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Abstract: The use of methods based on measuring electrical conductivity to assess 

pozzolanic activity has recently been used primarily in aqueous suspensions of pozzolan: 

calcium hydroxide. However, the use of similar methods in suspensions of cement with 

pozzolans has not been widely studied. This paper proposes a new method for rapid 

assessment of the pozzolanic activity of mineral admixtures in aqueous cement suspensions. 

In this study, the conditions for the application of the method were optimized, such as time, 

temperature, w/c ratio and dosage procedure. Finally, results are presented from the 

application of this method for characterizing the pozzolanic activity of the spent catalytic 

cracking catalyst. These results corroborate as previously reported, namely the high reactivity 

of this pozzolan obtained by other methods, such as thermogravimetry or evolution of the 

mechanical strength. In addition, the pozzolanic activity of the catalyst was compared with 

other pozzolans such as metakaolin and silica fume. 

Keywords: spent fluid catalytic cracking catalyst; pozzolanic activity; electrical 

conductivity measurement; cement suspension 
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1. Introduction 

The development of analytical methods that reduce assay time has always been a concern of 

researchers. The study of the pozzolanic activity of mineral additions has not been the exception. In this 

sense, one of the proposed methods to this effect has been based on electrical conductivity measurements 

in aqueous suspensions of pozzolan: calcium hydroxide [1–10]. In these studies, the direct reaction 

between the acid reactive components of the pozzolan (SiO2, Al2O3) and the calcium hydroxide is 

evaluated. However, there are very few references related to electrical conductivity studies of cement 

suspensions, and even less studies aimed at evaluating the pozzolanic activity of mineral admixtures in 

the presence of cement. One of these references is drawn from Sintharworn et al. [4,5]. They studied 

pozzolanic activity by measuring the electrical conductivity of suspensions obtained by mixing several 

pozzolans (silica fume, metakaolin and rice husk ash) using a solution obtained from the filtration of a 

mix of Portland cement and water. The researchers analyzed the influence of calcium hydroxide 

concentration and the suspension temperature. However, it is clear that the process studied is the direct 

reaction between pozzolan and calcium hydroxide dissolved. Lanzón et al. [11] studied the influence of 

lightweight aggregates in mortar performance. These aggregates showed a slight pozzolanic activity, 

which was studied, on the one hand in aqueous suspensions of calcium hydroxide, and on the other hand 

in aqueous suspensions of Portland cement. Their experiments for cement suspensions lasted for a week. 

In the results of the time trial, the lightweight aggregate samples showed a decrease in electrical 

conductivity due to the pozzolanic reaction. Maximilien et al. [12] investigated the reactivity of six 

cements by measuring the electrical conductivity of aqueous suspensions using no mineral addition.  

As a result of their studies, three periods are established in the hydration reaction of cement: mixing, 

induction (dormant) and acceleration. These periods are defined depending on the changes in the values 

of electrical conductivity of the aqueous suspension of cement. The first period is characterized by an 

elevation, in a few minutes, of electrical conductivity. This elevation is due to the rapid dissolution of 

the cement components, causing supersaturation. In the second period (induction), a slow rise in 

electrical conductivity continues, where reactions proceed slowly. A supersaturation of portlandite 

occurs, reaching a maximum in electrical conductivity, which defines the end of this period. In the final 

period (acceleration), the reactions are accelerated due to the precipitation of portlandite, giving as a 

result a sudden decrease in electrical conductivity, and the dissolved ions are consumed by precipitation. 

Table 1 show a summary of the main characteristics of these previous methods of electrical conductivity 

measurements in aqueous suspensions where Portland cement is involved. 

Regarding the spent catalytic cracking catalyst (FCC), a previous work [13] has reported the study of 

pozzolanic activity in aqueous suspensions of FCC: calcium hydroxide. This study demonstrated the 

high reactivity of this material, comparing their behavior with metakaolin. The influence of the 

temperature of the suspension was reported along with the influence of the pozzolan/calcium hydroxide 

ratio. To evaluate the pozzolanic activity of the catalyst residue (FCC) in cement suspensions, several 

experimental conditions must be established in order to implement the method of electrical conductivity 

previously used in aqueous suspensions of pozzolan/calcium hydroxide [13], such as: 

 Water/cement ratio of the suspension. Maximilien et al. [12] used a ratio of 4:1, which is very 

low with respect to the water/solid ratio that was used in the lime suspensions [13], where the 

minimum ratio used was 25:1. 
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 For the process of adding the pozzolan, there were two options. One was adding the pozzolan 

simultaneously with cement, which would give us information about the interaction between the 

pozzolan and calcium hydroxide consumption, which is generated by cement hydration. 

However, the dissolution of the cement salts could mask the pozzolanic effect, which causes the 

loss of electrical conductivity. The second option was to provide a certain time for hydration of 

the cement, which would allow for the generation of enough portlandite. Then, the pozzolan was 

added, in order to have a record of the electrical conductivity loss less influenced by the salt 

dissolution of the cement. 

 Temperature and time trial. Maximilien et al. [12] used 25 °C and 30,000 s for their experiences. 

In this study, they did not want the test to be too long, and limited it to 10,000 s reported for 

calcium hydroxide suspensions [13]. 

Table 1. Main characteristics of previous methods of electrical conductivity measurements 

in aqueous suspensions. 

Reference Suspension Characteristics Mineral Admixtures Assay Times 

Sinthaworn et al. [4] 

Calcium hydroxide solution obtained 

from Portland cement, without the 

presence of Portland cement hydrates.  

Temperature = 80 °C 

Silica fume 

28 h 
Metakaolin 

Rice husk ash 

River sand 

Sinthaworn et al. [5] 

Calcium hydroxide solution obtained 

from Portland cement, without the 

presence of Portland cement hydrates.  

Temperatures = 40 °C, 60 °C and 80 °C 

Silica fume 8 h 

Lanzón et al. [11] Aqueous cement suspensions 

Lightweight 

aggregates (slight 

pozzolanic activity) 

1 week 

Maximilien et al. [12] Aqueous cement suspensions No mineral admixture 8.3 h 

It well known that the pure pozzolanic reaction involves calcium hydroxide, however, in practice, 

pozzolans are often used by mixing with Portland cement. The pozzolanic reaction using Portland 

cement as reagent has been assessed. When a mixture of pozzolan/Portland cement is monitored,  

two parallel reactions take place: hydration of Portland cement and pozzolanic reaction. This second one 

depends largely on the first one, because the hydration of Portland cement supplies the portlandite 

needed for the pozzolanic reaction. 

Based on the foregoing, it is evident that a rapid method has not been reported based on measuring 

the electrical conductivity, to characterize the activity of pozzolanic materials in the presence of Portland 

cement. Neither was it reported the pozzolanic activity of FCC measured in aqueous suspensions of 

Portland cement. Therefore, the objective of this study was to discuss and establish the conditions for a 

rapid method based on the measurement of electrical conductivity of aqueous suspensions of Portland 

cement that could be useful to characterize the pozzolanic activity of mineral admixtures. In this work, 

a spent catalytic cracking catalyst was used as pozzolan, and to compare their behavior metakaolin (MK), 

silica fume (SF) and mullite (MU) were employed. 
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2. Results and Discussion 

To achieve the above objectives, six different types of experiments were designed. Experiments 1 and 2 

were designed to assess the optimal conditions of the suspension temperature and the amount of cement 

used (Section 2.1). Experiments 3 and 4 were designed to obtain the most appropriate procedure to add 

the mineral admixture (Section 2.2). Once achieved, the objectives of the Experiments 1–4 and 

Experiments 5 and 6 were designed to compare the pozzolanic activity of the FCC with other mineral 

additives (Section 2.3). 

2.1. Studies on the Suspension Temperature and the Cement Amount 

The objectives of Experiments 1 and 2 were the optimization of the suspension temperature and the 

cement amount added, while the water volume was maintained constant (in accordance with the 

conditions of Experiment 1, Section 3.1). The results of the first experiment (50 mL of water at 40 °C 

for 40, 400 and 1000 mg of cement) are shown in Figure 1. These results are plotted on semi-logarithmic 

scale (a) and on normal scale (b). The first graph allows us to distinguish more accurately the beginning 

of the periods of hydration/dissolution, while the second graph allows us to appreciate the finalization 

of these periods more clearly. It can be appreciated that for the three amounts of cement used,  

the beginning of the first period (mixing period) is immediate (before 20 s). The ending of this period 

depends on the cement amount used. As the cement amount present decreases, the ending of this period 

increases, that is, it takes more time to reach the supersaturation of ettringite and calcium silicates 

hydrates (CSH) [12]. The second period begins at the end of the previous period, it continues throughout 

the assay time, and its completion cannot be seen in this experiment. However, in Figure 1b we can 

appreciate that when the amount of cement increases, the finalization of this period is reached earlier. 

This conclusion was reached because the decrease in the instantaneous slope of the curve. This slope 

tends to have a fixed value, from which it can be assumed that the electrical conductivity begins to 

decrease in the acceleration period. From these facts we can assume that it has not reached the 

supersaturation of the suspension under the selected conditions of time and temperature.  

Figure 1. The time evolution of electrical conductivity of aqueous suspensions with several 

cement amounts (mg), T = 40 °C: (a) semi logarithmic scale; and (b) normal scale. 
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To accelerate the process of portlandite generation and thus reach the end of the second period, it was 

decided to raise the temperature of the assay to 80 °C (Experiment 2), using the following cement 

amounts: 0.4, 1, 2, and 5 g. Figure 2 shows the evolution over time of these suspensions on the two 

scales (semi logarithmic and normal). In these figures, the three periods are clearly distinguishable.  

It can be observed the end of the induction period (second period) and therefore the beginning of the 

acceleration period (third period). As previously mentioned, by increasing the amount of cement present 

(lower a/c ratio) it can be observed the start of the third period at shorter times. With these results, it was 

established that it was sufficient to add 1 gram of cement to keep test time at 10,000 s, and thus ensure 

the portlandite supersaturation in the solution, corresponding to the third period, provided that the 

suspension temperature was kept at 80 °C. 

Figure 2. The time evolution of electrical conductivity of aqueous suspensions with several 

cement amounts (g), T = 80 °C: (a) semi logarithmic scale; and (b) normal scale. 

  

(a) (b) 
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where, 

 %LCt,c: loss of electrical conductivity of the cement/pozzolan suspension at a given time “t”,  

in percentage terms. 

 Ct,c: electrical conductivity of the control suspension at a given time “t”. 

 Ct,a: electrical conductivity of the suspension with a percentage of pozzolan added at a given time “t”. 

Figure 3. Time evolution of: (a) electrical conductivity; and (b) loss of electrical conductivity, 

of aqueous cement suspensions (1 g of cement) with several simultaneous percentages of 

FCC addition. T = 80 °C. 
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Table 2. Loss of electrical conductivity at 100, 1000 and 10,000 s, and the maximum value 

of %LC, where its time of occurrence is indicated, for cement/water suspensions (1 g/50 mL) 

with several percentages of FCC addition. T = 80 °C. 

% FCC (Addition) 

%LC 

Time (s) 

100 1,000 10,000 %LCmax-tmax (s) 

5 4.00 6.91 1.69 7.06-900 

10 10.00 16.57 3.58 18.21-1,400 

15 13.67 22.93 4.71 28.81-1,800 

20 15.00 25.69 10.92 34.96-2,100 

30 21.67 33.70 14.31 58.40-4,700 

40 23.00 34.25 21.09 58.57-4,700 

45 36.33 45.30 58.00 64.56-4,700 

60 30.33 41.16 55.74 62.06-4,700 

In order to compare what happens if first the cement is hydrated and then the pozzolan is added, 

Experiment 4 was performed with a modified procedure (see Section 3.2). The main modifications of 

Experiment 4 were to decrease the amount of cement (400 mg), the non-simultaneous addition of cement 

and mineral admixture, and the decrease in temperature of the suspension (40 °C). This type of 

experiment was conducted for the spent FCC catalyst, metakaolin and mullite (used as non-reactive 

mineral addition as inert material for comparison), with the addition of 1 gram of these materials. Figure 4a 

shows the evolution of electrical conductivity over time, while Figure 4b shows the evolution of %LC 

over time. This loss was calculated as reported for aqueous suspensions of pozzolan/calcium  

hydroxide [13]. This is because the pozzolan was added at 11,000 s, so that the electric conductivity 

value at that moment can be taken as the maximum value (see Equation (2)). Note that the figures have 

been plotted starting from the addition of the pozzolan: 

(%𝐿𝐶)𝑡 =
𝐶0 − (𝐶𝑥𝑎)𝑡

𝐶0
· 100 (2) 

where 

 (%LC)t: loss of electrical conductivity in the suspension at a given time “t”, in percentage terms. 

 Co: electrical conductivity of the suspension before adding the pozzolanic material. 

 (Cxa)t = (Cxl)t − (Cx): corrected value of the electrical conductivity of the pozzolan/calcium 

hydroxide suspension at a given time “t”, where (Cxl)t is the electrical conductivity of the 

pozzolan/calcium hydroxide suspension at a given time “t”; and (Cx) is the electrical conductivity 

of the aqueous suspension of the pozzolan in the absence of calcium hydroxide at the same given 

time “t”. 

In previous work [13], it was reported that no correction is necessary for the electrical conductivity 

due to the salt amount of the pozzolanic material used (FCC, MK and MU), therefore (Cxa)t ≈ (Cxl)t.  

In Figure 4b we can appreciate the huge difference in reactivity of the catalyst FCC, when compared to 

the MK and the MU, reached a maximum value of %LC of 55%, while the MK hardly reaches 16%. 

After this maximum value, the three pozzolans decrease their %LC due to the beginning of the 
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acceleration period previously mentioned. It should be noted that the fourth experimental procedure does 

not seem to offer more advantages than the previous experiment. This follows because although a larger 

proportion of catalyst was added, the maximum values of %LC obtained in the simultaneous addition 

were not reached (obviously, the lowering of the temperature to 40 °C was a factor). Besides, the 

simultaneous addition of the pozzolan and the cement, allows less test time. 

Figure 4. Time evolution of: (a) electrical conductivity; and (b) loss of electrical conductivity, 

of aqueous cement suspensions with non-simultaneous addition of FCC, MK and MU. 

  

(a) (b) 
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conditions for the method are established as (see Section 3.3): 

 Simultaneous addition of cement and pozzolan. 

 Suspension temperature of 80 °C. 

 1 g of cement in 50 mL of water. 

Figure 5 shows the curves for the evolution of the loss of electrical conductivity calculated according 

to Equation (1) for the catalyst and metakaolin in the following addition values: 15%, 30%, 45% and 

60%. Mullite was evaluated only with a 60% of addition due to its low reactivity. For all the percentages 

of the addition we observe that the catalyst is much more reactive than metakaolin. It seems that at the 

end of the trial, the MK begins a strong pozzolanic activity, confirming that the FCC reacts much earlier 

than MK, as has been reported in thermogravimetric studies [14]. It is also clearly seen that when the 

addition of FCC increases the %LC also augments, as was mentioned in the previous section.  

This behavior can be explained as follows: the FCC is very reactive and begins to react as calcium 

hydroxide is released (%LC increases). In this way, a maximum value of %LC is reached, when there is 

no longer enough calcium hydroxide to continue reacting. The cement hydration continues with the 

generation of portlandite, which reduces the %LC. On finalizing the test when the amount of available 

calcium hydroxide increases due to continuous hydration of the cement, the FCC reacts again.  

2500

3000

3500

4000

4500

5000

5500

6000

6500

10 100 1000 10000

C
(µ

S
/c

m
)

Time (s)

FCC MK MU

0

10

20

30

40

50

60

10 100 1000 10000

%
L
C

Time (s)

FCC MK MU



Materials 2014, 7 7541 

 

 

MK requires a greater amount of calcium hydroxide to initiate the reaction, so that its reaction does not 

start until the suspension is completely supersaturated in calcium hydroxide. 

Figure 5. Time evolution of the loss of electrical conductivity of cement/water suspensions 

(1 g/50 mL) at 80 °C with the following percentages of addition for FCC and MK: (a) 15%; 

(b) 30%; (c) 45%; and (d) 60% (MU for comparison). 

  

(a) (b) 
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produced by the hydration of cement (and consumed by the FCC). It is remarkable that the FCC area is 

approximately three times the MK area to the same percentage of the addition (in 15%, 30% and 45% 

addition), and twice for the addition of 60%. From these studies we can conclude that the pozzolanic 

activity of the catalyst is much greater than MK and the MU for the test conditions established.  

Perhaps if we continue the test for a longer period of time, we should observe the strong pozzolanic 

activity of MK. 

Table 3. Calculated areas under the curve of %LC from 10 to 10,000 s for cement suspensions. 

Addition (%) Pozzolan Area (%s) ×105 

15 
FCC 10.75 

MK 3.16 

30 
FCC 38.43 

MK 11.80 

45 
FCC 56.94 

MK 18.69 

60 

FCC 54.11 

MK 25.97 

MU 4.12 

Having established the assay conditions and catalyst performance compared with metakaolin, finally 

we also wanted to compare the catalyst with several silica fumes in the same conditions (see Section 3.3, 

experiment 6). Figure 6 shows the evolution over time of the loss of electrical conductivity %LC 

calculated from the Equation (1) for these suspensions. We can make the following observations: 

 For the three tested temperatures, the %LC of the catalyst is much higher than in the three silica 

fumes in the established conditions. 

 In general based on the %LC, the pozzolanic reactivity of silica fumes tested high to low is: 

NDSF > DSF > PDSF, although there are areas where this pattern is lost. The PDSF contradictory 

behavior may be because it is obtained from a different source. 

 The negative values for the silica fumes should be because they are contributing to accelerating 

the cement hydration. This causes a reading of an instantaneous electrical conductivity higher 

than that recorded in the control suspension, thus causing negative values. These negative values 

are mainly presented after reaching the maximum value of %LC. 

 Considering the area under the curve as the “work” of the pozzolan to keep the %LC at a certain 

value, we see that the FCC develops more “work” than the silica fumes during the time interval 

tested. However, as happens for MK, it appears that if given a longer test time, the NDSF 

especially would show an important pozzolanic activity (especially at 80 °C, where at the end of trial, 

the %LC value of silica fume are equalized with the FCC value). 
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Figure 6. Time evolution of the loss of electrical conductivity of cement/water suspensions 

(1 g/50 mL) with 45% of addition of FCC and SF at the following temperatures: (a) 30°C; 

(b) 40°C; and (c) 80 °C. 

  

(a) (b) 
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ECC International Company (St Austell, UK), under the trade name Metastar) was used as a pozzolanic 

material, which has a chemical composition very similar to FCC. Silica fume was also used for 

comparative purposes, since it is a widely used high reactivity pozzolanic material. Three kinds of silica 

fume were used: non-densified silica fume (NDSF) and densified silica fume (DSF), both supplied by 

FerroAtlántica SA (Sabón–A Coruña, Spain) and partially densified silica fume (PDSF) supplied by 

SIKA (Gournay-en-Bray, France). Ordinary Portland cement (OPC) was used (Cemex, Valencia, Spain, 

Blaine fineness of 3968 cm2/g). The chemical compositions of the OPC, FCC, MK and SF are tabulated 

in Table 4. An inert crystalline material was used, mullite (MU, Al6Si2O13), in order to establish a 

comparison of the pozzolanic behavior of the FCC. The chemical composition of the MU, since is similar 

to the FCC allows us to study the effect of dilution. The percentages of aluminum and silicon oxides in 

the MU are respectively 71.8% and 28.2%. The average particle diameters for Portland cement and mineral 

admixtures studied are: cement = 15.01 µm, FCC = 19.96 µm, MK = 5.84 µm, NDSF = 8.81 µm,  

DSF = 44.41 µm, PDSF = 29.01 µm, MU = 37.36 µm. The equipment used for measuring the electrical 

conductivity is as described by Paya et al. [2]. This equipment uses a microCM2201 Crison conductivity 

meter (Alella, Spain) with a RS232 output. The experiments were carried out through a thermostated 

reactor for temperature control as well as by using an isolated system to avoid carbonation.  

For optimization of the experimental conditions of the assessment of the pozzolanic activity the 

measurements of the loss of electrical conductivity, four kinds of experiments were designed. 

Table 4. Chemical composition (% in weight). 

Material SiO2 Al2O3 Fe2O3 CaO MgO SO3 K2O Na2O LOI 

OPC 19.9 5.38 3.62 63.69 2.14 3.66 1.17 0.10 2.02 

FCC 48.2 46.0 0.95 <0.01 <0.01 n.d. § <0.01 0.50 1.50 

MK 52.1 41.0 4.32 0.07 0.19 n.d. § 0.63 0.26 0.60 

DSF–NDSF 91.1 0.2 0.14 0.48 0.19 0.14 0.50 n.d. § 6.69 

PDSF 96.0 0.2 0.14 0.36 0.20 0.12 0.41 0.02 2.94 

§ Not determined. 

3.1. Experiments 1 and 2 

In these experiments, the objective was to establish the optimal conditions of suspension temperature 

and the amount of cement used. In both experiments 50 mL of water were used. In the first experiment 

the suspension temperature was set at 40 °C, by varying the amount of cement used, these being 40, 400 

and 1000 mg. In the second experiment the suspension temperature was 80 °C, by varying the amount 

of cement added in the following values: 0.4, 1, 2, and 5 g. In these two first experiments not mineral 

admixtures were used. 

3.2. Experiments 3 and 4 

In these experiments, the aim was to establish the optimal way to add the mineral admixture. In both 

experiments, the water volume was 50 mL. It was decided to make an addition to the cement amount, 

not a substitution. Therefore in the third experiment the conditions were: Percentages of pozzolan added 

with respect to the mass of cement (only FCC) 0%, 5%, 10%, 15%, 20%, 30%, 40%, 45% and 60%,  
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1 g of cement amount, suspension temperature 80 °C. The cement and pozzolan were added 

simultaneously. In order to compare what happens if we first allow the cement hydration and then the 

pozzolan is added, a fourth experiment was conducted using the following procedure: (1) 400 mg of 

cement was added to 50 mL of water at a temperature of 80 °C for 1000 s; (2) the temperature was 

decreased to 40 °C and maintaining the system at 10,000 s; (3) one gram of the pozzolan was added. 

This study was conducted for the FCC, MK and MU. 

3.3. Experiments 5 and 6 

Once optimized the experimental conditions of the assessment of the pozzolanic activity by the 

measurement of the loss of electrical conductivity, then two other types of experiments were designed 

in order to compare the FCC pozzolanic activity with other mineral additives. The optimized conditions 

of these two experiments were: 80 °C of the aqueous suspension temperature, 1 g of cement in 50 mL 

of water, with the simultaneous addition of cement and the mineral addition. In experiment 5, FCC was 

compared with MK with the following addition percentages: 15%, 30%, 45% and 60%. MU was 

compared only with 60% addition. In Experiment 6, the FCC was compared with three types of SF.  

This comparison was made with an addition of 45% of the pozzolan, at three different suspension 

temperatures: 30, 40 and 80 °C. 

4. Conclusions 

From the present study of the pozzolanic activity measured by the electrical conductivity of cement 

aqueous suspensions, the following conclusions can be drawn: 

1. The assay conditions were optimized for measuring the pozzolanic activity by means of  

the electrical conductivity in cement aqueous suspensions. It was established as optimal 

conditions for the spent FCC catalyst: test time = 10,000 s; suspension temperature = 80 °C, 

water/cement ratio = 0.50; simultaneous addition of cement and pozzolan. 

2. Applying the method to the suspensions allowed us to observe the three periods described by 

Maximillien [12] in which significant changes occurred in electrical conductivity: mixing, 

induction and acceleration. 

3. In the test where the initial hydration of the cement in the aqueous suspension is allowed, a large 

difference in reactivity is obtained when comparing the FCC, MK and MU. The FCC shows the 

%LC maximum value of 55, while MK barely reaches to 16%. This method does not seem to 

provide advantages over the simultaneous addition, since although a greater proportion of spent 

FCC catalyst was added, the maximum values in %LC obtained in the simultaneous addition 

were not reached, and a larger test time is required. 

4. When comparing FCC with MK in all experiments performed, it was observed that for the given 

conditions, the spent FCC catalyst is more reactive than metakaolin. Besides, it is evident that 

the increase of FCC addition increases the %LC. 

5. When comparing the catalyst with three types of silica fume in cement aqueous suspensions in 

the three tested temperatures, the %LC of the spent FCC catalyst is far superior to established 

test conditions. In general based on the %LC, the pozzolanic reactivity of the silica fumes tested 
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from high to low is NDSF > DSF > PDSF. Negative values obtained for the silica fumes are 

because they contribute to the acceleration of cement hydration. 
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