Supplementary Information

x in Ca _{1-x} Na _x FFeAs		0	0.03	0.08	0.14		
Crystal system		tetragonal					
Space group		<i>P4/nmm</i> (No. 129)					
	<i>a</i> /pm	387.57(9)	387.57(2)	387.65(2)	387.68(3)		
Lattice parameters	<i>c</i> /pm	858.4(2)	859.48(5)	859.89(6)	859.87(9)		
	c/a	2.215	2.218	2.218	2.218		
Formula units per u	nit cell Z	2					
Molar volume V _m /cr	$m^3 \cdot mol^{-1}$	38.83	38.87	38.91	38.91		
Calculated density $D_x/g \cdot cm^{-3}$		4.89	4.87	4.84	4.82		
Diffractomet	er	Nonius KappaCCD (Bruker AXS, Karlsruhe, Germany)					
Radiation		Mo- $K\alpha$ ($\lambda = 71.07$ pm)					
<i>hkl</i> range $\pm h_{max}, \pm k_{r}$	_{nax} , $\pm l_{max}$	5, 5, 11	5, 5, 12	6, 6, 13	5, 5, 11		
$2\theta_{max}^{\prime}$		58.80	60.66	71.20	56.27		
F(000)		176	176	176	176		
Absorption correction		numerical (Program HABITUS [1])					
Absorption coeff μ/mm^{-1}	ìcient	20.24	20.22	20.20	20.20		
Extinction coefficient g		_	0.0239	0.0226	_		
Collected reflec	tions	1589	2278	3232	1622		
Unique reflecti	ions	118	145	211	118		
Reflexions with $ F_o $	$\geq 4\sigma(F_o)$	99	142	202	109		
Refined parame	eters	11	12	12	11		
R_{int}, R_{σ}		0.083, 0.028	0.060, 0.018	0.068, 0.021	0.104, 0.039		
Solution and refinement		Program package SHELX-97 [2,3]					
Scattering factors		International Tables, Vol. C [4]					
$R_1, R_1 \text{ with } F_o \geq C$	$4\sigma(F_o)$	0.076, 0.062	0.018, 0.018	0.022, 0.021	0.026, 0.024		
$wR_2, GooF$,	0.157, 1.178	0.044, 1.168	0.053, 1.166	0.058, 1.165		
Residual electron ρ_{max} $\rho_{min}/10^{-6}$ r	density	2.03, -1.73	0.59, -0.68	1.30, -0.87	0.97, -0.49		

Table S1. Crystallographic data for selected crystals of the series $Ca_{1-x}Na_xFFeAs$. (Na contents are adopted from EDX analyses.)

Table S2. Atomic coordinates and equivalent isotropic displacement parameters for selected crystals of the series $Ca_{1-x}Na_xFFeAs$.

Atom	Site	x/a	y/b	z/c	$U_{eq}^{(a)}/\mathrm{pm}^2$		
CaFFeAs							
Са	2c	¹ / ₄	$^{1}/_{4}$	0.1514(6)	265(13)		
F	2a	³ / ₄	$^{1}/_{4}$	0	263(35)		
Fe	2b	³ / ₄	$^{1}/_{4}$	$^{1}/_{2}$	251(11)		
As	2c	¹ / ₄	$^{1}/_{4}$	0.6645(3)	251(9)		

Atom	Site	x/a	<i>y/b</i>	z/c	$U_{eq}^{(a)}/\mathrm{pm}^2$		
Ca _{0.97} Na _{0.03} FFeAs							
Ca/Na ^(b)	2c	¹ / ₄	¹ / ₄	0.15111(12)	84(3)		
F	2a	³ / ₄	$^{1}/_{4}$	0	90(6)		
Fe	2b	³ / ₄	$^{1}/_{4}$	$^{1}/_{2}$	74(2)		
As	2c	¹ / ₄	$^{1}/_{4}$	0.66461(5)	75(2)		
Ca _{0.92} Na _{0.08} FFeAs							
Ca/Na ^(c)	2c	¹ / ₄	¹ / ₄	0.15072(10)	92(2)		
F	2a	³ / ₄	$^{1}/_{4}$	0	115(5)		
Fe	2b	³ / ₄	$^{1}/_{4}$	$^{1}/_{2}$	88(2)		
As	2c	¹ / ₄	$^{1}/_{4}$	0.66444(4)	90(2)		
Ca _{0.86} Na _{0.14} FFeAs							
Ca/Na ^(d)	2c	¹ / ₄	¹ / ₄	0.1513(2)	94(4)		
F	2a	³ / ₄	$^{1}/_{4}$	0	136(11)		
Fe	2b	³ / ₄	$^{1}/_{4}$	$^{1}/_{2}$	105(4)		
As	2c	¹ / ₄	$^{1}/_{4}$	0.66440(10)	112(3)		

Table 2S. Cont.

^(a) $U_{eq} = \frac{1}{3}(U_{11} + U_{22} + U_{33})$; ^(b) Site occupation (from EDX): 97% Ca, 3% Na; ^(c) Site occupation (from EDX): 92% Ca, 8% Na; ^(d) Site occupation (from EDX): 86% Ca, 14% Na.

Atom	$U_{11} = U_{22}$	U_{33}
	CaFFeAs	
Ca	241(19)	315(24)
F	218(55)	352(67)
Fe	195(14)	365(18)
As	212(11) 329(15)	
	Ca _{0.97} Na _{0.03} FFeAs	
Ca/Na	73(3)	106(5)
F	74(8)	123(13)
Fe	62(3)	99(4)
As	69(2)	87(3)
	Ca _{0.92} Na _{0.08} FFeAs	
Ca/Na	82(2)	114(4)
F	104(7)	137(11)
Fe	77(2)	110(3)
As	85(2)	99(2)
	Ca _{0.86} Na _{0.14} FFeAs	
Ca/Na	77(6)	127(9)
F	146(17)	116(24)
Fe	84(5)	148(7)
As	97(4)	141(5)

Table S3. Anisotropic displacement parameters $(U_{ij}^{(a)} \text{ in pm}^2)$ for selected crystals of the series Ca_{1-x}Na_xFFeAs. $(U_{12} = U_{13} = U_{23} = 0 \text{ for all atoms.})$

^(a) given in the expression $\exp[-2\pi^2(a^{*2}h^2U_{11} + b^{*2}k^2U_{22} + c^{*2}l^2U_{33} + 2b^*c^*klU_{23} + 2a^*c^*hlU_{13} + 2a^*b^*hkU_{12})].$

Distance	<i>d</i> /pm	Multiplicity	Distance	<i>d</i> /pm	Multiplicity		
CaFFeAs							
Ca–F	233.4(3)	(4×)	Fe–Fe	274.05(7)	(4×)		
Ca–As	316.4(3)	(4×)	Fe–As	239.76(16)	(4×)		
		Ca _{0.97} Na _{0.03}	FFeAs				
Ca/Na–F	233.28(6)	(4×)	Fe–Fe	274.05(1)	(4×)		
Ca/Na–As	316.53(6)	(4×)	Fe–As	239.94(3)	(4×)		
	$Ca_{0.92}Na_{0.08}FFeAs$						
Ca/Na–F	233.16(5)	(4×)	Fe–Fe	274.11(1)	(4×)		
Ca/Na–As	316.86(5)	(4×)	Fe–As	239.92(2)	(4×)		
		Ca _{0.86} Na _{0.14}	FFeAs				
Ca/Na–F	233.46(11)	(4×)	Fe–Fe	274.13(3)	(4×)		
Ca/Na–As	316.63(11)	(4×)	Fe–As	239.91(6)	(4×)		
Angle	∢ /°	Multiplicity	Angle	∢ /°	Multiplicity		
		CaFFe	As				
F Ca F'	71.92(10)	(4×)	As Fo As'	107.85(10)	(2×)		
1°-Ca-1°	112.3(2)	(2×)	AS-IC-AS	110.29(5)	(4×)		
F Ca As	76.68(4)	(8×)	Ca As Cal	75.55(8)	(4×)		
I-Ca-As	141.90(2)	(8×)	Ca-As-Ca	120.06(18)	(2×)		
As Ca As'	75.55(8)	$(4\times)$	Ca As Fa	78.41(7)	(8×)		
As-Ca-As	120.06(18)	(2×)	Ca-As-IC	142.12(3)	(8×)		
Ca_F_Ca'	108.08(10)	$(4\times)$	Fe_As_Fe'	69.71(5)	(4×)		
Ca-1-Ca	112.3(2)	(2×)	10-73-10	107.85(10)	(2×)		
		$Ca_{0.97}Na_{0.03}$	FFeAs				
F_Ca/Na_F'	71.94(2)	(4×)	As Fo As'	107.73(2)	(2×)		
1 Cu/Nu 1	112.34(4)	(2×)	113 10 113	110.35(1)	(4×)		
F-Ca/Na-As	76.70(1)	(8×)	Ca/Na–As–	75.50(2)	(4×)		
	141.92(1)	(8×)	Ca/Na'	119.95(4)	(2×)		
As-Ca/Na-As'	75.50(2)	(4×)	Ca/Na–As–Fe	78.50(1)	(8×)		
	119.95(4)	(2×)		142.14(1)	(8×)		
Ca/Na–F–Ca/Na'	108.06(2)	(4×)	Fe–As–Fe'	69.65(1)	(4×)		
	112.34(4)	(2×)		107.74(2)	(2×)		
$\frac{Ca_{0.92}Na_{0.08}FFeAs}{(4.3)}$							
F–Ca/Na–F'	72.00(2)	(4×)	As–Fe–As'	107.78(1)	(2×)		
	112.46(3)	(2×)		110.32(1)	(4×)		
F–Ca/Na–As	76.72(1)	(8×)	Ca/Na–As–	75.43(1)	(4×)		
	141.94(1)	(8×)	Ca/Na'	119.78(3)	(2×)		
As-Ca/Na-As'	75.43(1)	(4×)	Ca/Na–As–Fe	78.55(1)	(8×)		
	119.78(3)	(2×)		142.17(1)	<u>(8×)</u>		
Ca/Na–F–Ca/Na'	108.00(2)	(4×)	Fe-As-Fe'	69.68(1)	(4×)		
	112.46(3)	$(2\times)$		107.78(1)	(2×)		
$\frac{Ca_{0.86}Na_{0.14}FFeAs}{(1)}$							
FCa/NaF'	/1.90(4)	(4×)	As–Fe–As'	107.80(4)	$(2\times)$		
	112.20(8)	(2×)		110.32(2)	(4×)		
F-Ca/Na-As	/0./4(1)	(ð×)	Ca/INA-AS-	/3.30(3)	(4×) (2×)		
	141.93(1)	(ð×)	Ca/INa	119.94(0)	(2×)		
As-Ca/Na-As'	73.30(3)	(4×) (2×)	Ca/Na–As–Fe	/ð.4ð(3) 142 14(1)	(ð×)		
	$\frac{117.94(0)}{109.10(4)}$	(2^{\times})		$\frac{142.14(1)}{60.69(2)}$	(0×)		
Ca/Na–F–Ca/Na'	100.10(4)	(4×) (2×)	Fe-As-Fe'	09.08(2)	(4×) (2×)		
	112.20(8)	(2^)	-	107.80(4)	(2^)		

Table S4. Interatomic distances and angles for selected crystals of the series $Ca_{1-x}Na_xFFeAs$.

References

- 1. Herrendorf, W.; Bärnighausen, H. *HABITUS: Program for the Optimization of the Crystal Shape for Numerical Absorption Correction*; Universities of Gießen and Karlsruhe: Gießen, Karlsruhe, Germany, 1996.
- 2. Sheldrick, G.M. SHELX-97: Program Package for the Determination of Crystal Structures by Single Crystal X-ray and Neutron Diffraction; University of Göttingen: Göttingen, Germany, 1997.
- 3. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122.
- 4. Prince, E. *International Tables for Crystallography*, 3rd ed.; Kluwer Academic Publishers: Dordrecht, Netherlands, 2004; Volume C3.