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Abstract: Polymer concretes (PCs) represent a promising alternative to traditional 
cementitious materials in the field of new construction. In fact, PCs exhibit high 
compressive strength and ultimate compressive strain values, as well as good chemical 
resistance. Within the context of these benefits, this paper presents a study on the  
time-dependent behavior of polymer concrete columns reinforced with different bar types 
using a mechanical model recently developed by the authors. Balanced internal 
reinforcements are considered (i.e., two bars at both the top and bottom of the  
cross-section). The investigation highlights relevant stress and strain variations over time 
and, consequently, the emergence of a significant decrease in concrete’s stiffness and 
strength over time. Therefore, the results indicate that deferred effects due to viscous flow 
may significantly affect the reliability of reinforced polymer concrete elements over time. 

Keywords: reinforced polymer concretes; new construction; long-term behavior; 
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1. Introduction 

Due to their lightness and high structural performance, polymer-based materials have been widely 
utilized in recent years to strengthen existing construction that are subject to static and seismic loads. 
Their general mechanical features [1] and constructive details [2] have been investigated in  
previous studies. 
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However, their use is still limited within the field of new construction due to the necessity of 
investigating critical aspects of their performance, such as those related to their reliability over time. 

Within this context, polymer concretes (PCs) are a useful design option, because their strength is at 
least twice that of usual Portland cement-based concrete, their ultimate compressive strain is higher 
than that of cementitious concretes and they possess good resistance to chemical agents [3–8]. 

From a chemical point of view, PCs are composed of natural aggregates (e.g., silica sand or gravel) 
bound together with a thermoset resin. Consequently, they are particularly suitable for marine 
construction, tunnels, prestressed concrete members, and seismic applications because their ultimate 
compressive strain values allow for high ductility levels. 

On the other hand, due to their limited tensile strength, PCs must be reinforced with either steel or 
FRP bars (e.g., GFRP or CFRP rods, which have already been utilized in ordinary reinforced concrete 
members in new structures [9,10]).  

From an environmental point of view, the dioxins and furans generated by the manufacture of 
organic polymers are extremely toxic and bio-cumulative. Such substances have hazardous effects on 
biodiversity, contaminating every level of the food chain [11]. However, more sustainable 
manufacturing of these polymers has been achieved using combustion fly-ash and slag [12] or recycled 
PET waste [13–21]. 

At service conditions, it is well known that polymer-based materials can be characterized by 
significant deferred behavior [22–26], and relevant stress migrations have therefore occurred because 
these materials have been combined with more traditional materials affected by lower-viscosity  
flows [27–32]. 

Therefore, the differences between the rheological properties of the constituent materials in 
polymer-reinforced concretes could cause a relevant increase of the stress state in the reinforcement 
over time that is accompanied by an increase in displacements. 

These aspects must be studied in more detail because they could affect the reliability of structural 
members at service conditions. 

The few experimental and theoretical analyses available in the literature on this topic have 
highlighted the relevance of PC creep behavior without contributing any final conclusions, due to the 
approximations that affect these studies. 

It should also be noted that the existing scientific investigations on this subject have typically 
considered only axial load cases, while eccentric axial load cases still require further analysis.  

This paper presents a study on the time-dependent behavior of a polymer concrete column 
reinforced with different bar types under eccentric axial loading. The investigation is based on a 
mechanical model recently proposed by the authors in [32]. 

2. Mechanical Model 

The mechanical model adopted in this study schematises the viscous behavior of a polymer 
concrete beam reinforced with either steel or FRP bars under combined bending and axial loading [32]. 

To briefly describe the theoretical background presented in [32], the main hypotheses and equations 
are given below. 
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The basic assumptions of the model are as follows: 

- the generic plane cross-sections still lie within the plane after bending; 
- perfect adhesion exists between the polymer concrete and rods; 
- the external axial force, Next, and the bending moment, Mext, are constant over time; 
- there is no difference between the tensile and compressive stiffness/strength of a given material; 
- the behavior of the polymer concrete is linear-viscoelastic;  
- no cracks are present; 
- the behavior of the reinforcement bars is linear-elastic;  
- the internal reinforcing bars make no contribution to creep. 

The following symbols are introduced in this paper: 

- G* indicates the centroid of the transformed cross-section, assumed as the origin of the x and y 
axes (Figure 1);  

- cε  and bε  denote the instantaneous values of the axial strain in the polymer concrete and the 

reinforcing bars, respectively, according to the following relationships (Figure 1):  
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where 
- λ(t) and µ(t) are the axial strain at G* and the cross-sectional curvature, respectively; 
- by  is the ordinate of the centroid of the generic bars; 
- ( ),ce t yε  and ( ),be bt yε are the elastic polymer concrete and bar strains, respectively; and 
- ( ),cv t yε  is the viscous contribution to the polymer concrete strain. 

Figure 1. Instantaneous strain and curvature of the cross-section. 
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We also define the normal stresses in the polymer concrete, σc, in the top reinforcement bars, σbc, 
and in the bottom bars, σbt; the initial Young’s modulus of the polymer concrete, Ec, and the 
reinforcement bars, Eb; the polymer concrete area, Ac, the overall top reinforcement rod area, Abc, and 
the overall bottom reinforcement rod area, Abt. 
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From Equation (1), the following expressions describing the stresses in both the polymer concrete 
and the bars can be defined as: 
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(2)  

The equilibrium equations of the cross-section can be expressed as: 
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Using Equation (2), Equation (3) can be written in simple algebra as follows: 
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(4)  

where 
- A* = Ac + nbAbc + nbAbt is the area of the transformed section; 
- I* = Ic + nbIbc + nbIbt is the moment of inertia about the x axis of the transformed section; 
- nb = Eb/Ec;  
- Ic, Ibc and Ibt are the moments of inertia about the x axis of the polymer concrete, the top 

reinforcement bars and the bottom reinforcement bars, respectively. 

The viscous deformation ( ),cv t yε  can be expressed as: 
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By accounting for the relationship in Equation (5), Equation (3) becomes: 
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Equation (6) represents a coupled system of two Volterra integral equations for the unknowns λ(t) 
and µ(t), which are solved using the Laplace transformation technique: 
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(7)  

Assuming t0 = 0, λ(t) = 0 and µ(t) = 0 for t < t0, and fc(τ,t) = 0 for t < τ, the convolution theorem 
allows for the rewriting of the relationships in Equation (7) into the following form as an algebraic 
equation system: 
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(8)  

where F(s), λ(s) and µ(s) represent the Laplace transforms of the functions fc(τ,t), λ(t) and µ(t), 
respectively. 

The inverse Laplace transforms of λ(s) and µ(s) provide a solution to the viscous problem in the 
time domain. 

3. Numerical Analysis 

A numerical investigation of a polymer concrete column strengthened with several bar types is 
developed in this study. Only balanced internal reinforcements are accounted for and are composed of 
two bars at both the top and bottom of the cross-section.  

Different rods are considered, the geometrical and mechanical properties of which, as certified by 
the manufacturer, are given in Table 1. The symbols Φb, Eb and fb denote the diameter, longitudinal 
Young’s modulus and strength of the bar, respectively. 

Table 2 lists the ingredients of the polymer concrete under study, its longitudinal Young’s modulus, 
Ec, and its strength, fc. These properties correspond to those obtained experimentally for the GFA 45 
polymer concrete in [12]. 
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Table 1. Certified geometrical and mechanical properties of the reinforcement bars. 

Bar ID Material Φb 
(mm) 

Eb 

(GPa) 
fb 

(MPa) 
SI Steel 8 210.00 450.00 
SII Steel 10 210.00 450.00 
SIII Steel 12 210.00 450.00 
SIV Steel 16 210.00 450.00 
CI CFRP 8 115.00 2000.00 
CII CFRP 10 115.00 2000.00 
CIII CFRP 12 115.00 2000.00 
CIV CFRP 16 115.00 2000.00 
GI GFRP 8 40.00 1000.00 
GII GFRP 10 40.00 1000.00 
GIII GFRP 12 40.00 1000.00 
GIV GFRP 16 40.00 1000.00 

Table 2. Composition and mechanical properties of the polymer concrete (type GFA 45 in [12]).  

Binder Type Mix Fraction 
(% of aggregate to polymer binder) 

Ec 

(GPa) 
fc 

(MPa) 

Alkali sodium silicate-activated coal, 
combustion fly ash and slag 

23% Fine natural dune sand 
29% 9 mm greywacke 
18% 14 mm greywacke 

10.00 41.50 

The geometry, boundary conditions and loads used in the analysis are shown in Figure 2. The creep 
behavior of the polymer concrete is simulated with the Bruger–Kelvin viscoelastic model (Figure 3). 

Figure 2. Reinforced polymer concrete beam (cross-sectional dimensions in mm). 
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Figure 3. Bruger–Kelvin model. 
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The viscous properties of the polymer concrete are evaluated from the experiments reported in [12]. 
To this end, the experimental data are fitted using the ordinary least-squares method, limiting the 
analysis to the secondary creep range due to its relevance when dealing with the service life of civil 
structures. The rheological parameters considered in the present study are listed in Table 3.  

Table 3. Rheological properties of the polymer concrete (type GFA 45 in [12]). 

E1 

(GPa) 
E2 

(GPa) 
E3 

(GPa) 
η1 

(GPa d) 
η2 

(GPa d) 
η3 

(GPa d) 
7.38 0 0 5.47 × 102 0 0 

The analysis is carried out with reference to the beam’s end cross-section (i.e., at z = 4.00 m), 
accounting for the reinforcement types indicated in Table 1.  

The flexural curvature, axial strain, normal stresses at the top fiber, σcs, and bottom fiber, σci, of the 
beam, and normal stresses in the top and bottom reinforcement bars are evaluated over time in  
Figures 4–6. 

Figure 4. (a) Axial strain vs. time; (b) Curvature vs. time.  

  
(a) (b) 

Figure 5. (a) Instantaneous stresses at the top fiber of the beam; (b) Instantaneous stresses 
at the bottom fiber of the beam.  

  
(a) (b) 
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Figure 6. (a) Instantaneous stresses in the top reinforcement bars; (b) Instantaneous 
stresses in the bottom reinforcement bars.  

  
(a) (b) 

The main results are summarized in Tables 4 and 5. In particular, the percentage variations in the 
axial strain, curvature and stresses in the constituent materials are evaluated at the time instant  
t = 10000 h.  

It should be noted that the initial stresses in the polymer concrete are less than 40% of the 
corresponding failure strength. This requirement is pivotal to satisfying a basic assumption of the 
linear viscoelasticity theory. 

Moreover, the results obtained show a substantial increase in the axial strain, curvature, and 
relevant stress migration from the concrete to the bars due to the relevance of the polymer concrete’s 
creep flow. 

Table 4. Instantaneous stresses in the polymer concrete. 

Bar ID σcs(0) 
(MPa) 

σcs(10000 d) 
(MPa) 

∆σcs/σcs(0) 
(%) 

σcs(0) 
(MPa) 

σcs(10000 d) 
(MPa) 

∆σcs/σcs(0) 
(%) 

SI −0.93 0.38 −140.57 −0.14 0.77 −643.20 
SII −0.90 0.38 −141.90 −0.16 0.75 −579.62 
SIII −0.87 0.38 −143.39 −0.17 0.72 −524.66 
SIV −0.79 0.38 −146.65 −0.19 0.66 −441.15 
CI −0.96 0.38 −139.43 −0.13 0.80 −714.37 
CII −0.94 0.38 −140.21 −0.14 0.78 −663.48 
CIII −0.92 0.38 −141.13 −0.15 0.76 −614.35 
CIV −0.87 0.38 −143.27 −0.17 0.72 −528.72 
GI −0.99 0.37 −137.13 −0.12 0.80 −779.79 
GII −0.98 0.38 −138.64 −0.12 0.1 −764.35 
GIII −0.97 0.38 −139.10 −0.13 0.80 −737.21 
GIV −0.95 0.38 −139.98 −0.14 0.78 −677.76 
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Table 5. Instantaneous stresses in the reinforcement bars. 

Bar ID σcs(0) 
(MPa) 

σcs(10000 d) 
(MPa) 

∆σcs/σcs(0) 
(%) 

σcs(0) 
(MPa) 

σcs(10000 d) 
(MPa) 

∆σcs/σcs(0) 
(%) 

SI −6.30 −414.47 6473.95 −24.34 −580.25 2284.10 
SII −6.54 −265.26 3941.06 −23.56 −371.36 1476.37 
SIII −6.82 −184.21 2602.65 −22.69 −257.89 1036.53 
SIV −7.23 −103.62 1333.60 −20.82 −145.06 596.60 
CI −3.21 −414.47 12401.80 −13.70 −580.25 4134.80 
CII −3.41 −265.26 7676.02 −13.44 −371.36 2662.20 
CIII −3.51 −184.21 5141.24 −13.15 −257.89 1861.59 
CIV −3.72 −103.62 2684.02 −12.47 −145.06 1063.74 
GI −1.11 −408.40 36703.60 −4.88 −574.19 11674.90 
GII −1.12 −264.93 23483.60 −4.84 −371.03 7561.91 
GIII −1.14 −184.20 16066.90 −4.80 −257.88 5270.21 
GIV −1.18 −103.62 8705.11 −4.70 −145.06 2298.44 

4. Conclusions  

This paper presents an investigation on the long-term behavior of a polymer concrete column 
reinforced with several bar types. The analysis is carried out using the mechanical model proposed 
previously [32]. 

The numerical simulations highlight relevant stress migration from the polymer concrete toward the 
reinforcement bars in the analyzed beam.  

A very relevant increase in the stresses within the top rods and those within the bottom rods is 
observed at the time instant t = 10000 h.  

Moreover, a significant decrease in the top and bottom peak stresses of the polymer concrete and a 
substantial increase in the displacements of the beams’ long-term configurations are noted due to the 
high variation in their axial strain and flexural curvature. 

The results also allow the following remarks to be made: 
- the stress variations over time within the reinforcement bars may lead to the failure of a 

structural member because the stresses in the rods approach the available strength (see the 
analysis concerning a beam reinforced with 8-mm steel bars), thus compromising the safety of 
the entire structure;  

- the long-term displacements of a structural member may produce, in hyperstatic frames, 
noticeable stress redistributions due to the continuity conditions, thus affecting the stress state 
in the entire structure;  

- better deferred behavior of a reinforced polymer concrete column can be expected as the 
Young’s modulus and overall area of the internal rebars increase. 

Finally, the current study highlights that the stiffness and strength of beams made from reinforced 
polymer concrete can change considerably over time due to viscous phenomena. This situation 
requires an accurate evaluation over time of the stresses, deflections and cracks at the serviceability 
limit state, which is mandatory to assess the beams’ reliability over time. 
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