Next Article in Journal
Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes
Next Article in Special Issue
Bio-based Films from Linter Cellulose and Its Acetates: Formation and Properties
Previous Article in Journal
Hydrogen Production by Steam Reforming of Ethanol over Nickel Catalysts Supported on Sol Gel Made Alumina: Influence of Calcination Temperature on Supports
Previous Article in Special Issue
Evaluation of Biological Pretreatment of Rubberwood with White Rot Fungi for Enzymatic Hydrolysis
Materials 2013, 6(6), 2240-2261; doi:10.3390/ma6062240

High Pressure Compression-Molding of α-Cellulose and Effects of Operating Conditions

1,2,3,* , 3
1 Université de Toulouse, INP-ENSIACET, LCA (Laboratoire de Chimie Agro industrielle), Toulouse F 31030, France 2 INRA, UMR 1010 CAI, Toulouse F 31030, France 3 The Green Factory, 27 rue Chanez, Paris 75016, France
* Author to whom correspondence should be addressed.
Received: 22 January 2013 / Revised: 12 March 2013 / Accepted: 21 May 2013 / Published: 30 May 2013
(This article belongs to the Special Issue Advances in Cellulosic Materials)
View Full-Text   |   Download PDF [1235 KB, uploaded 30 May 2013]   |   Browse Figures


Commercial α-cellulose was compression-molded to produce 1A dog-bone specimens under various operating conditions without any additive. The resulting agromaterials exhibited a smooth, plastic-like surface, and constituted a suitable target as replacement for plastic materials. Tensile and three-points bending tests were conducted according to ISO standards related to the evaluation of plastic materials. The specimens had strengths comparable to classical petroleum-based thermoplastics. They also exhibited high moduli, which is characteristic of brittle materials. A higher temperature and higher pressure rate produced specimens with higher mechanical properties while low moisture content produced weaker specimens. Generally, the strong specimen had higher specific gravity and lower moisture content. However, some parameters did not follow the general trend e.g., thinner specimen showed much higher Young’s Modulus, although their specific gravity and moisture content remained similar to control, revealing a marked skin-effect which was confirmed by SEM observations.
Keywords: α-cellulose; compression-molding; agromaterials; biomaterials; mechanical properties α-cellulose; compression-molding; agromaterials; biomaterials; mechanical properties
This is an open access article distributed under the Creative Commons Attribution License (CC BY) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote |
MDPI and ACS Style

Pintiaux, T.; Viet, D.; Vandenbossche, V.; Rigal, L.; Rouilly, A. High Pressure Compression-Molding of α-Cellulose and Effects of Operating Conditions. Materials 2013, 6, 2240-2261.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here


[Return to top]
Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert