Supplementary Information

The force due to Lennard-Jones potential between the bead-bead and the bead-wall particle is computed by

$$\mathbf{F}_{\text{LJ},i} = \begin{cases} 24\varepsilon \sum_{j=1}^{N} \sum_{k,j\neq i}^{N} 2\left(\frac{\sigma^{12}}{r_{i,j}^{13}}\right) - \left(\frac{\sigma^{6}}{r_{i,j}^{7}}\right)^{6} \hat{\mathbf{r}}_{i,j} & \text{if } r_{i,j} < r_{\text{cut}} \\ 0 & \text{if } r_{i,j} \ge r_{\text{cut}} \end{cases}$$
(S1)

where σ and ε are the length and energy scales of the potential, respectively, and $r_{cut} = 2^{1/6}\sigma$ is the cut-off distance which ensures that only repulsive interaction takes place when two beads are closer than r_{cut} . Further, $r_{i,j}$ denotes distance between the bead *i* and the bead *j*, and $\hat{\mathbf{r}}_{i,j}$ indicates the unit vector of the displacement vector $\mathbf{r}_{i,j}$ of the particle *i* referred to the particle *j*, *i.e.*, $\mathbf{r}_{i,j} = \mathbf{r}_i - \mathbf{r}_j$.

The bond stretching force due to the connectivity between the bead i and each of its adjacent beads, i-1 and i+1, is given by

$$\mathbf{F}_{\text{bond},i} = -K_{\text{bond}}(r_{i,i-1} - \sigma_0)\hat{\mathbf{r}}_{i,i-1} - K_{\text{bond}}(r_{i,i+1} - \sigma_0)\hat{\mathbf{r}}_{i,i+1},$$
(S2)

where K_{bond} is the bond-stretching force constant and σ_0 is the segment length. In our simulations, we have chosen $K_{\text{bond}} = 1000 k_{\text{B}}T / \sigma_0^2$. Here k_{B} represents the Boltzmann constant and T is the temperature of the fluid.

The force due to bending interaction between the particle i and the two neighboring particles, i-1 and i+1, is calculated by

$$\mathbf{F}_{\text{bend},i} = -K_{\text{bend}}(\phi - \phi_a) \left[\frac{1}{r_{i-1,i}} \frac{\mathbf{r}_{i-1,i} \times (\mathbf{r}_{i+1,i} \times \mathbf{r}_{i-1,i})}{\left| \mathbf{r}_{i-1,i} \times (\mathbf{r}_{i+1,i} \times \mathbf{r}_{i-1,i}) \right|} + \frac{1}{r_{i+1,i}} \frac{\mathbf{r}_{i+1,i} \times (\mathbf{r}_{i-1,i} \times \mathbf{r}_{i+1,i})}{\left| \mathbf{r}_{i+1,i} \times (\mathbf{r}_{i-1,i} \times \mathbf{r}_{i+1,i}) \right|} \right], \quad (S3)$$

where K_{bend} is the bending rigidity constant which restores the angle ϕ to an equilibrium angle $\phi_a = \pi$; here '×' indicates the cross product. K_{bend} is related to the persistence length, P, of dsDNA and its value is $K_{\text{bend}} = Pk_{\text{B}}T/\sigma_0$.

The random force due to the thermal fluctuations in the fluid environment is taken as a Gaussian random variable with the mean and variance given by

$$\langle \mathbf{F}_{\mathrm{ran},i}(t) \rangle = 0, \langle \mathbf{F}_{\mathrm{ran},i}(t) \mathbf{F}_{\mathrm{ran},j}(t') \rangle = 2\Gamma_{\mathrm{bare}} k_{\mathrm{B}} T \delta_{ij} \delta(t-t')'$$
 (S4)

where δ_{ij} and $\delta(t-t')$ are the Kronecker and Dirac delta functions, respectively. Here we replace Γ_{bare} with Γ when HI are neglected.

Parameter	Value	Reference quantity	Dimensionless value
Equilibrium length of the segment, σ_0	$\sigma_0 = 10 \text{ nm}$	$\sigma_{_0}$	$\sigma_0^*=1$
Lattice grid size, Δx	$\Delta x = 10 \text{ nm}$	$\sigma_{_0}$	$\Delta x^* = 1$
Density of water, ρ_o	$\rho_o = 1000 \text{ kg/m}^3$	$ ho_{o}$	$ ho_o^*=1$
Viscosity of water, μ	$\mu = 10^{-3} \text{ N-s/m}^2$	$\mu_{ m ref}=rac{\mu}{\mu^*}$	$\mu^* = 7$
Temperature	T = 300 K	_	_
Energy, $\varepsilon = k_{\rm B}T$	$k_{\rm B}T = 4.14 \times 10^{-21} \ {\rm J}$	$k_{ m B}T$	$k_{\rm B}T^* = \varepsilon^* = 1$
LB time step, Δt	$\Delta t = 6.9 \times 10^{-10} \text{ s}$	$\tau_{\rm ref} = \frac{\mu_{\rm ref} \sigma_0^3}{k_{\rm B} T}$	$\Delta t^* = 0.02$ (LD time step, $dt^* = 0.01$)
Friction coefficient, Γ			$\Gamma^* = 32$
[From Equation (13) of Reference [21]]	$\Gamma = 4.61 \times 10^{-11} \text{ N-s/m}$	$\Gamma_{ m ref}=\mu_{ m ref}\sigma_0$	$(\Gamma_{\text{bare}}^* = 40)$
Effective charge on each bead, q_i	$q_i = 1.42 \times 10^{-18} \text{ C}$	$q_{i,ref} = 1e$, where <i>e</i> is the proton charge	$q_i^* = 9$
Applied voltage, $\Delta \phi$	$\Delta \varphi = 120 \text{ mV}$	$\Delta \hat{\varphi}_{\rm ref} = k_{\rm B} T / e$	$\Delta \varphi^* = 4.7$

Table S1. Important simulation parameters.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).