a) A; (b) AFSG and (c) AFI; 

pore size distribution (PSD) using the Barrett-Joyner-Halenda (BJH) model for the 

desorption isotherms for (d) A; (e) AFSG and (f) AFI. 
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2.8. Mössbauer Analysis 

Figure 9 shows the spectra for the AFSG 0.3% Fe and AFI 0.3% Fe catalysts, where the absorption was 

low because the Fe concentration was low. Both samples had two doublets and no magnetic components. 

Figure 9. Mössbauer spectra at 77 K for (a) AFI and (b) AFSG. 

 

Table 3 shows the isomer shifts (IS) and the quadruple splittings (QS or QUA) for the alumina 

catalysts doped with Fe using sol-gel (AFSG) and impregnation (AFI). For the alumina doped with 

0.3% Fe in situ using sol-gel (AFSG), the doublets had similar isomer shifts (IS = 0.25 mm/s), but 

different quadruple splitting values (QS1 = 0.94 mm/s and QS2 = 0.37 mm/s). The alumina doped with 

0.3% Fe using impregnation (AFI) had different isomer shifts (IS1 = 0.23 mm/s and IS2 = 0.30) and 

quadruple splittings (QS1 = 0.56 mm/s and QS2 = 0.35 mm/s). The isomer shifts obtained for AFSG 

and AFI were characteristic of Fe
+3

 species (IS = 0.20 to 0.41 mm/s) [45,46] and could correspond to 

the hematite phase (α-Fe2O3) [47–49]. For the AFI sample, the QUA (QS1) and IS values were not 

fixed, and the fitting program iterated both until finding the optimal values, while for the AFS sample, 

the QUA (QS2) value was fixed as a constant. These results are the reason why the error for the AFSG 

samples is several hundred times greater than for the AFI sample. There were no magnetic properties 

(the sixth magnetic) because of the small crystal size. After adjustment, the two samples were found to 

have Fe
+3

 in different proportions. Specifically, one Fe
+3*

 assigned to the bulk and one Fe
+3**

 assigned 

to the surface. The AFSG catalyst contained 31% Fe
+3*

 and 69% Fe
+3**

, and the AFI catalyst contained 

16% Fe
+3*

 and 84% Fe
+3**

. Moreover, the AFSG catalyst did not show changes in its IS, while the AFI 

catalyst increase from 0.23–0.30 mm/s could be associated with a decrease in the electron density 

around the iron nucleus; this change is related to a weakening of the Fe-O bonds [50]. AFSG had a QS 

(0.94 mm/s) greater than AFI (0.56 mm/s), suggesting that the Fe atoms in the AFSG catalyst were 

mainly on the alumina surface for AFSG and in the catalyst bulk or the nucleus particles for  

AFI [47,51]. The high QS for the AFSG sample also could correlate with some distortion in the 

support lattice due to Fe incorporation during the alumina synthesis. 
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Table 3. Mössbauer parameters of AFSG and AFI. 

Parameters AFSG Error AFI Error Unit 

ISO (IS1) 0.25 ±3.60E-02 0.23 ±1.34E-04 mm/s 

ISO (IS2) 0.25 ±8.43E-02 0.30 ±1.28E-04 mm/s 

QUA (QS1) 0.94 ±7.88E-02 ♦ – mm/s 

QUA (QS2) ♦ – 0.35 ±1.72E-04 mm/s 

Fe+3* 31 – 16 – % 

Fe+3** 69 – 84 – % 

IS: isomer shifts; QS: quadruple splittings; ♦ QS2 value remained fixed at 0.374 mm/s for AFSG, while  

the QS1 was a value fixed of 0.56 mm/s for AFI, leading to a low χ2; Error = ±Error (1 × STD); * doublets  

short = assigned to the bulk; ** doublets long = assigned to the surface. 

2.9. Catalytic Tests 

The catalytic tests were performed using the different catalysts synthesized in this work and a 

commercial alumina. Figure 10a shows the conversion as a function of temperature for TCE 

combustion (light-off curves). The conversion curves observed for the blank runs and homogeneous 

combustion are shown for comparison (thermal-labelled curve). At 150 °C, the three synthetic 

catalysts (A, AFSG and AFI) already converted TCE, while the commercial sample and the blank had 

not yet reacted. 

Figure 10. (a) Catalytic conversion, (b) selectivity toward CO2 and (c) CO during 

trichloroethylene (TCE) combustion; Thermal reaction (Thermal), CA, A, AFSG and AFI). 

 

Figure 10b and c shows the CO2 and CO selectivity, and only the iron-containing catalysts (AFSG 

and AFI) produced CO2 and CO at 150 °C. The AFSG and AFI catalysts did not adsorb TCE, but led 

to catalytic conversions at 150 °C. At 250 °C, all four catalysts produced CO2 and CO; however, 

AFSG had the best performance and demonstrated a CO2 selectivity of 80%. For comparison, the 

selectivities of the other catalysts were less than 47%. Therefore, the AFSG catalyst was superior up to 

250 °C. Table 4 shows the percentage of conversion and selectivity (CO2 and CO) at temperatures 

from 150–400 °C, which is the range where the changes in the AFSG and AFI catalysts occurred. 
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Table 4. Trichloroethylene (TCE) conversion and CO2/CO selectivity. 

Temperature 

(°C) 

Conversion (%) CO2, Selectivity (%) CO, Selectivity (%) 

Thermal CA A AFSG AFI Thermal CA A AFSG AFI Thermal CA A AFSG AFI 

150 0 0 4 8 5 0 0 0 52 44 0 0 0 46 54 

200 0 0 7 13 8 0 0 0 68 53 0 0 0 31 42 

250 1 1 13 24 17 21 25 46 80 41 76 74 53 18 57 

300 10 13 28 40 65 30 35 39 40 45 68 63 59 57 53 

350 25 38 52 71 81 21 33 32 42 48 77 65 67 56 50 

400 50 61 90 94 98 30 37 38 55 65 67 62 61 43 33 

The AFSG catalyst showed higher conversion than the AFI catalyst, below 250 °C. According to 

the characterization results, this could be attributed to the fact that AFSG included a narrower PSD, 

which promoted percolation and permeability, and a smaller mean crystallite size (calculated by the 

Scherrer equation), resulting in a greater number of meetings of the crystal planes in the grain 

boundary and thus more defects, creating physical sites for TCE and oxygen absorption. Another 

advantage of AFSG was the higher percentage of dissociated adsorbed oxygen over the surface, 

according to XPS characterization. 

Identifying the isolated iron oxide nanoparticles from the TEM images (as observed for the 

HRTEM and SEM images for the AFI catalyst) on the surface of AFSG was not possible. However, 

the iron oxide planes were found to grow epitaxially on some planes of the γ-Al2O3 phase. Hence, the 

catalytic activity brought about by the introduction of iron to the AFSG catalyst was the result of a 

regular presentation of active sites over the catalyst surface. 

The A and AFSG catalysts had almost the same upward slope, or typical steady-state 

extinction/ignition behavior that is common among strongly exothermic reaction systems [52]. 

Therefore, both catalysts likely have the same reaction mechanism, but the AFSG catalyst has a greater 

number of active sites provided by iron oxide species, as can be seen by FTIR spectra. 

The AFI catalyst had the highest conversion at temperatures greater than 250 °C. Notably, from 

250–350 °C, the slope changed twice. This behavior could be related to a change in the reaction 

mechanism over the surface of the AFI catalyst. However, the CO2 and CO production were nearly 

identical compared to the other catalysts (Figure 10b,c). This performance can be correlated with data 

obtained from the different characterization techniques used. The iron oxide nanoparticles identified 

over the surface of AFI by TEM, Mössbauer and FTIR, favors the oxygen mobility, but the oxygen 

species of iron oxide can adsorb CO, transforming it to CO2 [53]. The iron oxide nanoparticles seemed 

to contribute differently to the conversion of TCE compared to the other catalysts. Other authors have 

reported that iron oxide interaction with the support modify its chemical properties and catalytic 

performance on the volatile organic compounds oxidation [54,55]. 

This can be due to the iron showing a better dispersion over the AFI catalyst, according to 

Mössbauer analysis and also due to the higher concentration of iron oxide (hematite) and AlO6 

octahedral sites, as showed in the FTIR spectra. Thus, the adsorption mechanism for oxygen may have 

changed between 250–350 °C, but the production of CO and CO2 was similar to the other catalysts. 
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The selectivity toward Cl2 and HCl was evaluated. At 500 °C, the catalysts with and without Fe 

showed a selectivity toward Cl2 of 0.5% and 1%, respectively. This can be correlated with the 

characterization results of EDS analysis, which showed that around 1.8 wt% Cl was deposited on the 

surface of the catalysts; thus we assumed that HCl was formed. The subproducts of incomplete 

combustion, such as tetrachloroethene (TTCE), 1,1,1-trichloroethane (TCA), 1,2-dichloroethane (DCA), 

suggest that some HCl reacts with TCE. 

The formed products were similar to those reported in past works [56,57], but at very low 

concentrations. For example, the balance of chlorine at 300 °C for AFSG catalysts was: reacted  

TCE = 958.75 ppm, which gives 2876 ppm of chlorine. The products were: HCl = 2861 ppm, Cl2 = 0 ppm, 

TTCE = 2 ppm, TCA = 1 ppm, and DCA = 1 ppm, which gives a total of 2874 ppm of chlorine, a 

difference of 0.08%. Similar results were obtained for all the other catalysts. 

The reaction rate (rA) was calculated considering an isothermal differential reactor model, as 

performed in a previous study [58]. At 300 °C, our alumina catalysts with iron had a higher reaction 

rate (Table 1) than the Fe-doped alumina (12.54 mg/g Al2O3) reported in a previous study, which showed 

a rA of 1.06 × 10
−2

 molTCE/(kgFe-s) [15]. We calculated the reaction rate, but for comparison with the 

work of other authors, the light-off curve conversions are presented [56,57]. Evidently, the doping of 

the alumina catalyst with Fe led to a catalytic performance improvement. 

However, the Fe incorporation using the impregnation method had a higher reaction rate. Oxygen 

atoms over the catalyst surface have been shown to play an important role in TCE combustion [59]. 

This finding can be related to the characterization results of Mössbauer spectroscopy. The Fe 

incorporated by impregnation(AFI) showed better dispersion than when Fe was incorporated in situ by 

sol-gel (AFSG), which could favor oxygen availability. Moreover, in XPS characterization results, we 

observed that the O 1s assigned to cations from O
−2

/hydroxides showed a lower binding energy for 

AFI (530 eV) than for A or AFSG (530.1 eV), because the oxygen in the hydroxyl groups interacted 

with the iron oxide species on the alumina surface. Furthermore, as already mentioned in previous 

sections, the iron oxide incorporated by both methods favors the O/Al ratio. Considering that the AFI 

catalyst has the highest oxygen content, the Fe2O3 is better dispersed in the bulk, and the link between 

Fe and O2 is weaker. The oxygen species are more available and dispersed in the catalyst, which favors 

a higher mobility of the species, mainly oxygen, and for this reason is more active [60]. 

The higher selectivity of CO2 than CO at low temperature (under 300 °C) for AFSG can be 

explained due to the role of hematite, which appears to proceed through two stages [61]: first, oxygen 

atoms adsorbed on the surface of hematite reacted with the gas phase CO according to an Eley-Rideal 

mechanism. Once that adsorbed oxygen was consumed, the surface oxygen from the lattice iron oxide 

was removed in a second stage involving CO adsorption and CO reactive desorption, thus generating 

surface oxygen vacancies. We previously reported the Langmuir-Hinshelwood (LH) mechanism of 

oxidation of TCE over zirconia doped with La and Fe [58], where molecular oxygen was considered to 

be dissociatively adsorbed onto an active site of the catalyst surface and then adsorbed oxygen atoms 

reacted with a nearby hydrocarbon on the same type of active site. The iron species on the alumina 

surface (AFI catalyst), and in particular the hematite phase, very possibly underwent an Eley-Rideal 

mechanism for the oxygen atoms adsorbed on the surface of hematite that reacted with TCE in the gas 

phase in addition to the LH mechanism for the alumina. After 350 °C, the catalysts all followed the 

same tendency of increased conversion. The AFI catalyst reached almost 100% TCE conversion at 400 °C, 



Materials 2014, 7 2079 

 

 

while the analogous thermal reaction (blank) did not reach a 100% conversion until 600 °C. Table 1 

shows the T50% (temperature at which 50% conversion was attained) values for all four catalysts. AFI 

had the lowest temperature for 50% conversion. Using the reaction conditions of this work, the AFI 

catalyst had a lower T50% than in other recent studies using similar gas hourly space velocity (GHSV) 

values [58,60]. 

The significant differences of AFI with respect to the other synthetic catalysts is that AFI presented 

two iron oxide phases (maghemite and hematite), which were identified by TEM; but Mössbauer 

confirmed the hematite is distributed in the bulk of the catalyst and the Fe-O showed a weak bond, 

which favors the mobility of the oxygen. The AFI catalyst also showed an equilibrium in the AlO6 

octahedric sites and AlO4 tetrahedric sites and a larger proportion of macropores in PSD (Figure 8). 

Figure 8 shows N2 adsorption/desorption isotherms at 77 K for (a) A, (b) AFSG and (c) AFI; PSD 

using the BJH model for the desorption isotherms for (d) A, (e) AFSG and (f) AFI. 

3. Experimental Section  

3.1. Catalyst Synthesis 

Pure alumina (labelled A) was synthesized using the sol-gel method; the reagents used were 

aluminium nitrate nonahydrate (Al(NO3)3·9H2O 98%, Aldrich, St. Louis, MO, USA) as source of 

aluminium, ammonium hydroxide (NH4OH 5 mol·L
−1

, Aldrich) and deionized H2O. The volume and 

concentration of the reactants were as reported in our previous work [15]. For the alumina doped with 

Fe in situ using the sol-gel method (labelled as AFSG), 48.08 g of Al(NO3)3·9H2O and 48.08 g of 

NH4OH were dissolved in 600 mL of H2O during hydrolysis. Then, 0.080 g of iron(II) acetate 

(Fe(CO2CH3)2 95%, Aldrich) was added to obtain 0.39 wt% Fe. Next, 400 mL of H2O and an excess of 

NH4OH were added to adjust the pH to 9. The solution was magnetically stirred for 24 h at room 

temperature. The gel obtained was dried at 80 °C to produce the xerogel, which was finally calcined at 

600 °C. To prepare the alumina doped with Fe using the impregnation method (labelled as AFI), 2.5 g 

of pure alumina (catalyst A) was added to a solution of iron (II) acetate. The solution was prepared 

with 0.031 g of Fe(CO2CH3)2 dissolved in H2O to obtain a final concentration of 0.39 wt% Fe on the 

alumina. The mixture was dried at 80 °C, and finally the xerogel obtained was calcined at 600 °C. 

Commercial Ketjen alumina (CA) was used for comparison. 

3.2. Characterization 

Thermal analysis of the xerogels was performed using a TA Instruments SDT-2960 thermal 

analyzer a heating rate of 5 °C/min to 1000 °C in extra dry air flowing at 100 mL/min. 

X-ray diffraction (XRD) was performed using a Siemens model D5000 series E04-0012 (Siemens 

Inc., Berlin, Germany), with Cu Kα radiation in the 2θ range of 5°–110° with a step of 0.020° every 4 s 

at 25 °C. The phases were identified using the Joint Committee on Powder Diffraction Standards 

(JCPDS) database. 

  



Materials 2014, 7 2080 

 

 

N2 sorption isotherms at 77 K were recorded in an Autosorb-1 volumetric instrument 

(Quantachrome Co., Boynton Beach, FL, USA). Prior to adsorption runs, all of the samples were 

degassed overnight at 200 °C. Isotherms points (20 points): 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 

0.995 (adsorption-desorption). The BJH method by desorption pore diameter (Barrett-Joyner-Halenda) 

and BET method by surface area (Brunauer, Emmet and Teller) were used. Ultra high purity (UHP) grade 

N2 and He gases were used. 

Iron determination was performed by X-ray fluorescence spectroscopy (XRFS). The samples were 

heated to 950 °C. Then, the sample was analyzed in a sequential x-ray tube with a rhodium anode, 

using a RIGAKU 3270 spectrometer (Rigaku Industrial Corporation, Osaka, Japan). 

SEM was performed using a FEI Nova Nano SEM 200 (FEI, Hillsboro, OR, USA) at 20 kV with a 

resolution of 1 µm; the EDS were collected with an EDAX Genesis XM4 detector (EDAX Inc, 

Mahwah, NJ, USA) for elemental analysis. All of the EDS spectra were corrected using ZAF 

correction, where Z, A and F are the matrix correction parameters, describing the atomic number effect 

(Z), absorption effect (A), and fluorescence effect (F). 

For the high-resolution transmission electron microscopy (HRTEM), the sample was mixed with 

ethanol, and then was placed on the support films (lacey carbon type-A 300 mesh copper grids) and 

was dried. An FEI Titan G2 30-800 (FEI, Hillsboro, OR, USA) was used to obtain the micrographs. 

X-ray photoelectron spectra (XPS) measurements were performed with Camac-3 equipment using 

one anode of Al as the excitation source with the following settings:  = 1486.6 eV, non-monochromated, 

voltage acceleration = 15K eV and a filament current of 20 mA. The low-resolution spectra (survey) 

were in the range 1200–0 eV (binding energy) with a resolution of 3.0 eV. The high-resolution spectra 

of Al 2p and O 1s were evaluated with a resolution maximum of 0.8 eV, and the results were analyzed 

with the CAMAC-3 program. The C1s peak at 284.5 eV binding energy (BE) was used to compensate 

for the surface charge effects. 

The FT-IR spectra for the samples, in the form of KBr mixed disks, were measured using a  

Nicolet
TM

 6700 spectrometer (Thermo Scientific, Waltham, MA, USA). The management software for 

sample analysis was OMNIC
TM

 (Thermo Scientific) in transmittance mode. The spectra were acquired 

with 32 scans using a resolution of 4 cm
−1

. 

Mössbauer spectral analysis was performed with a conventional spectrometer (WissEL MRG-500, 

Wissenschaftliche Elektronik GmbH, Starnberg, Germany) at constant acceleration. The detection at 

14.4 keV was performed with a proportional detector of krypton (Kr). The gamma radiation source was 

25 m Ci of 
57

Co in a rhodium matrix. The spectrometer was operated in transmission mode. The analysis 

was performed at liquid nitrogen temperature (77 K = −196 °C) with 4 mm/s velocity. The isomer shift 

is given with respect to α-Fe. The spectra obtained were corrected using the Normos program. 

3.3. Catalytic Tests 

The catalytic tests were performed using a tubular continuous micro-reactor [15]. A flow of  

100 mL/min of air with TCE at 1475 ± 25 ppm was passed through 1 g of catalyst into a tube with an 

inlet diameter of 0.6 cm. A gram of catalyst had 2 cm of packing volume, and the gas hourly space 

velocity (GHSV) was 10,610 h
−1

. The combustion temperature range was 50 to 600 °C with intervals 

of 50 °C. Chlorinated hydrocarbons (TCE, tetrachloroethylene, 1,1,1-trichloroethane and  
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1,2-dichloroethane were all supplied by Sigma-Aldrich as ACS reagent) with a known concentration 

were injected and determined using a gas chromatograph, model HP5890 II, equipped with an flame 

ionization detector (FID) and using a DB-624 capillary column (Agilent, Santa Clara, CA, USA) (ID 

0.32 mm). The concentrations of CO2 and CO products were measured in line with an IR spectrometer 

(California Analytical, model 20, Orange, CA, USA). To measure the HCl and Cl2 concentrations, the 

effluent was bubbled into two containers with 150 mL of 0.0125 mol L
−1

 NaOH; the chlorine 

concentration was quantified using the colorimetric method of N,N-diethyl-p phenylenediamine (DPD) 

on a DR-890 instrument (HACH Company, Loveland, CO, USA) (8167 method). Chloride was 

measured using the Mohr Method [62]. To calculate the percentage of selectivity towards CO2 (φco2), 

the Equation (1) was used, where Cco2, is the outlet concentration of CO2, and TCEreacted is reacted 

TCE. This Equation (1) was also used for the selectivity towards CO by replacing the CO2 

concentration. The selectivity to the different chlorinated products (φCl2 or φHCl) was calculated 

according to Equation (2), where n is the number of chloride atoms in the chloride product (Cl2 or 

HCl) and CClesp is the concentration of chlorine species: 

2
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100 coφco
2

C

TCE
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100
φHClφCl
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4. Conclusions 

The role of iron in two different modes of integration was studied by incorporating Fe at a low 

concentration in situ during the sol-gel process or by impregnation of iron acetate solution into a pure 

alumina. For the AFSG sample, the inclusion of iron in situ by sol-gel retarded γ-Al2O3 crystallite 

growth and decreased crystallite size; the identified iron oxide phases were mainly maghemite and 

hematite. For the AFI catalyst, the growth was in a segregation form, and nanoparticles of iron oxide 

were deposited on the surface, which were identified as hematite and maghemite. The Fe species were 

introduced into γ-Al2O3 by diffusion, and this process favored their location on the bulk. Both  

Fe-doped aluminas had a better catalytic performance compared to non-doped conditions. AFSG was 

the best catalyst, showing a superior catalytic performance at temperatures less than 250 °C; above this 

temperature, the AFI catalyst was better. The nanoparticles of iron oxide, such as hematite, were 

located over the surface of γ-Al2O3 and modified the mechanism for temperatures above 250 °C to 

develop a better adsorption of oxygen molecules or atoms to promote CO2 selectivity. However, while 

the AFI catalyst exhibited a better catalytic performance above 250 °C, structural instability was 

present. Notably, chlorine poisoning using any of the three synthetic catalysts was less than 1.8%. 

Therefore, an improvement in resisting chlorine poisoning using all synthetic catalysts was achieved 

with AFSG being the most competitive during trichloroethylene combustion. 
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