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Abstract: Recognizing that steel fibers can supplement the brittle tensile characteristics of 

concrete, many studies have been conducted on the shear performance of steel fiber 

reinforced concrete (SFRC) members. However, previous studies were mostly focused on 

the shear strength and proposed empirical shear strength equations based on their 

experimental results. Thus, this study attempts to estimate the strains and stresses in steel 

fibers by considering the detailed characteristics of steel fibers in SFRC members, from 

which more accurate estimation on the shear behavior and strength of SFRC members is 

possible, and the failure mode of steel fibers can be also identified. Four shear behavior 

models for SFRC members have been proposed, which have been modified from the 

softened truss models for reinforced concrete members, and they can estimate the 

contribution of steel fibers to the total shear strength of the SFRC member. The 

performances of all the models proposed in this study were also evaluated by a large 

number of test results. The contribution of steel fibers to the shear strength varied from 5% 

to 50% according to their amount, and the most optimized volume fraction of steel fibers 

was estimated as 1%–1.5%, in terms of shear performance. 
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1. Introduction 

Fiber-reinforced concretes (FRCs) are made with various types of fiber materials, such as steel, 

carbon, nylon, and polypropylene, which are generally known to have enhanced tensile performance 

and crack control capability compared to conventional concrete [1–7]. In particular, it has been 

reported that steel fibers have an excellent effect on the enhancement of the shear behavior [1–5], and 

thus, many studies have been conducted on the shear performance of steel-fiber-reinforced concrete 

(SFRC) members. Most of the previous studies, however, proposed shear strength equations that were 

empirical based on their experimental results [8–14], which cannot estimate shear behavior along the 

loading history of the members, i.e., they cannot provide the shear strains or stresses of the members at 

a loading stage, except for the ultimate strength. In addition, there are only few shear behavior models 

for SFRC members, and they mostly modified the tensile stress-strain relationship of concrete to fit for 

SFRC members. Although they are able to estimate the shear behavior of SFRC members, they cannot 

identify the strains and stresses in steel fibers, which make it difficult to assess the enhancement of 

shear performance in detail according to the properties of steel fibers. In this study, therefore, steel 

fibers were modeled as independent reinforcing materials in the analytical models, and the shape, 

length, and volume fraction of the steel fibers were reflected in evaluating the shear behavior and 

strength of SFRC beams. The shear strength models proposed in this study are the smeared crack 

models that were modified from the softened truss models (STM), which can predict the shear 

behavior of SFRC members relatively fast, compared to the discrete crack model, by defining the steel 

fibers on the average that are randomly distributed in concrete without any constant direction. The 

accuracy of the proposed models was also examined by 85 specimens that were carefully  

collected from previous studies and by comparison to the shear strength equations proposed by other 

researchers [9–12]. In addition, since the proposed models can estimate the stresses in steel fibers, an 

attempt was also made to evaluate the effectiveness of the steel fibers as a shear reinforcing material 

by assessing the contribution of the steel fibers to the total shear resistance of SFRC beams. 

2. Review of Previous Research 

2.1. Shear Strength Models 

In the 1960s, Romualdi and Mandel [15] reported on the tensile strength enhancement of concrete 

by steel fibers, and Batson et al. [16] presented the shear strength enhancement of SFRC beams based 

on the experimental tests on 102 SFRC beams with the key variables of shear span ratio and volume 

fraction of steel fibers. Later Swamy and Bahia [17] reported that the shear strength was enhanced due 

to the steel fibers that deliver the tensile forces at the crack surface in the SFRC beams without shear 

reinforcement. Sharma [9]
 
performed the experimental study on SFRC beams with the hooked-types of 

steel fibers, and based on the experiment results, proposed the shear strength (νu) equation for the 

SFRC beams in a relatively simple form, as follows: 
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where k is 1 if the tensile strength ( tf ' ) is obtained from a direct tensile test, 2/3 if from a splitting 

tensile test, and 4/9 if from a flexural tensile test. If Equation (1) is used without tensile tests, 2/3 and 

0.79 cf   are used for k and tf ' , respectively. In addition, d is the effective member depth; and a is the 

shear span length. Equation (1) has been used since ACI Committee 544 adopted it in 1988 [1]. 

Narayanan and Darwish [10] conducted the experiments on SFRC beams, with the primary 

variables of the splitting tensile strength (fsp); shear span ratio (a/d); tensile reinforcement ratio (ρ); 

fiber coefficient (F1) and bond strength of steel fibers (τ); and proposed the shear strength (νu) 

equations for SFRC beams, as follows: 

10.24 80ρ 0.41τu sp

d
v e f F

a

 
   

 
 (2) 

where e is a non-dimensional coefficient considering the arch action, which is 1 for the shear span ratio 

of greater than 2.8, and 2.8 d/a for the shear span ratio of less than 2.8. In addition, F1 is a fiber 

coefficient that equals to, (lf/df)Vf α where lf, df, and Vf are the length, diameter, and volume fraction of 

steel fibers, respectively; and α is a bonding coefficient, which is 1.0 for hooked-type fibers, 0.75 for 

corrugated fibers, and 0.5 for straight fibers. 

Ashour et al. [8] performed the tests on high-strength SFRC beams, having the compressive 

strengths of greater than 90 MPa, and proposed the following shear strength (νu) equation for the 

SFRC beams with high-strength concrete: 

10.24 80ρ 0.41τu sp

d
v e f F
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 
 (3) 

which is a modified form of the shear strength equation for reinforced concrete (RC) beams presented 

in the ACI318 [18].
 
In addition, Ashour et al. [8] also proposed the shear strength (νu) equations for 

SFRC members by modifying the Zsutty’s equation[19] for RC beams, as follows: 

0.3333
1(2.11 7 )(ρ )u c s

d
v f F

a
   for / 2.5a d   (4) 

and 

0.3333
1

2.5
(2.11 7 )(ρ ) 2.5

/
u c s b

d a
v f F v

a a d d

 
    

 
 for / 2.5a d   (5) 

which consider the shear span ratio (a/d); tensile reinforcement ratio (ρs); fiber coefficient (F1); and 

compressive strength ( cf  ). In Equation (5), νb is an additional shear resistance by steel fibers in the deep 

SFRC members, which was recommended as 1.7(lf/df)·Vf·ρf based on the Swamy et al.’s research [20]. 

Kwak et al. [11] also conducted the experimental study on the SFRC beams, having the 

compressive strengths of greater than 60 MPa and mixed with hooked-type steel fibers, and proposed 

the shear strength (νu) equation of the SFRC members by adding the term for the contribution of steel 

fibers into the Zutty’s [19] shear strength equation, as follows: 
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Oh et al. [12] tested the SFRC beams reinforced by angles in tension, instead of reinforcing bars, 

and proposed the shear strength (νu) equation, as follows: 

1(0.2 0.25 ) 75ρu c s

d
v e F f

a
    (7) 

where e is a non-dimensional coefficient considering the arch action, which is 1 for the shear span ratio 

of greater than 2.5, and 2.5d/a for the shear span ratio of less than 2.5. 

The shear strength equations for SFRC members mentioned [9–12] here slightly differ from one 

another, but they are all derived empirically based on test results and mostly include the tensile 

strength (or compressive strength) of concrete, fiber volume fraction, tensile reinforcement ratio, and 

shear span ratio as the key influencing parameters. In addition, they have very simplified forms, which 

are good for their easy application, but, on the other hand, their prediction accuracy can be limited. 

(Refer to Table 2 and Figure 4 in Chapter 4). Dinh et al. [13] proposed a theoretical model for shear 

strength estimation of SFRC members, in which the shear resistance is calculated by the summation of 

contributions of the concrete in compression zone and the steel fibers in tension zone. Note that their 

strength model has not been examined in this paper because its theoretical background is quite 

different from STM models that authors would like to focus on. 

2.2. Shear Behavior Models 

Compared to the many equations on the shear strength of SFRC members based on experimental 

test results, there are only a few studies on the shear behavior models of SFRC members based on 

analytical research. As shown in Figure 1a,b, Tan et al. [21] modified the compression and tension 

curve of concrete for the rotating angle softened truss model (RA-STM) [22], which took account of 

the compressive ductility increase and the tension stiffening effect by steel fibers. In other words, his 

analysis model reflects the effects of steel fibers on the shear behavior of the members through the 

material curves of SFRC, which is a common modeling for composite materials, and, in fact, provided 

a good accuracy. It has, however, disadvantages in that it cannot estimate the stresses or strains in the 

steel fibers, it cannot simulate their residual bond stress or pullout failure, and it cannot count the 

effects of the fiber volume fraction. Later, Tan et al. [23] proposed a shear behavior prediction model 

that modified the concrete tensile stress-strain relationship for the modified compression field theory 

(MCFT) [24], as shown in Figure 1c, in which the volume fraction of steel fibers was considered in the 

tension stiffening effect. As this model was established with insufficient experimental data, it is 

uncertain whether the volume fraction of steel fibers was properly considered, and other characteristics 

of steel fibers, such as the shape and length, were not taken into account. 

As mentioned, the shear behavior models for SFRC members proposed so far use the stress-strain 

material curves of SFRC to account for the effect of steel fibers. Thus, they have difficulties in 

considering the characteristics of steel fibers in details, and cannot consider the failure modes of steel 

fibers [10,11,25], which often leads to an overestimation of the member ductility. Thus, this study 

proposed the shear behavior models based on the softened truss models (STM) [22,26–32],
 
which can 
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estimate the contribution of steel fibers on the shear resistance by modeling them as independent tensile 

elements, and can simulate their pullout failure modes by reflecting the bond strengths of steel fibers. 

Figure 1. Constitutive models modified by Tan et al. (a) Compressive stress-strain 

relationship for rotating angle softened truss models (RA-STM) modified by Tan et al. [21]; 

(b) Tensile stress-strain relationship for RA-STM modified by Tan et al. [21];  

(c) Tensile stress-strain relationship for modified compression field theory MCFT modified 

by Tan et al. [23]. 

  

(a)                                                          (b) 

 

(c) 

3. Modified Shear Behavior Models Based on the Softened Truss Models 

The shear behavior models of SFRC members proposed in this study are based on four softened 

truss models, which are summarized here. 

3.1. Rotating Angle Softened Truss Model (RA-STM) 

RA-STM [22,26] is a shear behavior model in which the concrete compression softening and the 

tension stiffening effect are considered. Since this model is a rotated angle model, wherein the crack 

angles vary depending on the stress state under the assumption that crack angles are consistent with 

principal stress angles, the shear stress-strain relationship at the crack is not required. Thus, it is the 

most simple analysis method for estimating the shear strength and behavior among the four models 

presented here. Table A1 in Appendix shows the equilibrium, compatibility, and constitutive equations 

used in RA-STM. As shown in Equation A-1, the horizontal stress, longitudinal stress, and the shear 
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stress can be derived by rotating the stresses in the principal stress direction (d − r direction) to the 

direction of l − t by the principal stress angle (α), as shown in Figure 2a,b. In addition, the 

compatibility Equation A-2 can be derived using Mohr’s strain circle, as shown in Figure 2c. As for 

the constitutive equations [33,34], Equation A-3, which considers the compression softening effect, 

was used for the compressive stress-strain relationship of concrete, and Equation A-4, which reflects 

the tension stiffening effect, was used for the tensile stress-strain relationship. Equation A-5 was used 

as the constitutive equations of the longitudinal and shear reinforcements, which considers the 

hardening phenomenon after the yielding and also the earlier yielding point in a steel bar embedded in 

concrete compared to the bare bars. 

3.2. Fixed Angle Softened Truss Model (FA-STM) 

As it was assumed, in RA-STM, that the crack direction coincides with the principal stress 

direction, it was impossible to theoretically consider the shear resistance mechanism at the crack 

surface, i.e., the aggregate interlock. FA-STM was proposed to solve out such a contradiction in  

RA-STM. As shown in Figure 2d,e, the shear stresses at the crack surface were considered by fixing 

the initial crack angle caused by external forces, and the equilibrium equations in FA-STM were 

derived as shown in Equation A-6 in Appendix. The compatibility equations are also shown in 

Equation A-7. The constitutive equations of the steel reinforcement and the tensile stress-strain 

relationship of the concrete are identical to those in RA-STM, but the compressive stress-strain 

relationship of the concrete was modified to include the reinforcement capacity ratio (η) in the 

softened coefficient (ζ) as shown in Equation A-3(a and d,f). 

The analysis has the following stages. First, before the crack occurs, assume that the crack angle α2 
by external force is fixed in 2-1 direction. Then, the principal stress angle α of the d − r direction is 

determined from the principal stress and the shear stress after cracking, the strains are calculated using 

the compatibility equations, and the calculated strains are substituted into the constitutive equations to 

determine the corresponding stresses and the forces. The shear strength can be calculated by iterating 

the calculation process until the determined forces satisfy the equilibrium condition. In this study, the 

Zhu et al.’s [35] model was used, which is a modified version of the Pang and Hsu’s model [28] that 

requires more iteration process. 

3.3. Smeared Membrane Model (SMM) 

The Poisson effect could not be considered in the STM mentioned above they were based on the 

uniaxial strains of concrete. Thus, Hsu and Zhu [36,37] derived the Hsu/Zhu ratio through a panel 

experiment, which is basically a Poisson ratio, and they implemented it in SMM [30]. SMM is capable 

of providing the more realistic strains by considering the Poisson effect in the strain compatibility 

condition. Equation A-14 in the strain compatibility condition gives the equivalent strains in the 

uniaxial direction considering the Poisson effect by the Hsu/Zhu ratio. The constitutive equations are 

the same as those in FA-STM, but the shear stress-strain relationship at the crack surface was 

simplified using the rational shear modulus proposed by Zhu et al. [35]. 
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Figure 2. Notations for various softened truss models. (a) Stresses in RA-STM; (b) Angles 

in rotated angle model; (c) Mohr’s strain circle; (d) Angles in fixed angle model;  

(e) Stresses at crack direction; (f) Stresses at principal direction; (g) Stresses and direction 

of angles in the transformation angle truss model (TATM). 

   

(a)                                      (b)                                   (c) 

(d)                          (e)                             (f)                                       (g) 

3.4. Transformation Angle Truss Model (TATM) 

Although the shear stresses at the crack surface seemed to be considered in FA-STM conceptually 

by fixing the crack angle, most of the analyses by FA-STM actually assumed that the stresses at the 

crack surface are the same as the principal stresses. Therefore, its application is limited because the 

difference between the normal stresses (1–2) on the crack surface as shown in Figure 2e and the 

principal stresss (d − r) as shown in Figure 2f increases as the difference between the crack angle and 

the principal stress angle (β) becomes greater. In addition, the constitutive equations in FA-STM were 

derived from the panel test results, in which the range of the reinforcement capacity ratio was  

0.2 < η < 0.5. Thus, it cannot be applied in the cases wherein the reinforcement capacity ratio is below 

0.2, which can be often the case in practice. Also, the flexural moment cannot be considered in  

FA-STM. Thus, Kim and Lee [27,31,32] proposed TATM, modifying FA-STM, in which, as shown in 

Figure 2g, the principal stresses and strains are obtained by rotating the stresses and strains at the crack 

surface by β, and the equilibrium equations and the compatibility conditions in the l − t coordinate 

system are derived by rotating them again by α. This process requires the shear stress-strain correlation 

at the crack, for which the equation proposed by Li et al. [38] was used, as shown in the first term of  

A-13(a). In the cases where the axial forces are applied, the Yoshikawa et al.’s equation [39], as shown in 
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the second term of Equation A-13(a), was superimposed. In addition, in order to consider the flexural 

moment effect, the steel ratio required to resist the flexure was subtracted, and the remained 

reinforcement ratio was assumed to resist the shear. 

4. Proposed Model: Softened Truss Model with Steel Fibers (STM-SF) 

In this study, steel fibers are considered as independent reinforcement materials, and it is assumed 

that a certain number of steel fibers, which are distributed randomly according to the fiber volume 

fraction, resist the tensile stress perpendicular to the crack surface, as shown in Figure 3a [4]. In 

addition, steel fibers are assumed to show full composite behavior with concrete before the pull-out of 

steel fibers occurs, from which, the strains of steel fibers can be considered to be the same as the 

average strains of concrete at the same location. As shown in Figure 3b, the tensile resistances of steel 

fibers are added to the equilibrium conditions of the softened truss models in the normal direction. 

Thus, the additional term by the steel fibers in the equilibrium equations in the l − t direction can be 

derived by rotating the stress of the steel fibers at the crack surface by the crack angle (α2), as follows: 

2

1 2σ σ sin αf f

l   (8) 

2

1 2σ σ cos αf f

t   (9) 

1 2 2τ σ sinα cosαf f

lt   (10) 

where α2 is the crack angle; and σ f

l
, σ f

t
, and 

1σ
f  are the average stresses of steel fibers in the 

longitudinal direction, in the transverse direction, and in the crack direction, respectively. Thus, the final 

forms of the equilibrium equations for SFRC members can be obtained by adding Equations (8)–(10)  

to the equilibrium equations of RA-STM, FA-STM, SMM, and TATM in the longitudinal and 

transverse directions. 

The stress-strain relationship of steel fibers can be expressed, assuming their elastic-plastic 

behavior, as follows: 

1σ εf f yfE f   (11) 

where σf is the stress of steel fibers; fyf is the yield strength; Ef is the elastic modulus and 200 GPa can 

be used [40], and ε1 is the tensile stress at the crack surface. 

The tensile force resisted by the steel fibers (Tf) can be calculated by multiplying the number of the 

steel fibers on the crack plane (n) by their tensile stress (σf) and their cross-sectional areas (Af),  

as follows: 

σf f fT nA  (12) 

Then, the average tensile stress (
1σ
f ) of the steel fibers on the crack plane can be expressed by 

dividing the tensile force (Tf) by the area of the crack surface (Acs), as follows: 

1

f f ff

cs cs

T nA

A A


    (13) 
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Figure 3. Description of the proposed model for SFRC members. (a) Description of steel 

fibers in cracked concrete; (b) Equilibrium in a SFRC element; (c) Bonded length of a steel 

fiber at crack. 

 

(a) 

 

(b) 

 

(c) 

In Equation (13), the number of the steel fibers on the crack plane (n) can be determined by 

multiplying the number of the steel fibers on the crack surface per unit area (nw) by the area of the 

crack surface (Acs), as follows: 

w csn n A  (14) 

Romualdi et al. [15] proposed the number of the steel fibers on the crack surface per unit area (nw) 

considering the orientation of the steel fibers, which was adopted in this study, as follows: 
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f

V
n

A
  (15) 

where Vf is the volume fraction of the steel fibers, and λ is the directional coefficient that considers the 

orientation of the steel fibers, for which 0.41 is used in this study as recommended by Romualdi et al. [15]. 

Then, by substituting the number of steel fibers on the crack surface (n) in Equations (14) and (15) to 

that in Equation (13), the average tensile stress (
1

f ) of the steel fibers on the crack surface can be 

rearranged as follows: 

1σ 0.41σf

f fV  (16) 

When the fiber stress (
1σ
f ) reaches its maximum bond stress, the pullout failure of the steel fibers 

would occur. Thus, the maximum value of the fiber stress (
1σ
f ) should be limited to the maximum 

bond stress (τmax), and accordingly, the pullout strength (σfp) of steel fibers can be derived as follows: 

maxτ
σ

fp

fp

cs

A n

A
  (17) 

where Afp is the average surface area of steel fibers, on which the bond stress is developed, and the 

maximum bond stress (τmax) can be calculated as follows: 

maxτ τu fd  (18) 

where τu is the bond strength of hooked-type fibers, for which 6.8 MPa is used in this study as 

proposed by Lim et al. [40]; and df is the shape factor of steel fibers, for which Narayanan and 

Darwish [10] proposed 1.0 for hooked-type fibers, 0.75 for crimp-type fibers, and 0.5 for straight type 

fibers. Therefore, the ultimate bond strength of steel fibers (σfp) in an average sense, considering their 

shapes and the corresponding maximum bond stress (τmax), can be summarized as follows: 

maxτ τ
σ

fp u f fp

fp

cs cs

A n d A n

A A
   (19) 

The steel fibers are randomly distributed and typically short compared to the member size, the 

embedded lengths (lb) of the steel fibers at cracking cannot be determined accurately. Accordingly, as 

shown in Figure 3c, it is assumed that one-fourth of the fiber length is the average bond length. Then, 

Equation (19) can be modified by as follows [10]: 

max

π
τ 0.41

4
σ

f cs

f

fp

cs

V ADL

A

A

  
     

  
(20) 

where D and L are the diameter and length of a steel fiber, respectively. The pullout strength of steel 

fibers or the average ultimate bond strength (σfp) can be further simplified from Equation (20),  

as follows: 

maxσ 0.41 τfp f

L
V

D
  (21) 
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Accordingly, the equilibrium equations for SFRC members, including the tensile resistance of steel 

fibers, can be expressed as follows: 

2 2

2 2 1 1 2 21 2 2σ σ cos α (σ σ )sin α τ 2sinα cosα ρc c f c

l l lf      (22) 

2 2

2 2 1 1 2 21 2 2σ σ sin α (σ σ )cos α τ 2sinα cosα ρc c f c

t t tf      (23) 

2 2

2 1 1 2 2 21 2 2τ σ (σ σ ) sinα cosα τ (cos α sin α )c c f c

lt
         (24) 

The compatibility equations and constitutive relationships of materials are used as in each softened 

truss model, shown in Appendix. In addition, the SFRC member is considered to reach its maximum 

strength either when the pull out failure of steel fibers occurs or when the principal compressive strain 

(εd) reaches the maximum strain of concrete (ζε0), the SFRC member is considered reach their 

maximum strength. 

5. Evaluation of the Proposed Models 

For the purpose of evaluation on the shear behavior models proposed in this study, the shear test 

results of SFRC beams has been collected from literature [2,8,10,16,25,41–44], as shown in Table 1. 

Of the total of 132 specimens collected, the specimens that had flexural failures or that were deep 

beams with a shear span-to-depth ratio (a/d) of 2.5 or less were excluded, and thus, a total of 85 shear 

specimens was used in this study. The steel fiber volume fraction of the collected specimens ranged 

from 0.22% to 2.0%, and the size of steel fibers used in the specimens ranged widely from the small 

ones with the length of 25.4 mm and the diameter of 0.25 mm to the big ones with the length of 60 mm 

and the diameter of 0.8 mm. In addition, the steel fibers included straight, crimped and hooked types. 

The concrete compressive strengths ( cf  ) also ranged widely from 20.6 to 93.8 MPa, including  

normal-strength concrete and high-strength concrete. All the specimens that were used for the evaluation 

did not have shear reinforcements, and the tensile steel ratio (ρs) ranged from 1.1% to 5.7%. 

Figure 4 shows the analysis results of the shear strength equations presented in Equations (1), (2), 

(5), and (6), which are also summarized in Table 2 with other analysis results. In Figure 4a–d, the 

vertical axis represents the ratio of the test results to the analysis results (νtest/νanalysis), and the 

horizontal axis represents the fiber volume fraction. Also, the mean, standard deviation (SD) and 

coefficient of variation (COV) of the νtest/νanalysis values are presented in each graph. The equation 

proposed by Sharma [9], which has been adopted by the ACI Committee 544 [1], and the one recently 

proposed by Oh et al. [12] showed relatively good accuracy with the low COVs of 0.26 and 0.25, 

respectively. The equations proposed by Narayanan and Darwish [10] and Kwak et al. [11] are, 

however, showed a large scatter, especially for the specimens cast with normal-strength concrete. 
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Table 1. Dimensions and properties of SFRC specimens. 

Reference  

No. 

Number of  

specimens 
shape Vf (%) L (mm) D (mm) 

cf   (MPa) d (mm) a/d ρs (%) 

[16] 

13 round 0.22–0.44 25.4 0.25 33.2–40.2 127 4.0–4.8 1.96 

24 crimped 0.22–1.76 25.4 

0.25 × 5.6 *  

0.38 × 0.63*  

0.41 × 0.25* 

33.2–40.2 127 4.0–4.8 1.96 

[10] 18 crimped 0.25–1.0 30–40 0.3 29.9–59.6 126–130 2.5–3.5 2.00–5.72 

[2] 7 hooked 0.5–1.0 30 0.5 20.6–33.4 197 2.8–3.6 1.34–2.00 

[25] 5 hooked 0.5–1.0 30 0.5 34 221 2.5–3.5 1.10–2.20 

[8] 5 hooked 0.5–1.5 60 0.8 93.8–97.1 215 4.0–6.0 2.84–4.58 

[41] 5 hooked 1.0 30–50 0.5 22.7–26 102–204 3.0 1.10–2.20 

[42] 4 crimped 0.5–2.0 25.4–38.1 0.2 × 2.3* 49.3–54.8 80 3.75 1.77 

[43] 2 round 1.0–2.0 42 0.7 38.7–42.4 150 2.67 2.65 

[44] 2 hooked 1.0–2.0 30 0.5 40.9–43.2 219 2.8 1.74 

Total 85 

round,  

crimped,  

hooked 

0.22–2.0 25.4–60 0.25–0.8 20.6–97.1 80–221 2.5–6.0 1.10–5.72 

* Rectangular Section 

Figure 5 shows the analysis results of the softened truss models with steel fibers (STM-SF) 

proposed in this study, which are also summarized in Table 2 with other analysis results. Note that, 

while Figure 5 shows the νtest/νanalysis values versus the fiber volume fraction in the graph, it also gives 

the data ranges in terms of the compressive strength and the shear span-depth ratio, as indicated at the 

bottom of the graphs. As shown in Figure 5a, the modified RA-STM with steel fibers provided a mean 

of 1.11 and a COV of 0.30, which was a relatively larger scatter compared to the other STM-SF 

analysis models. This model tended to overestimate the specimens with high-strength concrete, and 

was relatively inaccurate for the specimens with low steel fiber volume fractions. The principal stress 

angle is assumed to be identical with the crack angle in RA-STM, but their difference becomes bigger 

in the specimens with a low steel fiber volume fraction [45], which leads to underestimate the tensile 

resistance of the steel fibers on the crack surface in such cases. The modified FA-STM with steel fibers 

showed a relatively high accuracy, with a mean of 0.87 and a COV of 0.18, as shown in Figure 5b, and 

there was no bias in the νtest/νanalysis values. However, this model tended to overestimate, in particular, 

the specimens with a high shear span-depth ratio, which seems to be because FA-STM cannot consider 

the flexural moment effects. 
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Figure 4. Comparison of analysis results. (a) Sharma [9]; (b) Narayanan and Darwish [10]; 

(c) Kwak et al. [11]; (d) Oh et al. [12]. ●: 
cf   ≥ 50 MPa, a/d < 4; ○: 

cf   < 50 MPa, a/d < 4; 

▲: 
cf   ≥ 50 MPa, a/d ≥ 4; △:

cf   < 50 MPa, a/d ≥ 4. 

  

                                              (a)                                                                    (b) 

  

                                            (c)                                                                     (d) 

Table 2. Comparison of analysis results. 

Model RA-STM with steel fiber FA-STM with steel fiber TATM with steel fiber SMM with steel fiber 

Mean 1.112 0.871 1.082 1.131 

SD 0.338 0.157 0.244 0.213 

COV 0.304 0.181 0.225 0.188 

Author Sharma (ACI) [9] Narayanan et al. [10] Kwak et al. [11] Oh et al. [12] 

Mean 1.143 1.345 1.229 1.188 

SD 0.298 0.456 0.419 0.296 

COV 0.261 0.339 0.341 0.249 

The modified TATM with steel fibers, as shown in Figure 5c, provided a good accuracy, with a 

mean of 1.08 and a COV of 0.23. In particular, this model provided more reasonable analysis results 

for the cases with large shear span ratios (a/d), which is considered to be because this model can take 

account of the flexural moment effect. In addition, this model can reflect the difference between the 

crack angle and the principal stress angle (β), which indeed improved the analysis accuracy in overall. 

The analysis results of the modified SMM with steel fibers are shown in Figure 5d. It provided a high 

accuracy with a COV of 0.19, and had no bias along the volume fractions of steel fibers. The improved 

accuracy in this model seems to come from the consideration of the Poisson effect, and it could be even 

more accurate if the Poisson ratio after cracking could be obtained from SFRC panel experiments [46]. 

Mean 1.14

SD 0.30

COV 0.26

0

1

2

3

0.0% 0.5% 1.0% 1.5% 2.0% 2.5%

v t
e
st

 / 
v a

n
a

ly
si

s

Fiber Volume Fraction, Vf

0

1

2

3

0.0% 0.5% 1.0% 1.5% 2.0% 2.5%

v
te

st
 /
 v

a
n

a
ly

si
s

Fiber Volume Fraction, Vf

Mean 1.35

SD 0.46

COV 0.34

Mean 1.23

SD 0.42

COV 0.34

0

1

2

3

0.0% 0.5% 1.0% 1.5% 2.0% 2.5%

v t
e
st

 / 
v a

n
a

ly
si

s

Fiber Volume Fraction, Vf

Mean 1.19

SD 0.30

COV 0.25

0

1

2

3

0.0% 0.5% 1.0% 1.5% 2.0% 2.5%

v t
e
st

 / 
v a

n
a

ly
si

s

Fiber Volume Fraction, Vf



Materials 2013, 6 4860 

 

 

Figure 5. Verification of the proposed models. (a) The modified RA-STM with steel 

fibers; (b) The modified FA-STM with steel fibers; (c) The modified TATM with steel 

fibers; (d) The modified SMM with steel fibers. ●: 
cf   ≥ 50 MPa, a/d < 4; ○: 

cf   < 50 MPa, 

a/d < 4; ▲: 
cf   ≥ 50 MPa, a/d ≥ 4; △: 

cf   < 50 MPa, a/d ≥ 4. 

  

                                                  (a)                                                              (b) 

  

                                                   (c)                                                            (d) 

Overall, all the modified STM models, except the modified RA-STM with steel fibers, provided a 

good level of accuracy on the shear strength of SFRC members, which implies that the characteristics 

of steel fibers are well reflected in these models proposed in this study. The existing empirical 

equations showed relatively larger scatter for those test results that were not within the variable ranges 

included at the time of their formulation. It is also worth noting that the proposed models are based on 

the Smeared Crack Model [22,26–32] that uses the average stress and average strain relationship, and 

that they successfully simulate the shear failure modes of SFRC beams, i.e., the pullout failure of steel 

fibers considering their bond strengths. 

As aforementioned, the contribution of steel fibers to the total shear resistance can be estimated by 

the proposed models because the steel fibers are modeled as an independent tensile element. Figure 6 

presents the contribution of steel fibers to the shear resistance (νsf/νn) at ultimate according to fiber 

volume fractions (Vf), where νn is the calculated shear strength and the shear resistance of steel fibers 

(νsf) is calculated from Mohr’s stress circle, as follows: 

1 2 2σ sinα cosαf
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Figure 6. Contribution of steel fibers to shear strength at failure. (a) The modified  

RA-STM with steel fibers; (b) The modified FA-STM with steel fibers; (c) The modified 

TATM with steel fibers; (d) The modified SMM with steel fibers. ●: 
cf   ≥ 50 MPa,  

a/d < 4; ○: 
cf   < 50 MPa, a/d < 4; ▲: 

cf   ≥ 50 MPa, a/d ≥ 4; △: 
cf   < 50 MPa, a/d ≥ 4. 

  

                                                 (a)                                                                  (b) 

  

                                                 (c)                                                                   (d) 

In all the analysis models, the shear contribution of the steel fibers increased as the steel fiber 

volume fractions increased. In the modified RA-STM with steel fibers, the shear contribution ratio of 

steel fibers (νsf/νlt) was calculated as approximately 10% at the lowest fiber volume fraction of 0.22%, 

and as high as 30% at the maximum fiber volume fraction of 2%. In addition, the increase rate of the 

shear contribution ratio of steel fibers significantly changes at 1%–1.5% steel fiber volume fractions, 

and it becomes almost flat at 1.5%–2.0% steel fiber volume fractions. The modified FA-STM with 

steel fibers showed shear contribution ratio similar to that of the modified RA-STM for the SFRC 

members with the low fiber volume fractions, but demonstrated higher shear contribution ratios for 

those with the volume fractions of 1% or higher. Also, the shear contribution ratio of steel fibers 

showed a considerable variation at the volume fraction of 1%. The modified TATM with steel fibers 

provided very close results to the modified FA-STM, which showed the shear contribution ratio of 

approximately 30% at 1%–1.5% steel fiber volume fractions. The modified SMM with steel fibers 

showed higher shear contribution ratios of steel fibers than other models, in which the contribution 
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ratios ranged from 10 to 50%. The model showed a significant variation at the 1% volume fraction, 

similar to FA-STM, and the increase in the shear contribution ratio of steel fibers also dropped at the 

1%–1.5% fiber volume fractions. 

The observations above confirm the substantial contribution of steel fibers to the improvement of 

the shear strength of SFRC members, and it is also clear that the steel fiber volume fraction is the key 

influencing parameter on the shear strength of SFRC members. The shear contribution ratios of steel 

fibers ranged from 8% to 45% at the steel fiber volume fractions below 1%, and it ranged from  

13%–50% at the steel fiber volume fractions over 1%. It was also found that the increase rate of the 

steel fiber contribution significantly reduced at 1%–1.5% steel fiber volume fractions, and that it was 

almost flat at 1.5%–2.0% steel fiber volume fractions. This is because the inclined compression strut of 

concrete first reaches at failure, even if the steel fiber volume fraction increases. Therefore, the optimal 

volume fraction ratio in terms of shear performance appears to exist between 1% and 1.5%, which is 

also consistent with the observations in previous studies [47,48]. 

6. Conclusions 

Most of shear strength equations for SFRC members are relatively simple, but provide a low 

accuracy, as they have been derived empirically based on experimental test results. Some analytical 

models can estimate shear behavior and strength of SFRC members, but cannot provide the 

contribution of steel fibers to the shear strength and cannot demonstrate the pullout failure of steel 

fibers. In this study, the softened truss models were modified appropriately for SFRC members, in 

which the steel fibers were modeled as independent tensile elements so that the proposed models can 

reflect the details of steel fibers such as the effects of the shape, length, and volume fraction of steel 

fibers. The proposed models were also compared to the test results of 85 specimens collected from 

literature. From this study, the following conclusions were drawn. 

1. The softened truss models were modified to be suitable for the analysis of SFRC members by 

modeling steel fibers as independent tensile elements, which, in particular, can estimate the 

stresses of steel fibers according to the detailed characteristics of the steel fibers. 

2. All the STM-SF models proposed in this study, except for the modified RA-STM with steel 

fibers, showed a good level of accuracy on the shear strength of SFRC members compared to 

the empirical equations presented in previous studies. 

3. The proposed models adequately simulated the pullout failure of steel fibers, which is the 

characteristic failure mode in SFRC members, based on the average ultimate bond strength of 

steel fibers. 

4. The modeling method, applying the stress of fibers perpendicular to crack direction directly, 

was considered more appropriate in FASTM than RASTM; it is, because, as expected, the fixed 

angle model could reflect the stress of fibers at crack more accurately. 

5. The contribution ratios of steel fibers on the shear strength of SFRC members were calculated  

by the proposed models, which was found to be approximately 30% at the 1%–1.5% steel fiber 

volume fraction. 

6. Based on the observations of the shear contribution ratio of steel fibers, the optimal range of the 

steel fiber volume fraction, in terms of shear performance, is 1%–1.5%. 
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Appendix  

Table A-1. Equations in RA-STM and FA-STM. 

Model RA-STM FA-STM 

Equilibrium 

equations 

2 2cos sinl d r l lf         (A-1a)  

2 2sin cost d r t tf         (A-1b)  

( )sin coslt d r                                              (A-1c) 

2 2

2 2 1 2 21 2 2cos sin 2sin cosc c c

l l lf             (A-6a)  

2 2

2 2 1 2 21 2 2sin cos 2sin cosc c c

t l lf             (A-6b)  

 2 2

2 1 2 2 21 2 2( )sin cos cos sinc c c

lt                (A-6c) 

Comparability 

equations 

2 2cos sinl d r       (A-2a)  

2 2sin cost d r       (A-2b)  

2( )sin coslt d r                                              (A-2c) 

2 2

2 2 1 2 21 2 2cos sin sin cosl           (A-7a)  

2 2

2 2 1 2 21 2 2sin cos sin cost           (A-7b)  

2 2

2 1 2 2 21 2 22( )sin cos (cos sin )lt                   (A-7c) 

Constitutive 

equations 

Concrete compression 

2

0 0 0

' 2    for 1d d d
d cf

  
 

  

    
      
     

 (A-3a)  

0

0

/ 1
' 1    for 1

2 / 1

d d
d cf

  
 

 

   
    

  
 (A-3b)  

0.9

1 400 d







 (A-3c)  

Concrete tension 

   for 0.00008r c r rE     (A-4a)  
0.4

0.00008
   for 0.00008r cr r

r

f 


 
  

 
 (A-4b)  

Mild steel 

   for s s s s nf E      (A-5a)  

(0.91 2 ) (0.02 0.25 )    for s
s y s n

y

f f B B


 


 
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y

f
B

f
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 (A-5c)  

(0.93 2 )n y B                                                        (A-5d) 

Concrete compression 

2

2 2 2
2

0 0 0

' 2    for 1c

cf
  

 
  

    
      
     

 (A-3a)  

2

2 0 2
2

0

/ 1
' 1    for 1

4 / 1

c

cf
  

 
 

   
    

   

 (A-3d)  

1

5.8 1
0.9

' 400
1cf






 



 (A-3e)  

  ,  0.2 1
t ty t

l ly l

f

f

 
 

 


  


 (A-3f)  

Concrete tension 

1 1 1   for 0.00008c

cE     (A-4a)  

0.4

1 1

1

0.00008
   for 0.00008c

crf 


 
  

 
 (A-4b)  

Mild steel 

   for s s s s nf E      (A-5a)  

(0.91 2 ) (0.02 0.25 )    for s
s y s n

y

f f B B


 


 
     

  

 (A-5b)  

1.5

1
   0.5%cr

y

f
B

f




 
  

 
 

 (A-5c)  

(0.93 2 )n y B    (A-5d)  

Shear stress of concrete at crack  

1 2
21 21 21

1 22( )

c G
 

  
 


 


                                            (A-8) 

  



Materials 2013, 6 4864 

 

 

Table A-2. Equations in TATM and SMM. 

Model SMM TATM 

Equilibrium 

equations 

2 2

2 2 1 2 21 2 2cos sin 2sin cosc c c

l l lf             (A-6a)  

2 2

2 2 1 2 21 2 2sin cos 2sin cosc c c

t l lf             (A-6b)  

 2 2

2 1 2 2 21 2 2( )sin cos cos sinc c c

lt             (A-6c)  

 

2 2

2 2 1 2 21 2 2cos sin 2sin cosc c c

l l lf             (A-6a)  

2 2

2 2 1 2 21 2 2sin cos 2sin cosc c c

t l lf             (A-6b)  

 2 2

2 1 2 2 21 2 2( )sin cos cos sinc c c

lt            (A-6c)  

 
2

s v v

h
M V a d N d d

 
     

 
 (A-9a)  

s ml yl vM bdf d  (A-9b)  

l sl ml                                                                   (A-9c) 

Comparability 

equations 

2 2

2 2 1 2 21 2 2cos sin sin cosl           (A-14a)  

2 2

2 2 1 2 21 2 2sin cos sin cost           (A-14b)  

2 2

12 2 2 21 1 2sin cosl l v v         (A-14c)  

2 2

12 2 2 21 1 2cos sint t v v         (A-14d)  

2 2

2 1 2 2 21 2 22( )sin cos (cos sin )lt                (A-7c) 

2 2

2 2 1 2 21 2 2cos sin sin cosl           (A-7a)  

2 2

2 2 1 2 21 2 2sin cos sin cost           (A-7b)  

2 2

2 1 2 2 21 2 22( )sin cos (cos sin )lt                   (A-7c) 

Constitutive 

equations 

Concrete compression 

2
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