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Abstract: In the present paper, changes in mechanical properties of Portland cement-based 

mortars due to the addition of carbon nanotubes (CNT) and corrosion of embedded steel 

rebars in CNT cement pastes are reported. Bending strength, compression strength, 

porosity and density of mortars were determined and related to the CNT dosages. CNT 

cement paste specimens were exposed to carbonation and chloride attacks, and results on 

steel corrosion rate tests were related to CNT dosages. The increase in CNT content 

implies no significant variations of mechanical properties but higher steel corrosion 

intensities were observed. 
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1. Introduction 

Multifunctional cement–matrix composites are useful as structural materials that provide functional 

properties, which allow applications such as electrical grounding, electrical contacts for cathodic 

protection, deicing, electromagnetic interference (EMI) shielding, antistatic flooring and strain sensing. 

Multifunctionality is attractive for cost reduction, durability enhancement, large functional volume, 

design simplification and absence of mechanical property loss (which tends to occur if embedded 

devices are used in place of a multifunctional structural material) [1]. Today’s demand for smart 
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structures, capable of detecting stimulus and responding adequately, has created the need for materials 

with not only good mechanical properties and durability, but also new additional functions. That is the 

reason why many researches have been focused on the development of multifunctional materials, 

which combine both structural properties and other functional applications [1–11]. 

New functional properties include, for example, self-strain sensing [1–4], damage sensing [3,5], 

thermal control [6], vibration reduction [7] and electromagnetic wave reflection [8,9]. 

Multifunctionality is obtained by increasing the electrical conductivity of the cementitious matrix 

composites by adding conductive materials such as carbon or metallic admixtures. In any case, 

structural characteristics should be maintained or improved [5,12,13]. 

Carbon nanotubes (CNT) are one of the additions that can be used to create multifunctional 

materials. Researching and developing CNT cement matrix composites open a new line to obtain 

multifunctional materials, possibly more efficient and with a wider range of application fields [14,15]. 

Achieving good particle dispersion is the most challenging problem in the fabrication of carbon 

nanoparticle composites, including CNT cement based composites. CNT have unique mechanical, 

electrical and thermal properties [14]. However, strong van der Waals cohesive forces that occur 

among the fibers results in a high tendency to generate fiber clumps, which are difficult to disperse, 

and causes strength losses or even degradation of the original material [15]. The great advances in 

CNT polymer composites have not been equally achieved in cement composites, probably due to this 

dispersion problem. 

Different methods have been used to disperse CNT or carbon nanofibers (CNF) [16], such as the 

combined use of surfactants and sonication, the modification of the nanotube surface or functionalizing 

(incorporating molecular groups to the fiber’s surface to improve the affinity with the matrix) [17,18] 

and even the direct growth of CNF on unhydrated cement particles [19]. Sanchez [20] studied a dry 

mixture of cement, CNF and silica fume, and its latter mix in water, concluding that the silica fume, 

due to its small particle size, helps fibers dispersion and improves interfacial interaction between the 

CNF and the cement hydrated phases. In another study, Yazdanbakhsh [15] reported serious 

difficulties, like the negative effect of using many surfactants (adequate for CNF and CNT dispersion) 

during the cement hydration, the CNT breaking and shortening due to an excessive ultrasonic energy, 

or even the deterioration of the cement-composite properties while using small particle size cements. 

In this research it was also concluded that a good CNT particle dispersion with surfactants in water 

does not mean a similar good dispersion in the paste obtain with the water mix as shown comparing 

optical images of the original water mix (good dispersion) with SEM images of the cement  

paste (poor dispersion). 

Despite the potential advantages of CNT and CNF cement based composites, very few studies have 

been conducted in order to investigate the mechanical properties of Portland cement mortars fabricated 

with addition of such nanocomposites [10,14,21]. There is a wide variety of results concerning 

mechanical properties: examples of either huge increments [22] (even though the dispersion obtained 

was very poor), or no improvement at all [23] can be found. Undoubtedly, the type of CNT and its 

dispersion in the cement matrix must play an important role. 

On the other hand, although reinforcement corrosion is probably the most important pathology in 

concrete, no reference to corrosion of steel rebars embedded in CNT cement composites has been 

found in the available scientific literature. Prior work on cement composites with addition of carbon 
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fibers or particles showed the importance of admixtures (added to improve fiber’s dispersion) on the 

levels of corrosion measured, which normally were slightly higher due to the enhance composite’s 

conductivity [24–28]. Consequently, one of the objectives of the present research is the study of the 

corrosion kinetics of steel reinforcements embedded in cement pastes under aggressive conditions, 

such as carbonation and chloride attack. To this purpose, in order to characterize its durability, the 

corrosion of steel reinforced CNT cement pastes with different CNT dosages and subjected to 

accelerated carbonation and the action of seawater was investigated.  

2. Results and Discussion 

2.1. Mechanical Properties Tests in CNT Cement Mortars 

Figure 1 shows the bending and compressive strengths for each CNT dosage of cement mortars 

submerged in water for 7 and 28 days. The hash-marked area in both plots represents the confidence 

interval for the mean of the 28-day reference mortar without CNT, with a confidence level of 95%, 

assuming a normal (Gaussian) statistical distribution. Regarding the bending strength, Figure 1A, all 

mortars with CNT showed lower strength than the control samples, without CNT, for a 7 days curing 

time. The increase in CNT dosage did not significantly affect bending strength after a 28-days curing 

age. Figure 1B shows the influence of the quantity of CNT addition on the compressive strength, for 

Portland cement mortars tested at curing ages of 7 and 28 days. No significant variations can be 

observed due to the addition of CNT. 

Figure 1. (A) Bending strength and (B) compressive strength of mortars with different 

dosages of CNT tested at 7 and 28 days curing time. The hash-marked area represents the 

confidence interval for the average value of the 28-days reference mortar without CNT, 

with a confidence level of 95% according to UNE 66040:2003 [29].  

 

Figure 2 shows the influence of the quantity of CNT addition in the porosity and apparent density 

for each CNT dosage, in Portland cement mortars cured in water for 28 days, respectively. Mortar 

density did not significantly change with the content of CNT. However, a slight increase in sample 
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porosity was registered due to CNT addition (between 6.8% and 13.2% with respect to samples 

without CNT). 

Figure 2. (A) Apparent density and (B) porosity of mortars with different amount of CNT 

tested at 7 and 28 days curing time. The hash-marked area represents the confidence 

interval for the average value of the 28-days reference mortar without CNT, with a 

confidence level of 95%, according to UNE 66040:2003 [29]. 

 

2.2. Corrosion Tests of Embedded Steel Rebars in CNT Cement Pastes 

Reinforced concrete rebars are usually passivated due to the high pH level provided by the cement 

hydration products. Nevertheless, some circumstances can dissolve the passive film on the steel 

surface. The main processes leading to the destruction of the passive film are the carbonation of concrete 

cover and/or the presence of chlorides over the critical concentration threshold. The consequence of 

transition from passive to active corrosion state is a rapid decrease of the structural element service life. 

The aim of this study was the characterization of the corrosion rate observed in embedded rebars in 

cement pastes with addition of different dosages of CNT. The specimens have been exposed to 

different aggressive environments. One of these aggressive environments has been accelerated 

carbonation. On the other hand, the chloride ion depassivating action has been studied by partial 

immersion of the specimens in a solution simulating seawater.  

Figure 3 depicts the evolution of corrosion potential (Ecorr) and corrosion rate (Icorr) of steel rebars 

embedded in CNT cement pastes, exposed to accelerated carbonation. Cement pastes have different 

contents of CNT: 0%, 0.05%, 0.10%, 0.25% and 0.50% with respect to cement mass. The hash-marked 

range in the corrosion rate between 0.1 and 0.2 µA/cm2 has been included, showing the threshold 

between active corrosion (above 0.2 µA/cm2) and passivity (below 0.1 µA/cm2) [30]. As expected, 

during the curing period a decreasing tendency of the steel corrosion rate is consistent with the 

formation of the passivating layer on the steel surface, and Icorr below the corrosion threshold. A high 

increase in the corrosion rate was observed as soon as the carbonation process began. This 

phenomenon was related to the depassivation of the steel surface due to a pH decrease because of the 

carbonation of the cement cover. The decrease in the corrosion potential implied the corrosion rate 
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increase. Once the cement paste cover had been completely carbonated, no further differences in 

corrosion rate were observed. The increase in CNT dosages implied higher final corrosion rates.  

Figure 3. Evolution of corrosion potential (Ecorr) and corrosion rate (Icorr) of steel rebars 

embedded in CNT cement pastes exposed to accelerated carbonation.  

 

Figure 4 shows the corrosion rate (Icorr) of steel rebars embedded in CNT cement pastes partially 

immersed in seawater. In a first stage, before the chloride attack, the specimens were stored at  

100% RH and 20 °C to obtain an adequate development of the cement matrix. As in the carbonation 

tests (Figure 3), a correct passivation state was achieved for all specimens after 28 days. After the 

curing period, the specimens were partially immersed in a 0.5 M NaCl solution simulating seawater 

chloride concentration. Increases in Icorr values were then observed. However, a different behavior was 

observed concerning the initiation period. The higher the CNT content (0.05%, 0.10%, 0.25% and 

0.50%), the longer the initiation period was (80, 90, 115 and 125 days respectively), while active 

corrosion on the control sample was not detected until 160 days, probably due to the differences 

between specimens porosities. Nevertheless, once the propagation period was reached in each 

specimen, corrosion rate values measured were above the corrosion threshold.  

Two different aspects should be considered to explain the different behavior shown by the steel 

rebars embedded in cement pastes with different CNT contents. On one hand, the increase in CNT 

addition, which is an electrical conductive material, implies a progressive decrease in the concrete 

electrical resistivity [5]. This fact contributes to the development of the corrosion cell, which may 

explain the increase of the Icorr values. On the other hand, the galvanic couple between the steel and the 

conductive carbon material should be taken into account. The union of two different conductive 
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materials with different nobility implies that the less noble tends to develop higher corrosion rates than 

the same element without such electrical contact. On the other hand, the material with higher nobility 

develops lower corrosion rates. The former argument is consistent because the electrons of the less 

noble material (steel) will cause cathodic protection on the other one (CNT). For this reason, a higher 

content of CNT implies higher levels of the Icorr values. 

Figure 4. Evolution of corrosion potential (Ecorr) and corrosion rate (Icorr) of steel rebars 

embedded in CNT cement pastes partially immersed in seawater.  

 

As a consequence of these two factors, it can be expected that the higher CNT dosage would lead to 

higher conductivity and therefore higher galvanic couple effect from the carbon material to the steel 

reinforcement. Finally, the complementary action of these two factors implies higher corrosion levels, 

which is consistent with the obtained results. 

3. Experimental Program and Materials 

3.1. Materials and Sample Fabrication 

Cement mortars were used for mechanical tests (compressive and bending strengths), porosity and 

density. Cement pastes were used for corrosion rate tests (in order to maximize the influence of the 

cement matrix on the corrosion process). The materials used in this research were: Portland cement 

type EN 197-1 CEM I 52.5 R (CEMEX España S.A., Madrid, Spain); Multiwall Carbon Nanotubes 

(MWCNT, BAYTUBES C 70P), supplied by Bayer MaterialScience, A.G. (Leverkusen, Germany), 

whose main properties are listed in Table 1; distilled water; fine aggregate, standard CEN EN  
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196-1 [31] silica sand (in cement mortars); Sikament FF commercial superplasticizer (SIKA, Inc., 

Valencia, Spain). 

The water/cement ratio (w/c) for all mortars and pastes was 0.5, and the cement/sand ratio (c/s) for 

mortars was 1/3. CNT dosages were 0%, 0.05%, 0.1%, 0.25% and 0.5% by cement mass. The same 

dosages of CNT and superplasticizer were used for mortars and pastes, and were previously assessed 

according to Spanish Standard UNE 83258:2005 [32] in order to obtain the same workability for all 

mortars and pastes. Thus the quantities of plasticizer were 0%, 0.4%, 0.5%, 0.9% and 2.2% of the 

cement mass, for CNT dosages of 0%, 0.05%, 0.1%, 0.25% and 0.5%, respectively.  

CNT dispersions for mortars and pastes were done according to a previously checked method in 

polymer composites [33]. CNT and distilled water were mixed in a rotatory flat-blade mixer and then 

treated using an ultrasound device model Hielschier UP200S. The resulting mixture was mixed with 

cement (and sand, in mortars) and superplasticizer in a laboratory planetary mixer for 5 min. Mortars 

and pastes were fabricated in laboratory conditions: 20 °C temperature and 65% relative humidity 

(RH). This dispersion method has been successfully used in CNF cement composites [5,10]. 

Prismatic specimens of 4 × 4 × 16 cm3 were fabricated according to European Standard UNE EN 

196-1 [31] for mechanical tests in mortars. They were cured in water and tested at 7 and 28 days 

curing ages. Mechanical tests were accomplished in laboratory conditions according to UNE EN  

196-1 [31]. Prismatic specimens of 80 × 55 × 20 mm3 were prepared for corrosion rate tests. Each one 

contained two 8 mm diameter cylindrical steel electrodes and a graphite counterelectrode in the 

middle. The thickness of the resulting cement paste cover was 6 mm and the exposed steel area was 

16.3 cm2. Figure 5 shows the specimen arrangement used for corrosion tests, similar to others used in 

previous works [34–38]. 

Figure 5. Dimensions of the specimens for corrosion tests.  
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Table 1. Properties of Baytubes® C 70 P Multiwall carbon nanotubes (CNT). 

Properties Value Unit 

C-Purity >95 % 

Free amorphous carbon – – 

Outer mean diameter ~13 nm 

Inner mean diameter ~4 nm 

Length >1 µm 

Bulk density 45–95 kg/m
3
 

Elastic modulus 3596 MPa 

Tension at break 72.9 MPa 

Elongation at break 10.7 % 

Izod-Impact at 23 °C 103 J/m 

3.2. Mechanical Properties and Durability Tests 

Bending and compressive strength tests on prismatic specimens were conducted according to 

European Standard UNE EN 196-1:2005 [31], with a ME-402/20 press machine (Servosis, S.L., 

Madrid, Spain). Porosity (P) and apparent density (Dap) were calculated after measuring dry mass 

(Md), submerged mass (Mw) and saturated mass (Ms), according to UNE-EN 993-1:1996 [39], by 

Equations (1) and (2). Six samples of each CNT dosage were tested : 

 (1) 

 (2) 

Corrosion rate (Icorr) and corrosion potential (Ecorr) were measured in each steel electrode,  

two electrodes were measured for each specimen. Each process was long enough to obtain steady  

Icorr values. 

After curing in ambient-controlled room (100% RH and 20 °C), one specimen of each dosage was 

immersed in a 0.5 M NaCl solution, simulating seawater. All these tests were done at 20 °C 

temperature. Some of the specimens were partially immersed in the solution, leaving 1 cm above the 

water level to avoid direct contact of the electrodes with the solution, as shown in Figure 6. The other 

samples were exposed to an accelerated carbonation process in 100% CO2 atmosphere and 65% ± 5% 

RH. Polarization resistance technique was used for testing all samples, and instant corrosion rate (Icorr) 

was calculated using Geary and Stern equation [30]: 

 (3) 

where Icorr is the corrosion rate (µA/cm2); Pr is the polarization resistance (kΩ·cm2) and B (mV) is a 

constant, assumed equal to 26 mV for the steel-cement system [30]. Icorr and Ecorr were periodically 

tested. All the potential values were referred to the saturated calomel electrode (SCE). In order to 

determine the polarization resistance a 362 EG&G potentiostat (Princeton Applied Research) was used. 

At the end of the experiment, each steel rebar was removed and their gravimetric weight loss 

determined. The electrochemical weight loss values were estimated by integrating Icorr vs. time curves 

and results were compared to the corresponding gravimetric losses (obtained directly by mass 

differences). The good agreement between both results validates the assumed B value [30,34–38]. 

s d s w(%) 100 ( ) / ( )P M M M M   

ap s s w/ ( )D M M M 

corr r/I B P
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Figure 6. Specimen partially immersed in seawater for chloride attack tests.  

 

4. Conclusions  

In the present research, the influence of adding CNT to cement composites was studied in two different 

aspects. First, some mechanical properties of CNT cement mortars, and second, corrosion rates of steel 

rebars embedded in CNT cement pastes, were studied. The following conclusions could be drawn. 

The addition of CNT to Portland cement mortars does not significantly affect the bending strength 

(less than 6%) or the compressive strength (less than 7%), at 28 days curing time.  

The addition of CNT to Portland cement mortars does not significantly affect the apparent density, 

at 28 days curing time. Only slight increases in the porosity of CNT cement mortars can be detected at 

the same age (between 7% and 13% with respect to the control sample without CNT). 

The addition of CNT to the cement matrix could imply the development of higher levels of 

corrosion in aggressive conditions, such as carbonation and contamination by chloride ions.  
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