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Abstract: We present a scale-bridging approach for modeling the integral elastic
response of polycrystalline composite that is based on a multi-disciplinary combination of
(i) parameter-free first-principles calculations of thermodynamic phase stability and
single-crystal elastic stiffness; and (ii) homogenization schemes developed for
polycrystalline aggregates and composites. The modeling is used as a theory-guided
bottom-up materials design strategy and applied to Ti-Nb alloys as promising candidates
for biomedical implant applications. The theoretical results (i) show an excellent agreement
with experimental data and (ii) reveal a decisive influence of the multi-phase character of
the polycrystalline composites on their integral elastic properties. The study shows that
the results based on the density functional theory calculations at the atomistic level can
be directly used for predictions at the macroscopic scale, effectively scale-jumping several
orders of magnitude without using any empirical parameters.
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finite element method; biocompatibility



Materials 2012, 5 1854

1. Introduction

The alloys intended for biomedical applications such as for human implants should have a good
corrosion stability in the human body, high fatigue resistance, high strength-to-weight ratio, good
ductility, low elastic modulus, excellent wear resistance, low cytotoxicity, and a negligible tendency
to provoke allergic reactions [1–14]. In the case of bone implants, finding materials that meet all the
aforementioned criteria for biomedical applications and have a modulus near that of bone has proven to
be a major challenge [15–28]. It is particularly important that the elastic mismatch between the bone
replacement material and existing bone be minimized. When the elastically soft bone tissue is replaced
by a stiffer implant, the implant takes over a considerable amount of the load, shielding the surrounding
parts of the skeleton. Reducing the physiological loads on the bone entails re-sorption processes that
lead to a drop in bone density, mineralization state, strength, and health. Stress shielding can finally
lead to contact loosening, implant failure, or debris-induced infections [29–32]. Currently, alloys with
hexagonal close-packed (hcp) structure based on α-Ti, with a Young’s modulus as high as 120 GPa, are
frequently used as implant materials, even though the Young’s modulus of bone is 20–30 GPa. This
large elastic mismatch between α-Ti and bone has fueled interest in (bcc) β-Ti, which have a reduced
Young’s modulus of 65 GPa [18–27]. Therefore, the next generation of bone-replacing materials will
likely be based on softer β-Ti alloys. In order to identify alloy compositions meeting all above mentioned
criteria, an intensive material design effort will be necessary. To reduce both time and cost accompanying
such extensive experimental casting and testing, new approaches combining experimental and theoretical
methods are sought.

Theory-Guided Materials Design

A modern alternative to classical metallurgical concepts is a theory-guided materials design
(TGMD). The concept combines (i) quantum-mechanical calculations of thermodynamic stability and
single-crystalline elastic properties of different phases with (ii) microstructure-specific homogenization
methods in order to predict macroscopic experimentally-detectable elastic parameters of new materials
(see Figure 1). This scale-bridging scheme that directly links the atomistic and macroscopic
levels allows for (i) systematic scanning of numerous chemical compositions via high-throughput
quantum-mechanical calculations; and thus (ii) pre-selection of the most promising materials candidates.
Consequently, a significant reduction of experimental costs and time is achieved when designing new
materials with application-determined properties. The TGMD strategy has been recently successfully
applied, e.g., for the development of ultra-light Mg-Li binary alloys optimized with respect to
multiple conflicting criteria, such as elastic stiffness, shear modulus, and bulk modulus [33–35] and
existing multi-component materials with complex microstructures in order to shed more light on
(i) the structure-property paradigm [36]; and (ii) the robustness of fundamental composite-designing
principles [37].
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Figure 1. Schematic overview of the multi-scale materials-design strategy combining analy-
sis of the thermodynamic phase-stability; and calculation of single-crystalline elasticity data
obtained at atomic level by first-principles calculations with self-consistent homogenization
techniques in order to bridge scale differences.
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In contrast to many top-down approaches that start from the macroscopic scale and continue
downscale, a quantum-mechanics-based bottom-up approach is chosen within the TGMD, both to
identify more rapidly the most suited compositions with regard to the thermodynamic stabilization of
the desired phase and to scrutinize some of the basic structural and mechanical features of possible
alloy candidates (Figure 1). First, the thermodynamic stability for a variety of phases is determined in
order to identify the stable one(s) as well as their volumetric ratio in a multi-phase alloy if necessary.
Together with the thermodynamic stability of phases, the mechanical stability is tested by computing
single-crystalline elastic constants. Second, polycrystalline elastic moduli (the shear modulusG, Poisson
ratio ν or Young’s modulus Y ) and other engineering parameters measurable at macroscale are predicted
employing suitable homogenization techniques. These use the ab-initio predicted linear-elasticity
parameters in conjunction with Hooke’s law as constitutive material laws and that allow scale-bridging
between atomistic and macroscopic levels. Starting from an initial composition and based on the
residuum/deviation of the properties on the macroscale, a new atomic composition is suggested and
studied. This cycle is repeated until the desired properties are obtained. Following this strategy, an alloy
composition with desired properties is obtained. If the properties are not accessible by any chemical
composition, new phases, compositions or properties have to be identified or targets have to be modified
or adapted.

The so-called ab initio (or first-principles) methods are the key modeling method within the TGMD
strategy to calculate and to predict the thermodynamic quantities and the elastic constants. They
are based on the fundamental laws of quantum mechanics and allow an accurate and parameter-free
determination of a wide range of material parameters. Due to the large computational effort to solve
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the quantum-mechanical problem for each electron, these methods are restricted to limited system
sizes (commonly up to a few hundred atoms). Despite this limitation, both thermodynamic and elastic
properties of individual crystalline phases can be predicted and used within the TGMD approach.

In this paper, we use a self-consistent homogenization approach allowing to determine polycrystalline
elastic moduli of not only single-phase aggregates but also multi-phase composites, taking into account
information on thermodynamic stability of all present phases. Following the TGMD strategy, our
approach is applied to materials design of Ti-alloys with bone-matching elastic properties. We proceed in
four steps. First, the thermodynamic stability of the phases co-existing in the studied system is predicted
(including chemical compositions and volumetric content of the phases) in a way that approximatively
reflects the actual processing route of the samples in which a high-temperature state is quenched to exist
at ambient conditions. Second, the single-crystal elastic stiffness data are determined for all the present
phases. Third, the integral elastic stiffness of a single-phase polycrystalline aggregate is calculated.
Finally, the theoretical data on phase stability and elastic properties of different phases are combined
in order to estimate the homogenized elastic response of the multi-phase alloys. Specifically in case of
Ti-Nb alloys, it is possible to go from a single structural phase (bcc, β) to a two-phase (hcp α and bcc β)
material by changing the Nb content. The results are compared to the experimental elastic data obtained
by ultrasonic testing.

2. Methodology

2.1. Ab Initio Calculations

All the parameter-free calculations were performed using density functional theory (DFT) [38,39]
in the generalized gradient approximation (GGA) [40] employing Projected Augmented Wave (PAW)
potentials [41] as implemented in the Vienna Ab-initio Simulation Package (VASP) code [42,43]. The
plane wave cutoff energy was 170 eV. An 8 × 8 × 8 and a 10 × 10 × 6 Monkhorst-Pack mesh were
used to sample Brillouin zones of bcc-based and hcp-based supercells, respectively.

The binary alloys were modeled using 2 × 2× 2 bcc (see Figure 2a) or hcp (Figure 2b) supercells.
Each supercell contained a total of 16 atoms. A variety of ordered alloy compositions was sampled by
replacing Ti atoms with Nb atoms. The lowest alloy composition was 6.25 at.% (one Nb or Ti atom in a
16-atomic supercell). For each alloy composition various local arrangements have been considered and
studied spanning the whole concentration range (for further details see [44]). These calculations were
used to identify the thermodynamically stable phases and the region of phase coexistence. For a sub-set
of supercells exhibiting cubic symmetries, all three elastic constants (C11, C12 and C44) were calculated
employing the methodology explained by, e.g., Chen et al. [45].
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Figure 2. (a) The 2× 2× 2 16-atomic supercells used in the calculations of the cubic phase
alloys; and (b) the hexagonal close-packed ones, with one half or the atoms (numbered 1–8)
located in odd atomic layers and the second half (numbered 1’–8’) in even atomic layers (for
sake of clarity depicted by larger red spheres) in the [001]bcc and [0001]hcp directions. The
β-Ti-37.5at.% Nb alloys were modeled by two different ordered compounds with the Nb
atoms located in positions marked in the figure by either numbers {124678} (below referred
to as β-Ti-NbI) or the set {1′24577′} (further referred to as β-Ti-NbII).

2.2. Analytic Homogenization Scheme

The integral elastic response of multi-phase polycrystalline samples can be determined from
(i) the elastic single-crystalline constants; and (ii) the volumetric fractions of the components within
a self-consistent T -matrix solution for the effective medium [46,47]. The T -matrix approach is based on
the multiple scattering theory and was originally applied to determine elastic properties of single-phase
polycrystals with cubic symmetry by Zeller and Dederichs [48]. This concept was generalized by
Middya and Basu [46] to the case of single-phase crystals of non-cubic symmetry and further extended
by Middaya et al. [47] to multi-phase composites.

Following the original approach by Zeller and Dederichs [48], the basic steps of the effective medium
approach may be reviewed as follows. A macroscopically homogeneous effective medium that contains
microscopic fluctuations may be characterized by an effective stiffness C∗ijkl defined by:

〈σij(r)〉 = C∗ijkl〈εkl(r)〉 (1)

where σij(r) and εkl(r) are the local stress and strain fields at a point r, respectively; and the angular
brackets denote ensemble averages. Assuming the aggregate is in equilibrium, the local stiffness field
C(r) can be decomposed into an arbitrary constant part C0 and a fluctuating part δC(r). The resulting
local strain, ε, distribution can then be written (in a short-hand notation) as

ε = ε0 +GTε0, (2)
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where ε0 and G are the strain and modified Green’s function of the medium defined by C0; and the
T -matrix is given by

T = δC(I −GδC)−1, (3)

where I is the unit tensor. Employing the local stress-strain relation and Equations 1 and 2, we get

C∗ = C0 +
〈T 〉

I + 〈GT 〉
. (4)

The exact evaluation of 〈T 〉 and 〈GT 〉 is impossible for realistic cases. However, by neglecting
inter-granular correlations that may occur in some cases in the form of grain-to-grain position-orientation
correlation functions, the T -matrix can be rearranged in terms of single-grain t matrices (tα) for each
grain α

T =
∑
α

tα = τ. (5)

Inserting Equation 5 into Equation 4 leads to

C∗ = C0 + 〈τ〉(I + 〈Gτ〉)−1. (6)

For a single phase polycrystal, the self-consistent solution of Equation 6 can be obtained by choosing
a C0 that satisfies

〈τ〉 = 0. (7)

For a multi-phase polycrystal, a solution to Equation 6 can be found by accounting for the volume
faction and τ of each phase i (vi and τ i respectively) [46] via〈∑

i

viτ i
〉

= 0. (8)

The application of the method to both single-phase aggregates and multi-phase composites relevant
to Ti-Nb alloys follows.

2.3. Single-Phase Aggregate

For a single-phase polycrystal with cubic symmetry, Equation 7 simplifies [46,47] to the following
expressions for B∗ and µ∗

B∗ = B0 (9)

8µ∗3 + (9B0 + 4C ′)µ∗2 − 3C44(B0 + 4C ′)µ∗ − 6B0C44C
′ = 0. (10)

in Equation 9, the three independent single crystal elastic constantsC11, C12, C44 define the single-crystal
bulk modulus B0 = 1/3(C11 + 2C12), the tetragonal shear modulus C ′ = 1/2(C11 − C12) and trigonal
shear modulus C44.

For polycrystals with hexagonal symmetry, Equation 7 reduces to a set of coupled equations for B∗

and µ∗

0 = 3(Kv −B∗)− κ∆′′ (11)

0 =
M − 6µ∗ − ν∆′′

1− κΨ− 9γ(Kv −B∗) + (1/3)νκ∆′′
+

12(C44 − µ∗)
1− 2κ(C44 − µ∗)

+
12(C66 − µ∗)

1− 2κ(C66 − µ∗)
(12)
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where

9Kv = C33 + 2(C11 + C12) + 4C13, (13)

M = C11 + C12 + 2C33 − 4C13, (14)

Ψ = C11 + C12 + C33 − 3B∗ − 2µ∗, (15)

∆′′ = C2 −B∗(M − 6µ∗)− 6µ∗Kv, (16)

C2 = C33(C11 + C12)− 2C2
13, (17)

C66 = (1/2)(C11 − C12), (18)

κ =
−3(B∗ + 2µ∗)

5µ∗(3B∗ + 4µ∗)
, (19)

ν/3 = − 1

3B∗ + 4µ∗
, (20)

and C11, C12, C13, C33, C44 are the single-crystal elastic constants of the hexagonal system.

2.4. Multi-Phase Composite

The elastic constants of a multi-phase polycrystal can be determined directly by coupling
Equation 8 for τ i44 and the (τ i11 + 2τ i12) components of the T -matrix. For materials with cubic symmetry,
these equations read

5τ44 =

(
1

C11 − C12 − 2µ̃∗
− κ

)−1
+ 3

(
1

C44 − µ̃∗
− 2κ

)−1
(21)

τ11 + 2τ12 =
3(C11 + 2C12)− 9B̃∗

3− (C11 + 2C12 − 3B̃∗)
, (22)

where κ is defined in Equation 19 with µ̃∗ and B̃∗ replacing µ∗ and B∗. For materials with hexagonal
symmetries, the equations read

30τ44 =
M − 6µ̃∗ − ν∆′′

1− κΨ− 9γ(Kv − B̃∗) + (1/3)νκ∆′′
+

12(C44 − µ̃∗)
1− 2κ(C44 − µ̃∗)

+
12(C66 − µ̃∗)

1− 2κ(C66 − µ̃∗)
(23)

τ11 + 2τ12 =
3(Kv − B̃∗)− κ∆′′

1− κΨ− 9γ(Kv − B̃∗) + (1/3)νκ∆′′
(24)

where κ is defined in Equation 19; ν is defined in Equation 20; and ∆′′ in Equation 16. Here again, µ̃∗

and B̃∗ replaces µ∗ and B∗ in the equations for κ, ν, and ∆′′.
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2.5. Homogenized Young’s Modulus and Poisson’s Ratio

Once µ̃∗ and B̃∗ have been determined, the homogenized Young’s modulus (Ỹ ∗) and Poisson’s ratio
(ν̃∗) for (an elastically isotropic) polycrystal can be determined using standard elasticity relationships.
The homogenized polycrystalline Young’s modulus is calculated via

Ỹ ∗ =
9B̃∗µ̃∗

3B̃∗ + µ̃∗
(25)

and the homogenized polycrystalline Poisson’s ratio is calculated using

ν̃∗ =
3B̃∗ − 2µ̃∗

3(2B̃∗ + µ̃∗)
. (26)

2.6. Experimental Methods

In order to compare the predictions with experimental data four Ti-Nb alloys (Ti-10at.%Nb,
Ti-20at.%Nb, Ti-25at.%Nb, Ti-30at.%Nb) were melted, cast and homogenized at T = 1200 ◦C.
Characterization was done with optical and scanning electron microscopy (SEM) in conjunction with
EDX (energy dispersive X-ray spectrometry) and EBSD (electron back scatter diffraction) as well as
X-ray Bragg diffraction methods (see [44] for further details). The elastic properties were investigated
by using an ultrasonic resonance frequency method (GrindoSonic).

3. Results and Discussion

Materials design of novel Ti-alloys for biomedical applications (such as implants) is essentially
a multi-criteria optimization constrained by (i) the fact that all alloyed chemical elements should be
biocompatible; and (ii) the final material should elastically match human bones as closely as possible.
In order to fulfill the first condition, only a few so-called “vital” elements from the Periodic table
ensuring biocompatibility can be used, e.g., Au, Ag, Ti, Zr, Nb, or Mo. The second criterion can be
conveniently quantified in terms of the polycrystalline Young’s modulus. In order to reduce the stiffness
of Ti-alloys, we use titanium (that under ambient conditions crystallizes in the hexagonal closed-packed
(hcp) α-phase with high elastic stiffness, see Figure 2a) alloy-stabilized in the elastically softer cubic
body-centered β-phase (Figure 2b). Such stabilization can be achieved by alloying with a β-stabilizing
alloying element such as bcc refractory metals like Nb, Mo, V, or Cr. The reduced stiffness nevertheless
comes at a price, specifically a lower thermodynamic stability of the β-phase at T = 300 K when reducing
the concentration of the stabilizer. Therefore, a complex inter-connection between the thermodynamic
stability and stiffness is expected and that makes the combined thermodynamic and elastic analysis
within the TGMD scheme necessary.

After checking six binary Ti-X alloys, niobium turned out to be the most promising element for
stabilizing the β-phase (see also [44]). First, the thermodynamic stability of two-phase Ti-Nb alloys
containing both bcc β and hcp α phases was studied. The details can be found in [44] while the
main results are visualized in Figure 3. As a second step of the thermodynamic stability study, the
composition of both present phases and their experimentally measurable volumetric fractions were
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determined. Using the compositional trends in the molar fraction from the Gibbs construction and
density of phases (Figure 3a), the volumetric content of both phases has been theoretically predicted
(see Figure 3b). The common tangent to energy curves of hcp and bcc phases defines the α phase to
be essentially 100 at.% Ti and the β phase to be 37.50 at.% Nb and 62.50 at.% Ti. Figure 3b shows
that the predicted volumetric content of the β phase is in good agreement with experimentally measured
data [44]. The composite is predicted to consist of hcp α-phase with fairly low Nb concentration (under
4 at.%) and cubic β-phase with approximately 37.50 at.% Nb. As may be seen, the agreement between
theory and experiment [44] is quite good.

Figure 3. (a) Compositional dependence of the ab initio free energies of formation Ef at
T = 881 ◦C for binary Ti-Nb alloys. The diamonds/circles mark Ef for the hcp/bcc phase.
The dotted line in part (a) shows the Gibbs construction that determined composition of both
structural components of the composite (vertical arrows); (b) The compositional dependence
of the thus predicted β-phase volume faction is shown in by full circles together with the
experimental volumetric fractions (empty circles).

After calculating thermodynamic properties of Ti-Nb alloys, the next step within the TGMD strategy
consists in prediction of elastic properties. Computing the elastic properties of the Ti-hcp α-components
is straightforward. However, the second phase, β Ti-Nb disordered solid solution, is more complex. In
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this case an exact distribution of Ti and Nb atoms over bcc-lattice positions is unknown. Therefore,
the alloy β-Ti-37.5%Nb was modeled using two different ordered compounds (β-Ti-37.5%NbI and
β-Ti-37.5%NbII) that have the same composition but two different atomic arrangements exhibiting
overall cubic symmetry of the 16-atomic supercells (see the Figure 2 caption). The theoretically
predicted material properties used in this study are summarized in Table 1 and compared with the
previous DFT calculations by Ikehata et al. [49,50] and experimental work by Reid [51].

It is important to note that some properties of β-Ti-37.5%NbI and β-Ti-37.5%NbII are very similar
(for example the lattice constants difference is comparable to the computational error-bar) while other
properties are not (C44 differs by nearly factor of three). The difference in the formation energies
of the two β-phase compounds is only about 12 meV/atom, indicating their nearly equal probability
to occur in samples at elevated temperatures. Therefore, the elastic constants of the β-component
of the α/β composite were modeled as a polycrystalline aggregate of two elastically anisotropic
compounds, β-Ti-37.5%NbI and β-Ti-37.5%NbII , with equal volume fraction of each constituent. The
elastic constants of such elastically isotropic β-phase were computed by homogenizing the anisotropic
elastic constants of β-Ti-37.5%NbI and β-Ti-37.5%NbII shown in Table 1 using Equation 8 and the
set of coupled Equations 21 and 22. The resulting isotropic elastic constants of the β-phase were
B∗β = 133 GPa and µ∗β = 19 GPa.

Table 1. Theoretically predicted structural parameters and elastic constants of pure elements
(Ti, Nb) and the cubic Ti-Nb compounds (β-Ti-37.5%NbI , β-Ti-37.5%NbII , for details see
Figure 2) compared with available experimental data.

Material a c/a C11 C12 C13 C33 C44

Ti theory 2.921 1.585 200 72 90 191 40
Ti theory[49] 2.946 1.584 172 87 73 191 41
Ti experiment[52] 2.951 1.587 162 92 69 181 47
Nb theory 3.335 - 227 129 - - 22
Nb theory[49] 3.325 - 247 134 - - 15.6
Nb experiment[53] 3.301 - 246 133 - - 28
β-Ti-37.5%NbI theory 3.261 - 156 121 - - 10
β-Ti-37.5%NbII theory 3.264 - 168 118 - - 29

Finally, employing Equations 8 and 21–24, it is possible to estimate the elastic moduli of the
polycrystalline α/β-composite. The five elastic components used for the hcp α phase were those
calculated for pure hcp Ti (Ti theory in Table 1). These elastic constants were also homogenized
using Equations 23,24 to determine B∗α and µ∗α. In this case, it was not necessary to assume that the
homogenized α phase was elastically isotropic. Therefore, the anisotropic elastic constants for the α
phase were B∗α = 122 GPa and µ∗α = 50 GPa. The B∗α value is in good agreement with our experimentally
detected value of 115 GPa (at room temperature). The bulk modulusB∗α is also in an excellent agreement
with the value of 121 GPa obtained from numerical FEM simulations based on identical set of the ab
initio calculated elastic constants (see the Appendix).
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The resulting dependence of the homogenized bulk modulus B∗α/β as a function of the volumetric
phase content has been found nearly identical to the linear interpolation between the B∗β = 133 GPa and
the homogenized bulk modulus of pure hcp Ti polycrystalline component B∗α = 122 GPa. In contrast,
the homogenized shear modulus (µ∗α/β), Young’s modulus (Y ∗α/β), and Poisson’s ratio (ν∗α/β) of the
multiphase Ti-Nb alloys deviate from a simple linear trend as shown in Figure 4(a–c). Both µ∗α/β and
Y ∗α/β display a negative deviation from linearity while ν∗α/β shows a positive deviation. These non-linear
composition dependencies of the elastic constants illustrate the importance of using homogenization
schemes. Figure 4a,b also shows that the overall shear and Young’s modulus increases as the amount of
α-phase increases. This trend was expected since µ∗α > µ∗β .

In order to verify the theoretical predictions, a few Ti-Nb samples that had both α and β phases present
were cast and there properties were probed [44]. The results are listed in Table 2 and a comparison of
the experimental and theoretically predicted Young’s modulus is plotted in Figure 5. The results in
Table 2 show that generally for a given alloy composition, the ab initio based thermodynamic analysis
underestimates the volume fraction of β phase. Excluding the the Ti-10 at.% Nb sample, the errors in vβ
are in the order of 10%–20%. Underestimation of vβ then leads to an overestimation of the homogenized
Young’s modulus, which can also be seen in Figure 5. Better agreement with the experiment may be
expected if vibrational entropy (as studied, e.g., in [54]) is included in the free energy calculations and
used to calculate vβ , calculate the elastic constants, and estimate the DFT error bars [55].

Table 2. Theoretically predicted polycrystalline integral elastic parameters and phase-
composition of Ti-Nb composites with selected Nb concentrations (of actually cast samples)
together with the experimental data.

Material vtheoryβ vexp.β B∗
α/β µ∗

α/β Y ∗
α/β Y exp

α/β

α-Ti 0 0 122 115 132 -
Ti-10at.% Nb 0.17 0.06 124 0.43 115 91
Ti-20at.% Nb 0.49 0.60 127 0.32 89 75
Ti-25at.% Nb 0.60 0.81 129 0.28 78 74
Ti-30at.% Nb 0.75 0.90 130 0.24 69 72
β-Ti-37.5at.%Nb 1 1 133 19 54 -
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Figure 4. The theoretically predicted dependence of the (a) homogenized shear modulus
µ∗α/β; (b) Young’s modulus Y ∗α/β; and (c) Poisson’s ratio ν∗α/β of the Ti-Nb composite as a
function of the volumetric β-phase content numerically determined with 0.1 compositional
step. The values are compared with the values obtained from a linear interpolation (dashed
lines) between the α and β components.

The importance of accounting for the dual-phase nature of Ti-Nb is illustrated in Figure 5 by plotting
the compositional dependence of Young’s modulus for single crystal, polycrystalline, and dual-phase
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Ti-Nb. For β-phase, single crystal Ti-Nb, the dependence of the Young’s modulus in the softest
[001]bcc direction has been plotted as a function of Nb content (open squares in Figure 5). The single
crystal Young’s modulus is negative for alloys with low Nb-concentrations, indicating that these alloys
suffering from the lack of β-stabilizer are mechanically unstable at low temperatures. As the Nb
concentration increases, the single crystal Young’s modulus also increases, a trend that is completely
opposite of that which is experimentally observed. Homogenizing the single crystal elastic constants
into a 100% β-phase polycrystal does not correct this erroneous trend. The homogenized Young’s
modulus calculated from different cubic ordered compounds with varying Nb content is shown for a
few selected Nb concentrations in Figure 5 (filled diamonds). The overall trend is qualitatively better
as the Young’s modulus increases only very slowly with increasing Nb-concentration. However, this
trend still contradicts the experimental trends. Finally, the compositional dependence of the Young’s
modulus for a dual-phase (hcp-α and bcc-β) polycrystal is shown in Figure 5 (open circles). While the
effect of Nb content on the theoretical Young’s modulus is stronger than that observed experimentally,
the predicted compositional trend is qualitatively correct: Young’s modulus decreases with increasing
amounts of Nb.

Figure 5. Predicted and experimentally obtained Young’s moduli. The theoretical single-
crystal Young’s moduli for the soft [001] crystal direction of the cubic lattice cell are shown
by empty squares. The homogenized Young moduli of hypothetical β-phase polycrystals
with varying Nb content (not from the Gibb’s construction) are shown by full diamonds
connected by a line. Full circles stand for the predicted Y ∗α/β and experimental data are
visualized by empty circles.

The predicted compositional dependence of the elastic constants for dual-phase Ti-Nb polycrystals
can be used as the first step in theoretically guided materials-design strategy to develop bone replacing
materials that have a reduced elastic mismatch with respect to bone. From this analysis it can be
seen that the Young’s modulus of hcp α-Ti can be reduced from around 132 GPa to around 70 GPa
by adding 30 at.% Nb to form a two-phase α/β composite with the cubic β-phase. The theoretical
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predictions were verified by experimental measurements. As our results indicate that 70 GPa is the
minimum that can be obtained by alloying on the atomistic level, a further reduction of the Young’s
modulus seem to be possible only via (i) an processing optimization on the microstructural level in
case of the studied binary systems; or (ii) higher order alloying that can suppress the presence of the
stiff α-Ti phase. Employing our theory-guided materials design strategy, it will become possible to
pre-select most promising Nb compositions by quantum-mechanical calculations and avoid casting and
testing of large numbers of samples from the whole compositional range. This can be essential in both
on-going and future development of Ti-Nb binary alloys [56–59], ternary materials [60–67] (including
Ti-Al-V [68–70] and Ti-Nb-V [71,72]), as well as higher-order alloys [73–82] intended for bio-medical
applications [83–88].

4. Summary and Conclusions

A multi-disciplinary approach was used to predict the polycrystalline elastic constants of a dual-phase
Ti-Nb alloy. The approach combines a thermodynamic analysis with a self-consistent homogenization
scheme that can describe phases with differing crystal structures. Thermodynamics provides the
composition and volume fraction of the various phases, while homogenization estimates polycrystalline
elastic constants from single crystal ones. All of the input values for this multi-scale approach
originate from ab initio calculations, making this approach a strong tool in a theory-guiding
materials-design strategy.

In this study, the thermodynamic analysis predicts the bcc-β phase composition would be 38 at.%
Nb and 62 at.% Ti and that the hcp-α phase would be nearly 100 at.% Ti. Despite the fact that our
theoretical thermodynamic analysis overestimates the volume fractions of β phase compared with those
experimentally found, the predicted compositional trend is qualitatively correct. The resulting Young’s
and shear modulus of polycrystalline α/β Ti-Nb decreased as the volume fraction of bcc-β phase (or Nb
content) increases. Theoretically, a complete suppression of the presence of hcp α-Ti phase would result
in a reduction of the Young’s modulus to about 54 GPa, which is predicted in case of a single-phase
β Ti-Nb phase containing 38 at.% Nb. While the predicted modulus values are generally higher than
that experimentally observed, the compositional trends are predicted correctly. From an alloy design
perspective, we can conclude that in order to achieve maximum softness, the amount of the soft cubic
β-phase should be optimized via keeping the amount of Nb high enough to ensure thermodynamic
stability of the β-phase but low enough in order to avoid high stiffness that is typical for pure bcc Nb.
The optimum amount of β-phase, which on one hand is thermodynamically stable but on the other hand
does not contain too much Nb, is then limited to 30–40 at.% Nb, and the predicted Young’s modulus in
this concentration range is around 70 GPa.
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5. Appendix

As a test of performance of the used analytical mean-field homogenization method, we used Finite
Element Method (FEM) calculations taking into account the anisotropic elasticity material routine within
the commercial finite element code MSC.Marc200x. A polycrystal containing 96 square shaped grains
(4 × 4 × 6) was meshed with quadratic brick elements. In order to tackle the fact that crystal containing
96 grains does not contain enough grains to simulate a “real” polycrystal, 5 different microstructures
were generated and the average elastic properties are reported. The standard deviation of the 5 runs was
relatively small indicating that the average values are reasonable. In order to assure solution convergence,
each grain was meshed with 27 elements, resulting in a mesh with 2592 total elements. Each grain had
a different, randomly determined orientation that defined the orientation of its elasticity tensor. Three
random Euler angles were generated using a random number generator. These Euler angles were then
transformed into a rotation matrix, which was used to rotate the elasticity matrix (i.e., the elastic constants
in each grain differed only by a rotation).

Elastic constants of the 96 grain polycrystal were determined by simulating a tensile test. A fixed
displacement along the six grain directions in the polycrystal was prescribed while displacements on
three other orthogonal planes was fixed to prevent the mesh from translating. The stress-strain response
of the polycrystal was calculated from the reaction forces and displacements calculated by the FEM code.
The elastic stress-strain response of five different polycrystals was simulated and the average Young’s
modulus was then calculated. Using ab initio predicted elastic constants of hcp Ti, the FEM simulations
predict the polycrystalline Young’s modulus to be 131 GPa. This value is in excellent agreement with
132 GPa obtained from the the used analytical mean-field homogenization method, thus validating its
performance for texture-free aggregates.
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