
Materials 2012, 5, 1581-1592; doi:10.3390/ma5091581 

 

materials 
ISSN 1996-1944 

www.mdpi.com/journal/materials 

Article 

Deposition of Metal-Organic Frameworks by Liquid-Phase 
Epitaxy: The Influence of Substrate Functional Group Density 
on Film Orientation  

Jinxuan Liu 1, Osama Shekhah 2, Xia Stammer 1, Hasan K. Arslan 1, Bo Liu 3,  

Björn Schüpbach 4, Andreas Terfort 4 and Christof Wöll 1,*  

1 Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholty-Platz 1, 

B 330, Eggenstein-Leopoldshafen D-76344, Germany; E-Mails: jinxuan.liu@kit.edu (J.L.); 

xia.stammer@kit.edu (X.S.); hasan.arslan@kit.edu (H.K.A.) 
2 Advanced Membranes & Porous Materials Center, King Abdullah University of Science and 

Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia; E-Mail: osama.shekhah@kaust.edu.sa 
3 Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK;  

E-Mail: bo.liu@liverpool.ac.uk 
4 Institute of Inorganic and Analytical Chemistry, Goethe-University Frankfurt am Main,  

Frankfurt 60438, Germany; E-Mails: Bjoern.Schuepbach@gmx.net (B.S.);  

aterfort@chemie.uni-frankfurt.de (A.T.) 

* Author to whom correspondence should be addressed; E-Mail: christof.woell@kit.edu;  

Tel.: +49-721-6082-3934; Fax: +49-721-6082-3478.  

Received: 11 July 2012; in revised form: 27 August 2012 / Accepted: 28 August 2012 /  

Published: 5 September 2012 

 

Abstract: The liquid phase epitaxy (LPE) of the metal-organic framework (MOF) 

HKUST-1 has been studied for three different COOH-terminated templating organic 

surfaces prepared by the adsorption of self-assembled monolayers (SAMs) on gold 

substrates. Three different SAMs were used, mercaptohexadecanoic acid (MHDA),  

4’-carboxyterphenyl-4-methanethiol (TPMTA) and 9-carboxy-10-(mercaptomethyl)triptycene 

(CMMT). The XRD data demonstrate that highly oriented HKUST-1 SURMOFs with an 

orientation along the (100) direction was obtained on MHDA-SAMs. In the case of the 

TPMTA-SAM, the quality of the deposited SURMOF films was found to be substantially 

inferior. Surprisingly, for the CMMT-SAMs, a different growth direction was obtained; 

XRD data reveal the deposition of highly oriented HKUST-1 SURMOFs grown along  

the (111) direction. 
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1. Introduction 

Metal-organic frameworks (MOFs) [1–4] are highly crystalline porous coordination polymers 

(PCPs) consisting of two essential building components: metal or metal/oxo coupling units and 

functional organic linkers. This new class of materials has attracted a lot of interest due to its enormous 

potential for applications in gas storage [4], gas separation [5,6], catalysis [7–11], drug delivery [3,12], 

sensors [13–16], electronic devices [17–19], light emitting devices [20], and as anode in Li-based 

batteries [21]. For a number of important applications, MOF thin films [22–24] are of special 

importance in particular with regard to electrochemistry [25], sensor technology [26], in electronic 

devices [27] as well as biocompatible substrates [28]. 

Because of the importance of fabricating well-defined, stable MOF coatings, in recent years 

numerous different approaches have been described, which have been recently reviewed [23]. Bein and 

coworkers [29] reported that immersion of organic templates into mother solutions (mother liqueur) of 

HKUST-1 yields HKUST-1 thin films consisting of highly oriented crystallites orientated with  

their (100) direction perpendicular to the substrate in case of COOH terminated self-assembled 

monolayers (SAMs), whereas for an OH terminated SAM the crystallites were found to align their 

(111) direction perpendicular to the substrate surface. Interestingly, Zacher et al. found a different 

orientation when MOF films were grown on oxidic substrates by immersion into solutions containing 

HKUST-1 crystallites [30]. A particular important approach with regard to the fabrication of highly 

orientated MOF coatings is the liquid-phase epitaxy (LPE) process which has been introduced by 

Shekhah et al. [31–34]. The LPE method has a number of advantages over other MOF deposition 

schemes, including a well-defined thickness, a high degree of orientation within the deposited films 

and the absence of pin-hole defects [25,31–34]. An important prerequisite for the epitaxial growth of 

SURMOFs (surface-mounted metal-organic frameworks) via the LPE method is the use of a 

templating substrate. In the majority of previous work on MOF thin film deposition using the LPE 

method, organic surfaces exposed by self-assembled monolayers, SAMs [35], have been used to 

provide organic surfaces which in turn act as nucleation sites for the epitaxial growth. It has been 

demonstrated previously that the choice of the SAM is quite crucial, e.g., on a CH3-terminated SAM 

MOF growth is completely suppressed [33]. Choosing a well-suited organic function to be attached at 

the end (ω-position) of an organothiol (with the SH-group at the α-position) makes a deposition not 

only possible, but also controls the crystallographic orientation of the deposited MOF film [34].  

It has been reported that HKUST-1 ([Cu3BTC2·xH2O]n, btc = benzene-1,3,5-tricarboxylate) grows 

along the (100) direction on a carboxylic acid-terminated MHDA (16-mercaptohexadecanoic acid) SAM, 

whereas on a hydroxyl-terminated MUD (16-mercaptoundecan-1-ol) SAM or pyridine-terminated PPMT 

((4-(4-pyridyl)phenyl)methanethiol) SAM, a different growth direction, (111), is obtained [29,31,34,36]. 

In this contribution, we report a systematic study on the influence of the packing density of the 

carboxylic acid group on the orientation and quality of MOF thin films grown using the liquid phase 

epitaxy method [31,32]. 
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The area density of carboxylic acid groups exposed at the surface is varied by choosing 

organothiols with different molecular backbones that is alkane, oligophenyl, and triptycene as shown 

in Figure 1. We will demonstrate that, somewhat unexpectedly, the packing density of COOH-groups 

not only controls the quality of the MOF films but that there is also an area density threshold above 

which a switch of the growth direction of the SURMOF is observed. This observation provides 

important information about the growth mechanism of MOFs in the context of the LPE method. 

Figure 1. Schematic drawings of various carboxylic groups-terminated self-assembled 

monolayers (SAMs). 

 

2. Experimental Section  

2.1. SAMs Preparation  

The preparations of the carboxylic groups-terminated SAMs have been described in detail in earlier 

studies [37,38]. Briefly, the fabrication process involves immersion of the Au substrates into ethanolic 

solutions of 16-mercaptohexadecanoic acid (MHDA, Aldrich, 97%), 4-mercaptomethyl-4”- 

terphenylcarboxylic acid (TPMTA) and 9-carboxy-10-(mercaptomethyl)triptycene (CMMT) [39]. 

During the preparation of MHDA- and TPMTA-SAMs, a small amount of acetic acid was added to the 

ethanolic solutions in order to obtain well-ordered SAMs by avoiding formation of hydrogen-bonds 

between neighboring carboxylic groups [37]. In case of the CMMT-SAMs, the ethanolic solution was 

used without adding additional acid. 

2.2. MOF Thin Films Preparation 

To study the growth behavior of MOF thin films on the different types of carboxylic acid 

terminated SAMs, we have chosen HKUST-1 as a model system. The experimental procedure used to 

grow HKUST-1 on organic surface has been discussed in some detail previously [29,31–34,40]. In 

short, for HKUST-1 the epitaxial growth process consists of alternately immersing an appropriate 
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SAM substrate into ethanolic solutions of the building units: copper acetate and H3BTC  

(benzene-1,3,5-tricarboxylic acid), Between each immersion step the substrates are rinsed thoroughly 

with ethanol. In the present work the SAM substrates were immersed into 1 mM ethanolic solution of 

copper acetate for 15 min, subsequently rinsed with pure ethanol solution for 2 min, and then 

immersed into H3BTC solutions for 30 min. All the solutions were kept at 50 °C during MOF thin  

film preparations. 

2.3. X-ray Diffraction (XRD) 

XRD was carried out on Bruker D8 Advance in θ–2θ geometry equipped with a Si-strip detector 

(PSD Lynxeye (C)) using Cu K_alpha1,2 radiation. On the tube side a variable divergence slit set to 

V12 (fixed slit with 12 mm opening) and on the receiving side a 2.5° Soller slit was used.  

Scans ran from 5° to 20° (2θ) with a step width of 0.024° and 2 seconds per step, which resulted in 

a total step counting time of 178 seconds due to the specific PSD settings. 

Evaluation of data was done with Bruker evaluation software EVA 15.0. After background 

correction the peak position were calibrated using the position of the substrate Au(111) diffraction 

peak position, which was measured additionally at the end of each run.  

2.4. Infrared (IR) Spectroscopy 

The IRRA spectrum of the CMMT-SAMs was acquired with a resolution of 2 cm−1 using a FTIR 

spectrometer (Bruker VERTEX 80v) attached to a UHV apparatus (Prevac) with a base pressure of the 

measurement chamber of 2 × 10−10 mbar [41]. All the IRRA spectra were recorded in grazing 

incidence reflection mode at an angle of incidence amounting to 80° relative to the surface normal 

using liquid nitrogen cooled mercury cadmium telluride (MCT) narrow band detectors. The spectra of 

MHDA and TPMTA-SAMs were taken under ambient conditions with a Bruker VERTEX 70 FTIR 

spectrometer. Perdeuterated hexadecanethiol-SAMs on Au/Si were used for reference measurements.  

3. Results and Discussion 

X-ray diffraction data of HKUST-1 films grown on MHDA-, TPMTA- and CMMT-SAMs, 

respectively, are shown in Figure 2. The XRD data demonstrates the presence of thin films of  

HKUST-1 on the different types of COOH-SAMs. The results for the SURMOF grown on the  

MHDA-SAM are consistent with previous findings, which reported a preferred growth along the (100) 

direction [31]. For the CMMT-SAM the HKUST-1 SURMOFs are also of high quality but, 

interestingly, show a different orientation (111). In case of the TPMTA-SAM the data reveal the 

presence of a low-quality SURMOF not exhibiting a well-defined growth direction but instead the 

presence of crystallites with mixed orientations, (100) and (111). These findings are somewhat 

surprising, in previous works it has been tacitly assumed that only the nature of the functionalities 

exposed at the SAM surface influence the orientation and the quality of the SURMOF, the but not their 

density [34,36].  
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Figure 2. X-ray diffraction patterns (background corrected) thin films of HKUST-1 on 

various carboxylic groups functionalized gold surfaces after 40 deposition cycles. The 

patterns are compared with a simulated powder reference sample. Each pattern is 

normalized to the most intense reflection. 

 

From the full width at half maximum (FWHM) of the XRD peaks the thickness of the deposited 

MOF films can be calculated using the Scherrer equation [42]. In Figure 2, by evaluation of the 

FWHM of (200) and (222) peaks obtained for the HKUST-1 films on CMMT- and MHDA-SAMs 

substrates, thicknesses of 80 ± 5 nm and 41 ± 5 nm, respectively, are obtained after 40 growth cycles. 

These values yield a thickness per deposition cycle of 1 ± 0.1 nm along the (100) directions (MHDA) 

and of 2 ± 0.1 nm along the (111)-direction (CMMT). In the case of the thin film of HKUST-1 grown on 

TPMTA SAM, the XRD pattern demonstrates that the thin film is polycrystalline, with the crystallites 

exhibiting mixed orientations. The analysis of the most intense (100) and (111) peaks with the Scherrer 

equation yields an average thickness of 48 ± 5 nm for HKUST-1 grown on a TPMTA SAM.  

The per-cycle thickness increase on the MHDA-SAM is in good agreement with the results reported 

previously by Ocal and coworkers [43], who studied the growth of HKUST-1 on patterned  

MHDA-SAMs using the standard LPE deposition process with AFM (atomic force microscopy). In 

this previous work it was found that each LPE cycle leads to the deposition of 1.317 nm of HKUST-1 

along the (100) direction [43], which corresponds to half of the unit cell as shown in Figure 3. 

Assuming a similar growth mechanism for the growth along the (111)-direction, we expect an increase 

in thickness of 2.281 nm per deposition cycle, in good agreement with the thickness per deposition 

cycle observed in the present study.  
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Figure 3. [Cu3(btc)2]n (HKUST-1) metal-organic framework. The blue dashed line makes 

the unit cell; the bold red lines indicate the proposed contact planes between the SURMOF 

and the SAM. The black solid circles indicate the alkane and triptycene chains of the 

mercaptohexadecanoic acid (MHDA)- and 9-carboxy-10-(mercaptomethyl)triptycene 

(CMMT)-SAMs, respectively. The red solid circles indicate assumed positions of the 

carboxyl groups in the MHDA-, 4’-carboxyterphenyl-4-methanethiol (TPMTA)- and 

CMMT-SAMs, respectively. (a) Side view of the (100) and (111) planes and the overlayer 

structure of TPMTA-SAM; (b) top view of the (100) plane and the overlayer structure of 

MHDA-SAM; (c) top view of the (111) plane and the overlayer structure of CMMT-SAM. 

 

The packing density of TPMTA-, CMMT- and MHDA-SAMs is assumed to be equal to that of 

SAMs made from p-mercaptomethyl-p-terphenyl [44], 10-(mercaptomethyl)triptycene [39] and 

alkanethiols [45] at Au(111) surface since functional groups have relatively little effect on the structure 

of the film in the molecular backbones [46,47]. The packing density of alkanethiolates at Au(111) 

surface has been reported to adopt a (3 2 3)  unit cell with four molecules per unit cell [45]. It has 

been shown that SAMs prepared from p-mercaptomethyl-p-terphenyl on Au substrates adopt a 

(2 3 3) 30R   unit cell [44]. In previous STM-work on SAMs made from triptycene-based thiolates 
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and selenolates on Au substrate, the molecular arrangement of 10-(mercaptomethyl)triptycene 

molecules on Au substrate have been found to adopt a unit cell of (2 3 2 3) 30R   on Au(111) 

substrates [39]. This larger unit cell and the corresponding larger area per thiolate unit in the  

CMMT-SAMs are consistent with the more bulky structure of the triptycene backbone. 

Assuming an ideal SAM structure with the unit-cell parameters as provided above, the density of 

COOH groups exposed at the organic surfaces exposed by the different types of SAMs used in  

the experiments reported here can be calculated, the results are shown in Table 1. It is obvious  

that the packing density of carboxylic acid groups on the three SAM surfaces are in the order of 

MHDA = TPMTA > CMMT.  

Table 1. Carboxylic acid packing density on the different types of SAMs. 

SAMs Unit cell 
Area of  

unit cell (Å2)
Number of molecules

per unit cell 
Density 

(COOH groups per nm2)

MHDA (3 2 3)  86.6 4 4.6 

TPMTA (2 3 3) 30R   43.3 2 4.6 

CMMT (2 3 2 3) 30R   86.2 1 1.2 

The increased distance between the COOH-groups in the CMMT-SAMs is nicely corroborated by 

IRRAS-data showing the presence of a well-defined OH stretch vibration at around 3069 cm−1 and a 

single, sharp carbonyl stretch at 1771 cm−1 as shown in Figure 4. For the MHDA- and TPMTA-SAMs, 

it is known that no distinct OH-vibration was seen. This finding is attributed to a substantial 

broadening of the OH-stretch band, brought about by hydrogen-bonding between adjacent carboxylic 

acid groups. This explanation is corroborated by the fact that the corresponding carbonyl-vibrations is 

found to be substantially red-shifted to 1744 cm−1 for MHDA- and TPMTA-SAMs [37]. 

Figure 4. IRRA spectra of CMMT-, TPMTA- and MHDA-SAMs on gold. 

 

In previous work a detailed model for the growth mechanism of a HKUST-1 on carboxylic acid 

terminated surfaces has been proposed [34,36]. According to this model, the growth of HKUST-1 on a 
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COOH-terminated HKUST-1 (100) surface proceeds as follows. First, the paddle-wheel Cu-acetates 

units [34] are bound to the exposed carboxylic acid units exposed at surface via the exchange of one 

(or two) acetate groups. In the next step, from the H3BTC-solution, BTC-units will bind to the surface 

by replacing the remaining paddle-wheel Cu-acetates units by the BTC carboxylates, again yielding  

a COOH-terminated HKUST-1 (100) surface. By repeating this LPE-cycle a well defined MOF thin 

film is obtained. 

In this previous work it was assumed that reason for the (100)-direction realized in the LPE-process 

applied to COOH-terminated surfaces results from the fact that a (100)-plane cutting the HKUST-1 

bulk structure at the position indicated in Figure 3 only contains carboxylate-groups. At first sight this 

assumption is not consistent with the present data showing that on a COOH-terminated surface with a 

lower density of COOH-groups a different growth direction, (111), is realized. A more careful 

inspection, however, reveals that the number of carboxylate units exposed at the CMMT-SAM surface, 

1.2/nm2 as shown in Table 1, is substantially lower than that contained the shifted (100)-plane cutting 

through the bulk HKUST-1 structure (see Figure 4), 4.08/nm2. In fact, the number is much closer to the 

density of carboxylate-groups cut by the (111)-plane, 1.24/nm2 (see Figure 3). In the case of the 

TPMTA SAM, the density of COOH-groups (as judged from the size of the unit cell) is identical to 

that of the MHDA SAM (see Table 1). Nevertheless, the XRD data reveal the presence of crystallites 

with different orientations in the HKUST-1 SURMOF grown on the TPMTA SAM. This finding was 

reproduced several times. We speculate that the reason for this somewhat unexpected behavior is 

related to the higher rigidity of the TPMTA SAMs. It is conceivable that the higher flexibility of the 

alkyl backbones in the MHDA-SAMs (as compared to the rather rigid terphyenyl-backbones in the 

TPMTA SAMs) facilitates the anchoring of the HKUST-I MOF building units.  

Based on this observation we propose that the growth direction of HKUST-1 prepared using the 

LPE-process is not determined by the precise type of surface functionalization but rather by the 

interphase energy between a given templating surface and the different oriented surfaces of a  

MOF-crystallite. Crystallites with low interface energy (or high binding energy) will be stabilized, 

while crystallites with different orientations will be destabilized and are prone to dissolution in the 

epitaxial process. Note, that when a HKUST-1 substrate terminated with Cu-acetate paddle wheels  

(see above) is exposed to a solution of carboxylic acids instead of the regular replacement of an acetate 

group by the carboxylic acid as required by the epitaxial growth process (see above) also a detachment 

of the Cu-acetate from the surface is possible. This process, which corresponds to dissolution of the 

substrate, competes with the deposition process.  

We thus propose that the LPE-process favors crystallographic directions where the interface energy 

is lowest, e.g., in case of a good match of carboxylate packing motif within a bulk cutting-plane  

with the packing of carboxylic acids exposed on the organic surface used as a substrate for the 

epitaxial process.  

4. Conclusions  

Our systematic study on the epitaxial growth of HKUST-1 thin films on carboxylic acid terminated 

organic surfaces exposed by organothiolate-based SAMs demonstrates that highly oriented crystalline 

thin films can be grown along specific orientations. The growth direction can be controlled by the 
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COOH functional group packing density, we obtain growth along the (100) direction on an MHDA 

SAM and along the (111) direction on a CMMT SAM. These findings suggest that the key factor 

determining the growth direction in MOF liquid phase epitaxy is the interface energy between the 

templating surface and the different crystallographic MOF-surfaces. Given the increasing importance 

of SURMOF thin films [48], theoretical work on the interfacial energies between MOF crystallites and 

organic surfaces as exposed by SAMs is urgently required.  
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