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Abstract: In the classical theory of thermoelectricity, the performance integrals for a fully
self-compatible material depend on the dimensionless figure of merit zT . Usually these
integrals are evaluated for constraints z = const. and zT = const., respectively. In this
paper we discuss the question from a mathematical point of view whether there is an optimal
temperature characteristics of the figure of merit. We solve this isoperimetric variational
problem for the best envelope of a family of curves z(T )T .
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1. Introduction

The compatibility approach [1–3] focuses on calculating the relative current density u which is defined
as the ratio of electric and thermal fluxes, u = −j2

κ∇T · j . Note that j and ∇T are vectors. The advantage of
using the relative current density u(T ) is that the complex thermoelectric (TE) problem can be reduced
to a one-dimensional heat flow problem. In particular, this approach can be used as a mathematical basis
to analyze the local performance of TE material [4,5].
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The total performance (efficiency η and coefficient of performance φ, respectively) of a
thermogenerator (TEG) or Peltier cooler (TEC) element is obtained by summing up all local
contributions in an integral sense as originally proposed by Harman and Honig [6], see also [4,7]:

TEG(Ts ≤ T ≤ Ta) : ln(1− η) =

∫ Ts

Ta

ηr(u, T )

T
dT =

∫ Ts

Ta

1

T

uα
z
(1− uα

z
)

uα
z
+ 1

zT

dT (1a)

TEC(Ta ≤ T ≤ Ts) :ln

(
1 +

1

φ

)
=
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Ta

1
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Ta
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z
)

uα
z
+ 1

zT

dT (1b)

where we identify one kernel for integrals of both generator and cooler. The model is based on an
ideal single element device (prismatic TE element of length L and fixed boundary temperatures) without
parasitic losses, for more information see [4,5]. Then, the device figure of merit is equal to the traditional
material’s figure of merit, z = α2/(ρκ), with the Seebeck coefficient (α), electrical resistivity (ρ), and
thermal conductivity (κ).

The Integrals (1) can be optimized with respect to the relative current u. An optimized u represents
an optimal ratio between heat flux and electrical current density and hence a maximum performance
value given in self-compatible elements by the compatibility factors uopt = s(g) =

√
1+zT−1
αT

of a TEG,
but uopt = s(c) = −

√
1+zT−1
αT

of a TEC, firstly introduced by Snyder [1,2]. Thus global maximization is
traced back to local optimization [8].

If we assume the ability to achieve full self-compatibility (considering the case of infinite staging) we
can apply u = s(g) and u = s(c) to the Integrals (1), respectively, so that they take their maximal values
with the optimal reduced efficiency ηr,opt = φr,opt =

√
1+z T−1√
1+z T+1

for both TEG and TEC [9,10]. Then, fully
self-compatible performance parameters ηsc and φsc are given by

TEG (Ts ≤ T ≤ Ta) : ln(1− ηsc) =

∫ Ts

Ta

ηr,opt
T

dT =
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Ta

1

T

√
1 + zT − 1√
1 + zT + 1

dT (2a)

TEC(Ta ≤ T ≤ Ts) : ln

(
1 +

1

φsc

)
=

∫ Ts

Ta

1

Tφr,opt
dT=

∫ Ts

Ta

1

T

√
1 + z T + 1√
1 + z T − 1

dT (2b)

where we identify expressions being monotone with z T in the integrands. For the notation used we refer
to [4,5].

We expressly emphasize that the Integrals (2) do not have extremal properties concerning the z T

value. Usually they are evaluated analytically for constraints z = zo =const. or z T = ko = const., for
details see the appendix of [8]. In particular the latter case is easy to handle. We obtain with constant
values ηr,opt = φr,opt =

√
1+ko−1√
1+ko+1

for the Integrals (2)

η(ko)sc = 1−
(
Ts

Ta

)ηr,opt

for TEG, and φ(ko)
sc =

[(
Ts

Ta

)1/φr,opt

− 1

]−1

for TEC (3)

The question of how to get the best performance can only be answered if we put the constant ko in
relation to the TE material characterized by an experimental z(T ). A proof for the relations

ηsc < η(ko)sc and φsc < φ(ko)
sc (4)
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is given in [4], if ko is calculated as the average over temperature of a monotonically increasing function
z(T )T ,

ko =
1

Ts − Ta

∫ Ts

Ta

z(T )T dT (5)

Then we get

TEG: 1− exp

(
−
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1

T

√
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1 + z(T )T + 1

dT

)
≤ 1−

(
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)√
1+ko−1√
1+ko+1

(6)

TEC:

[
exp

(∫ Ts
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1

T

√
1 + z(T )T + 1√
1 + z(T )T − 1
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)
− 1

]−1

≤
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)√
1+ko+1√
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− 1

−1

(7)

Equality holds if z(T )T = const. If z(T )T is decreasing, however, the above inequalities in general
do not hold. Hence, we look for an optimal z(T )T where ηsc > η

(ko)
sc and φsc > φ

(ko)
sc , respectively,

and ηsc, φsc will be maximal. Since the integrals cannot be optimized for arbitrary z T we consider
a constraint optimization problem including Condition (5). The solution enlightens the role of the
constraint zT = const. which is often used in practice.

2. Linear Functions k(T) = z(T)T

Before turning to the general problem, let us examine linear functions k(T ) = z(T )T .
We define straight lines k(T ) by the formula

k(T ) =
2 ko
1 + ξ

[
ξ + (1− ξ)

T − Ts

Ta − Ts

]
with ξ =

ks

ka
(8)

and boundary values

ks = ξ
2 ko
1 + ξ

, ka =
2 ko
1 + ξ

The goal is to estimate the optimal ξopt which gives maximum performances ηsc and φsc, respectively.
Exemplarily, Figure 1 shows the results for ko = 0.6 and ko = 1 for both TEG and TEC. Having
found ξopt, the optimal function kopt(T ) = k(T, ξopt) can be derived, see Figure 2. Note that kopt(T )
is decreasing with temperature for TEG (leading to a small performance increase of about 4 % for
ko = 0.6), but the maximal coefficient of performance of a TEC is very close to k = zT = const. when
considering straight lines k(T ).

More generally, one can prove for straight lines: For both a TEG and TEC, the performance increases
if we cross the function k = zT = const. from increasing straight lines to decreasing straight lines. For
TEG the existence of a maximal performance value in the class of straight lines depends on ko and on
the quotient Ta/Ts. There is a maximum in efficiency if ko is large enough and Ta/Ts is not too large.
Otherwise, the performance ηsc increases the stronger k(T ) = z(T )T is falling. We see this effect in
our example, see left subfigure of Figure 1: For ko = 1 (solid curve) a clear maximum of η appears at
ξopt = 4.2. For a smaller ko = 0.6 the maximum is not so manifest (dashed curve). This ko is only a
little bit larger than the critical value ko = 0.5 for Ta/Ts = 2, where a maximal performance value no
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longer exists. For ko < 0.5 the dashed curve in Figure 1, left side, would be monotonically increasing
for all ξ > 0.

Figure 1. Relative performance increase R as function of the parameter ξ: left: Rη

= ηsc/η
(ko)
sc − 1 for TEG (Ta = 600 K, Ts = 300 K) for ko = 1 (solid curve, optimal

efficiency ηsc,opt at ξopt = 4.2) and ko = 0.6 (dashed curve, ηsc,opt at ξopt = 11.9, curve
slowly decreasing for ξ > ξopt as long as ko > 0.5); right: Rφ = φsc/φ

(ko)
sc − 1 for TEC

(Ta = 270 K, Ts = 300 K) for ko = 1 (solid) and ko = 0.6 (dashed), optimal coefficient of
performance φsc,opt = 1.0002 φ

(ko)
sc at ξopt = 1.055 for both curves.
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Figure 2. Optimal straight line kopt(T ) = k(T, ξopt) plotted with the optimal parameter
ξopt derived from Figure 1: left (TEG): ξopt = 4.2 for ko = 1 (purple) and ξopt = 11.9 for
ko = 0.6 (blue); right (TEC): ξopt ≈ 1 (from ξopt = 1.054 for ko = 0.1 to ξopt = 1.062 for
ko = 10, with ξopt = 1.055 for ko = 0.6 and ko = 1).
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For a TEC we have a different situation. There is always a maximal coefficient of performance φsc,opt

in the class of straight lines k(T ) for some ξopt > 1 (decreasing k) independent of ko and Ts/Ta. In
general, however, this optimal value ξopt > 1 is very close to ξ = 1 and in our Figure 1 (right subfigure)
it seems that this might be 1. Actually, the maximal value of φsc,opt is attained at ξopt = 1.055 and
exceeds φ(ko)

sc by only 0.02%. From these results, the optimal figure of merit zopt(T ) = k(T, ξopt)/T can
be calculated, see Figures 2 and 3. The large effect for TEG (left) is obviously due to the fact that the
temperature range of ∆T = 300 K for TEG is ten times larger than for TEC.
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Figure 3. Optimal figure of merit zopt(T ); left TEG, right TEC (for boundary temperatures
and colours see the legends of Figures 1 and 2).
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In the next section we derive a condition for the optimal profile k(T ) = z(T )T . It turns out that this
optimal function is not a straight line, but the situation is similar to the case of straight lines described
above. The optimal function is decreasing again, and there is the same qualitative connection between
ko and the existence of an optimal profile. Especially for a TEC, the restriction to straight lines will be a
good approximation of the solution.

3. Isoperimetric Variational Problem

In this section we solve the two isoperimetric variational problems

TEG (Ts ≤ T ≤ Ta) :

∫ Ta

Ts

1

T

√
1 + zT − 1√
1 + zT + 1

dT −→ Max (9a)

TEC (Ta ≤ T ≤ Ts) :

∫ Ts

Ta

1

T

√
1 + z T + 1√
1 + z T − 1

dT −→ Min (9b)

with Constraint (5). The corresponding Lagrange functions (with Euler multiplicator λ) are

L(T, z, λ) =
1

T

√
1 + zT − 1√
1 + zT + 1

+
λ

T2 − T1

zT (10a)

and

L(T, z, λ) =
1

T

√
1 + zT + 1√
1 + zT − 1

+
λ

T2 − T1

zT , (10b)

respectively, where T1 : = min{Ts, Ta} and T2 : = max{Ts, Ta}. Hence, Euler’s equation reduces
to ∂L/∂z = 0 together with Condition (5). Differentiating Equations (10a) and (10b) we obtain the
following necessary relation for the optimal profile k(T ) = z(T )T to Problem (9),(5).

Theorem 1. Let z = zmax or z = zmin be an optimal function that maximizes the Integral (9a) or
minimizes the Integral (9b), respectively, under Restriction (5). Then it fulfills the Equations

TEG : T
√

1 + zmax(T )T
(√

1 + zmax(T )T + 1
)2

= µ (11a)

TEC : T
√

1 + zmin(T )T
(√

1 + zmin(T )T − 1
)2

= µ (11b)
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where µ = µ(ko) is a real constant depending on ko by means of

1

T2 − T1

∫ T2

T1

zmax /min(T )T dT = ko (12)

In order to calculate the optimal solution zmax /min(T ) we have to solve the System (11), (12).
Substituting x : =

√
1 + z(T )T , Equations (11) simplify to

x(x+ 1)2 = µ/T and x(x− 1)2 = µ/T (13)

Since z(T )T > 0 we look for solutions x > 1 of Equations (13). From the graph of the polynomials
P1(x) = x(x+ 1)2 and P2(x) = x(x− 1)2 (see Figure 4) we find that for fixed µ > 0 the first Equation
of (13) has exactly one real solution xµ(T ) > 1 if P1(x) > 4. This implies the restriction µ/T > 4. The
second Equation of (13) has exactly one real solution xµ(T ) > 1 for all µ, T > 0.

Figure 4. Graph of polynomials P1(x) = x(x+1)2 and P2(x) = x(x−1)2, see Equation (13).
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Then, resubstituting x by z(T )T = x2 − 1 for fixed µ with µ/T > 4, we obtain a unique positive
solution of Equation (11a)

kµ(T ) = zµ(T )T = −1 +
1

9

−2 +
21/3(

2 + 27µ
T

+ 3
√
3
√

4µ
T
+ 27µ2

T 2

)1/3

+

(
2 + 27µ

T
+ 3

√
3
√

4µ
T
+ 27µ2

T 2

)1/3

21/3


2

(14)

An analogue formula holds for the unique nonnegative solution of Equation (11b). To calculate the
Representation (14) an algebra tool (e.g., MATHEMATICA) can be helpful.

It remains to determine the constant µ. We have to choose it in a way that kµ(T ) = zµ(T )T from
Equation (14) fulfills Condition (12). The question whether we can find such a µ is answered by the
following theorem:
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Theorem 2.

(i) In case of a TEG there is a constant ko such that the following holds: If ko ≥ ko there exists
a unique µ = µ∗ such that the function kµ∗ defined by Equation (14) fulfills Equation (11a) as
well as Condition (12). Hence, zmax(T ) := zµ∗(T ). The corresponding kmax(T ) = zmax(T )T is
nonnegative on the interval [T1, T2], strictly monotonically decreasing and convex. If 0 < ko < ko

there is no constant µ such that the corresponding solution zµ(T ) of Equation (11a) is nonnegative
for every T ∈ [T1, T2] and fulfills Equation (12). In this case there is no optimal profile.

(ii)In case of a TEC for every ko > 0 there exist a unique µ = µ∗ and a unique function
zmin(T ) := zµ∗(T ) which solve Equations (11b) and (12). The corresponding kmin(T ) = zmin(T )T

is nonnegative, strictly monotonically decreasing and convex.

Proof.

(i) Let kµ be the (unique) solution of Equation (11a) for fixed µ > 0 given by Equation (14). We
rewrite Equation (11a) by √

1 + kµ(T )

(√
1 + kµ(T ) + 1

)2

=
µ

T
(15)

and observe that the right hand side is strictly monotonically decreasing w.r.t. T for every fixed
µ > 0. Hence, kµ is a strictly decreasing function as well. This yields the nonnegativity of kµ(T )
if kµ(T2) ≥ 0 which is fulfilled if

µ

T2

=
√
1 + kµ(T2)

(√
1 + kµ(T2) + 1

)2

≥ 4.

Therefore, we have the condition µ ≥ µ := 4T2 for the nonnegativity of kµ(T ) for all T ∈ [T1, T2].
We define now

av(µ) :=
1

T2 − T1

∫ T2

T1

kµ(T ) dT

and ko := av(µ). By the same argument as above we obtain from Equation (15) kµ1(T ) < kµ2(T )

if µ ≤ µ1 < µ2 for every fixed T . Consequently, av(µ1) < av(µ2) if µ ≤ µ1 < µ2, i.e., av :

[µ,∞) → R+ is strictly monotonically increasing. Moreover, av is a continuous function of µ.
This implies for every ko ≥ ko the existence of a unique value µ = µ∗ ≥ µ such that av(µ∗) = ko,
hence Equation (12). For ko < ko there is no µ ≥ µ such that av(µ) = ko. Therefore there is no
nonnegative function kµ(T ) = zµ(T )T which fulfills Equations (11a) and (12), which means that
there is no extremal solution for the variational Problem (9a) with Constraint (5).

(ii)By the discussion above it is obvious that in the case of a TEC there is a unique and nonnegative
solution kµ(T ) = zµ(T )T of Equation (11b) for every fixed µ > 0. The representation√

1 + kµ(T )

(√
1 + kµ(T )− 1

)2

=
µ

T

of Equation (11b) yields that kµ is strictly monotonically decreasing with respect to T and,
moreover, that kµ(T ) increases for fixed T if µ increases. This implies the strict monotonicity
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of av : (0,∞) → R+. Furthermore, as illustrated in Figure 4, if µ decreases to zero then kµ

decreases to zero (since x ↘ 1), hence av(µ) ↘ 0. Consequently, for every ko > 0 there is a
unique µ = µ∗ such that the solution zmin(T )T := kµ∗(T ) of Equation (11b) fulfills the condition
av(µ∗) = ko, i.e., it is the optimal solution of Equations (9b) and (5).

The proof of convexity of the optimal functions kµ∗ is given in the appendix.

Remark 1.

1. The observations in Section 2 on linear functions reflect the general result. Certain monotonically
decreasing straight lines yield a better performance than the increasing ones. Moreover, as
discussed in Section 2, also in the case of linear functions k(T ) there is a critical value ko > 0

of ko for TEG, where we have no optimal linear function below of it. For a TEC such a critical
ko does not occur. There we have an optimal performance in the class of linear function for every
ko > 0.

2. It is obvious that also zopt will be strictly monotonically decreasing since kopt(T ) = zopt(T )T has
this property. Even more, zopt will be a convex function. This can be justified by the following
calculation using strict convexity of kopt(T ) = zopt(T )T :

0 < k′′
opt(T ) =

(
zopt(T )T

)′′
=
(
z′opt(T )T + zopt(T )

)′
= 2z′opt(T ) + z′′opt(T )T

Since z′opt(T ) < 0 for all T this can only be fulfilled if z′′opt(T ) > 0 which means convexity.

In order to calculate the optimal TEG or TEC profile for given ko, we now have to determine the
constant µ such that the solution kµ(T ) = zµ(T )T of Equation (11) satisfies Condition (12). Since we
cannot evaluate the integral of a function like Equation (14) explicitly, we have to use numerical methods
to solve the equation av(µ) = ko for µ. Due to the strict monotonicity of av(µ), a standard numerical
solver will work.

Now we compare the best linear functions from Section 2 with the optimal profile corresponding to
Theorem 2. Again we choose ko = 1 and ko = 0.6 for a TEG and a TEC, respectively. We start with a
TEG with Ts = 300K and Ta = 600K like in Section 2.

We compare the corresponding values of the efficiency ηsc for the three cases that k(T ) = ko is a
constant, k(T ) = k(T, ξopt) is the best linear function of Section 2 and k(T ) = kmax(T ) = zmax(T )T is
the global maximum of the variational Problem (9a),(5), see Table 1:

Table 1. Self-compatible efficiency of a TEG with Ts = 300K and Ta = 600K.

TEG
ko = 1 ko = 0.6

ηsc ηsc/η
(ko)
sc ηsc ηsc/η

(ko)
sc

constant function k(T ) = ko 0.112126 1.00000 0.077873 1.00000
linear function k(T ) = k(T, ξopt) 0.114786 1.02372 0.080752 1.03697
optimal function k(T ) = kmax(T ) 0.114855 1.02434 0.080829 1.03796
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Both from the above table and Figure 5 we see that the best straight line is a good approximation
for the optimal profile. The optimal function kmax(T ) = zmax(T )T , due to Theorem 2, yields only a
minimal increase in performance compared with the best linear function. This effect becomes even more
apparent in the case of TEC which will be considered now (see Figure 6). Like in Section 2 we choose
again Ta = 270 K and Ts = 300 K.

Figure 5. Optimal functions kmax(T ) (red) compared with the best straight line k(T, ξopt)

(blue) from Figure 2 plotted with the optimal parameter ξopt derived from Figure 1. left:
ξopt = 4.2 for ko = 1; right: ξopt = 11.9 for ko = 0.6.
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Figure 6. Optimal monotonic functions kmin(T ) (red) compared with the best straight line
k(T, ξopt) (blue) from Figure 2 plotted with the optimal parameter ξopt = 1.055 derived from
Figure 1. left: ko = 1; right: ko = 0.6. Please note the scaling of the y-axis.
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We observe that there is almost no difference between the best linear function and the optimal profile
kmin(T ) which can be distinguished only thanks to the different scaling of the axes. Moreover, the
scaling should not hide the fact that both functions nearly coincide with the constant k(T ) = k0. Again
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we compare the maximal values of the coefficient of performance φsc for the three cases that k(T ) = ko

is a constant, k(T ) = k(T, ξopt) is the best linear function of Section 2 and k(T ) = kmin(T ) = zmin(T )T

is the global minimum of the variational Problem (9b),(5), respectively (Table 2):

Table 2. Self-compatible coeff. of performance of a TEC with Ta = 270K and Ts = 300K.

TEG
ko = 1 ko = 0.6

φsc φsc/φ
(ko)
sc φsc φsc/φ

(ko)
sc

constant function k(T ) = ko 1.17929125 1.0000000 0.68419337 1.0000000
linear function k(T ) = k(T, ξopt) 1.17955485 1.0002235 0.68438545 1.0002803
optimal function k(T ) = kmin(T ) 1.17955497 1.0002236 0.68438554 1.0002804

Here we see that for a TEC the constant function k(T ) = z(T )T = ko is a good choice, since there is
only an insignificant increase of φsc for the optimal function kmin(T ).

4. Discussion and Conclusions

The material’s figure of merit z gathers as a primary parameter the different transport coefficients
of thermoelectrics, leading to an efficient classification of the various TE materials. The dimensionless
z T in turn appears in a variety of thermodynamic expressions [11]. At a first glance the presence of
the temperature in the expression of the dimensionless figure of merit may be strange since T is not a
material property, but an intensive parameter which partly defines the working conditions. Nevertheless,
one should notice that, in terms of thermodynamic optimization, the material properties are nothing
without considering the available exergy of the working system, for more information see [5,11]. The
figure of merit is clearly the central term for TE material engineering.

A general rule is that if a material is good (high z T ) then it is good in both TEG and cooler
applications. However, the question is whether the constraint zT =const. can be considered as a local
condition for an optimal material. The counter argument usually advanced is that the Seebeck coefficient
α(T ) and the electric conductivity σ(T ) have opposite shapes, which has given rise to the hope that a
down-opened parabola z(T ) (resp. z(x)) could be close to the optimal condition. This hope is not
fulfilled when considering the problem from a mathematical point of view. In the performance integrals,
z(T )T is representing an internal degree of freedom that must be fixed by an upper limit or similar
constraint in order to prevent that global performance diverges. Doing so, a constraint optimization
problem for the thermoelectric figure of merit has been formulated and solved. As the result we obtain
convex, optimal functions k(T ) = z(T )T , slightly falling with temperature, for both TEG and TEC. It
is well-known that curves k(T ) = z(T )T falling with temperature are practically not usable for most
materials. However, it has turned out that the optimal function k(T ) is almost a constant k(T ) = ko for a
TEC and close to this constant function for a TEG, respectively (see Tables 1 and 2). This fact underlines
the importance of the constraint zT = ko =const. which is often used in practice; usually this constraint
can only be reached approximately.
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Appendix

We complete the proof of Theorem 2 with the following lemma:

Lemma A1. Every solution kµ(T ) = z(T )T of Equation (11a) (TEG) or Equation (11b) (TEC),
respectively, is a convex function.

Proof. We simultaneously deal with both Equation (11) and differentiate

T
√
1 + kµ(T )

(√
1 + kµ(T )± 1

)2
= µ (11)
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with respect to T for fixed µ > 0 and obtain

√
1 + kµ

(√
1 + kµ ± 1

)2
+

T
(√

1 + kµ ± 1
)2

2
√

1 + kµ
k′
µ(T ) + T

(√
1 + kµ ± 1

)
k′
µ(T ) = 0

Now we expand all items in a way that the left hand side of Equation (11) appears in the numerator
of every fraction and replace it by µ,

µ

T
+

(
µ

2(1 + kµ)
+

µ√
1 + kµ

(√
1 + kµ ± 1

)) k′
µ(T ) = 0

or, equivalently,

k′
µ(T )

[
1

2(1 + kµ(T ))
+

1√
1 + kµ(T )

(√
1 + kµ(T )± 1

)] = − 1

T

Since the item [. . .] in the brackets is positive we have k′
µ(T ) < 0 for all T ∈ [T1, T2], hence we see

again that our optimal solution is monotonically decreasing. Moreover, we have

k′
µ(T ) = −

[
T

2(1 + kµ(T ))︸ ︷︷ ︸
a(T )

+
T√

1 + kµ(T )
(√

1 + kµ(T )± 1
)︸ ︷︷ ︸

b(T )

]−1

The items a(T ) and b(T ) are strictly increasing since kµ(T ) is decreasing w.r.t. T . This implies that
[a(T ) + b(T )]−1 is strictly decreasing and k′

µ(T ) = −[a(T ) + b(T )]−1 is strictly increasing again. This
means strict convexity of kµ.
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