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Abstract: Hardness homogeneity of the commonly used structural ferrous and nonferrous 

engineering materials is of vital importance in the design stage, therefore, reliable 

information regarding material properties homogeneity should be validated and any 

deviation should be addressed. In the current study the hardness variation, over wide 

spectrum radial locations of some ferrous and nonferrous structural engineering materials, 

was investigated. Measurements were performed over both faces (cross-section) of each 

stock bar according to a pre-specified stratified design, ensuring the coverage of the entire 

area both in radial and circumferential directions. Additionally the credibility of the 

apparatus and measuring procedures were examined through a statistically based 

calibration process of the hardness reference block. Statistical and response surface 

graphical analysis are used to examine the nature, adequacy and significance of the 

measured hardness values. Calibration of the apparatus reference block proved the 

reliability of the measuring system, where no strong evidence was found against the 

stochastic nature of hardness measures over the various stratified locations. Also, outlier 

elimination procedures were proved to be beneficial only at fewer measured points. 

Hardness measurements showed a dispersion domain that is within the acceptable 

confidence interval. For AISI 4140 and AISI 1020 steels, hardness is found to have a slight 

decrease trend as the diameter is reduced, while an opposite behavior is observed for  
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AA 6082 aluminum alloy. However, no definite significant behavior was noticed regarding 

the effect of the sector sequence (circumferential direction). 

Keywords: hardness variation; AISI 4140; AISI 1020; AA 6082; reference block 

calibration; statistical analysis; response surface 

 

1. Introduction 

In all industries, it is desired to introduce a better product quality to the market. The quality of the 

product usually represents the processing effectiveness of three stages: materials selection, design and 

manufacturing processes. At all those stages, the uniformity of the raw material properties is assumed 

to be provided by the manufacturer. Moreover, the properties of the raw material are not necessarily 

homogenous after processing or manufacturing of the product [1-3]. There are different reasons for 

deviation and nonuniformity of the raw materials provided by the manufacturer. A soluble unequal 

proportion of chemical elements in the alloy is one of the most important reasons for the different 

properties of the raw material. Improper heat treatment especially for thicker material leads to different 

microstructure phases across the workpiece material each has its own properties. Also surface finishing 

and preparation changes the surface properties of the workpiece [4-6]. 

Knowledge of material properties should be available to consider the effects of undergoing loading 

conditions not only on the product outer surface but also in the zone on specified distance from the 

surface. Among the important material properties, hardness represents one of the most important factors 

affecting product performance and its durability. Hardness data provide the basis for determining the 

hardening coefficient, the residual stress, the degree of surface layer destruction, the yield point, the 

strength, and the true fracture strength of the material.  

In this paper, the hardness variations over the different diameters of some ferrous and nonferrous 

structural engineering materials; such as-hot-rolled AISI 1020 and AISI 4140 quenched and tempered 

hot alloy steel and AA6082 aluminum alloy in T6 conditions, were investigated. Measurements were 

performed over both faces (cross-section) of each stock bar according to a prespecified stratified 

design ensuring the coverage of the entire area both in diagonal and circumferential directions. 

Additionally, the credibility of the apparatus and measuring procedures were examined through a 

statistically based calibration process of the hardness reference block. 

Statistical criteria, such as Descriptive, T-test Pairs, One-Way ANOVA and partial correlation 

measures were used to detect the possible dependency of hardness values with the testing location over 

the specified tested surface either diagonally (radial) or circumferentially. Graphical response surface, 

surface map and contours were used to describe the data and to detect any possible trends. 

2. Experimental Setup and Instrumentation 

For universality purposes, three different types of materials were used in this study in the form of a 

200 mm length and 150 mm diameter round bars. Specifications, mechanical properties and chemical 

composition, as provided by manufacturer, are listed in Table 1. Both sides (faces) of each stock bar 
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were finished by low-feed-high speed face turning to create a flat surface with acceptable quality. 

Further surface preparation was carried out using a very fine sandpaper so that the minimum finishing 

requirement (Ra ≤ 1mm) is maintained where the measured Ra range over both surface was found to 

be (0.97–1.04). 

Table 1. Mechanical properties and chemical composition of the employed materials. 

Material 

Mechanical physical properties Chemical composition (wt %) 

Tensile 

Stren. 

(MPa) 

Yield 

Stren. 

(MPa) 

Hardn. 

(HRB) 

Elo. 

(%) 
C Mn Si P S Cr Mo Ni  

AISI 1020 485  79  0.22 0.47 0.17 0.012 0.004   

AISI 4140 1093 945 99 14 0.41 0.88 0.28 0.018 0.009 1.01 0.18 0.10  

 U.T.S 0.2 P.S.   Si Fe Ti Mn Mg Cu Zn Zr Cr Ni Va 

AA6082 326.6 273  8 1.04 0.19 0.018 0.58 0.8 0.025 0.003 0.001 0.003 0.001 0.004 

Stationary hardness testers can only accommodate test pieces of limited size. Moreover, transportation 

of the test pieces is often impractical, sometime impossible therefore; the portable hardness tester can 

give a key solution. In the current study, hardness testing was carried out using a COMPUTEST SC 

digital Rockwell portable Tester with many advanced features [7]. Instrument and measuring features 

conform to both ASTM B724 and DIN 50157 standards. Measuring range and scales include HRC  

(0–70) and HRB (0–120) using a static [5 kg (49N)] load and with preload of [1.2 kg (11.8 N)] 

according to the Rockwell principle. Features are found appropriate for measuring the HRB nominal 

hardness values of the three tested materials. Device calibration and measurement credibility were 

evaluated in details using its reference block. 

3. Results, Analysis and Discussion 

In order to obtain significant outcome, indentation locations over the intended surface should be 

carefully determined through the proper stratified design with the consideration of the trend and 

frequency of hardness distribution in both the radial and circumferential directions. Data evaluation 

included both of the descriptive graphical response surface methodology, to visualize the individual 

and the interaction of the involved parameters and the appropriate statistical parameters such as Means, 

T-Test, one-way ANOVA and Correlation, to determine the adequacy and significance of possible 

evolving trends. 

3.1. Apparatus Calibration and Hardness Variability of the Reference Block 

Calibration of the measuring device using its reference block is one of the important factors 

affecting the hardness measurement. The hardness reference block is of ultimate importance, supplying 

the criteria to determine the standard value of a product, to verify hardness of testing machines and to 

specify accuracy of quality control measurements. This procedure may provide the mutual benefit of 

examining the accuracy of both the reference block and the measuring device. Therefore, to increase 

the credibility of the recorded hardness, the device was calibrated using the reference hardness block 

that is provided by manufacturer. As shown in Figure 1, the indentation locations were determined as 
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the intersection of a stratified design that includes eight circumferential sectors and three radial layers. 

This led to 24 indentation locations to give a high level of reliability and repeatability of the measuring 

device. According to ISO 6507—part 3 [1-3], only five indentations are required as a minimum number. 

Many other investigations [6,8,9] have been carried out to determine the best way of the reference 

block calibration and its uncertainty. It has been reported [9] that more than 6 or even 12 strata were 

recommended for reliable hardness measurement since, in their opinion, only five indentations 

proposed by [8] did not seem to be sufficient to gain statistically reliable calibration values. 

Figure 1. Stratifying design for hardness reference block. 

 

In order to find out how to locate the test indentation positions and, at the same time, to determine 

the number of indentations sufficient for a significant measure, the reference block was mapped as 

indicated in Figure 1. The surface of the reference block was divided into eight circumferential sectors 

and three diagonal concentric circles (layers). This yielded a stratification design of a total of 24 hardness 

indentations map locations. The influence of stratified conditions on the measured hardness values was 

statistically and graphically judged.  

General descriptive statistics of the measurement is listed in Table 2. Although the data mean value 

(81.74 HRB) is very close to the nominal value (82 HRB), some experimental error and outliers have 

affected the results and their statistical features. However, the “Detect Anomaly” features in the SPSS 

statistical program is used to identify the unusual cases within the data. The Anomaly Detection 

procedure searches for unusual cases based on deviations from the norms of their cluster groups. The 

algorithm is designed for generic anomaly detection; that is, the definition of an anomalous case is not 

specific to any particular application. Algorithm steps are usually: Modeling, Scoring and Reasoning. 

More details about the procedures can be found in [10]. 
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Table 2. Descriptive statistics of the reference block hardness measurement. 

 

No. Cases Minimum Maximum Mean Std. Dev. 

Entire 
data 

Filtered 
data 

Entire 
data 

Filtered
data 

Entire
data 

Filtered
data 

Entire
data 

Filtered 
data 

Entire 
data 

Filtered
data 

Hi 24 16 67.90 76.3 96.10 87.00 81.74 82.90 6.644 3.090 

A criterion 5% exclusion percentage with the highest anomaly index value is selected for the outlier 

identification. Tracking out and removal of the eight detected outlier data points has enormously 

improved the data trends and their statistical measures. Considering that i and j are the sector and layer 

sequence respectively, the removed eight outlier points p(i,j) were: (1,1), (1,3), (2,2), (3,1), (3,2), (3,3), 

(6,1), (8,3). As listed in Table 2, the standard deviation was reduced from 6.644 for entire data 

(unfiltered) to only 3.09 for the filtered data. Data enhancement can be further observed through the data 

distribution over the sector-layer response surface and contour plots as shown in Figures 2. For the 

unfiltered data, Figure 2(a), higher measured hardness values can be observed especially at sector  

numbers 3 and 6. Outliers removal led to less variation and more homogenous hardness values as 

indicated by Figure 2(b). The relevant data map before and after filtration process is shown in Figure 3.  

Many statistical features are applied to statistically examine the data nature and significance.  

As listed in Table 3, standard deviation is improved for most sectors as well as for the entire set of 

data. Improvement was reflected in the values of standard deviation parameters of all layers, Table 4, 

where a reduction of about 74, 43 and 58 percent is attained for layers numbers 1, 2 and 3 respectively. 

As seen by T-test analysis, Table 5, filtered data indicated not only lower standard deviation value but 

also more compact 95% confidence interval and standard error of estimates with higher t-value. It is 

observed that the data was principally affected by the impact of the low measured hardness values. 

Table 6 summarizes the statistical T-test Pairs, One-way ANOVA and Correlation Statistical 

parameters for filtered and unfiltered data. T-test pairs analysis indicates that the layer sequence may 

exhibit a possible slight correlation in such a way that lower specimen diameter seems to be harder. 

Figure 2. Response surface of the hardness measurement of the reference block.  

(a) Unfiltered data; and (b) Filtered data. 

(a) (b) 
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Figure 3. Hardness map distribution over sector and layer. (a) Unfiltered data; and  

(b) Filtered data. 

 

(a) 

 

(b) 
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Table 3. MEANS statistical parameters of Hi-sector interaction. 

Sector 
Filtered data Unfiltered data 

Mean N Std. Dev. Mean N Std. Dev. 

1 79.20 1 . 76.20 3 3.89 

2 81.60 2 3.68 84.03 3 4.95 
3 - - - 85.97 3 12.78 
4 82.63 3 2.74 82.63 3 2.74 

5 82.23 3 5.25 82.23 3 5.25 
6 85.15 2 1.20 79.40 3 9.995 
7 84.73 3 2.95 84.73 3 2.95 

8 82.45 2 1.20 78.70 3 6.55 

Total 82.90 16 3.09 81.74 24 6.64 

Table 4. Means statistical parameters of Hi-layer interaction. 

Layer 
Filtered data Unfiltered data 

Mean N Std. Dev. Mean N Std. Dev. 

1 84.50 5 2.01 81.55 8 7.71 
2 83.47 6 3.12 82.66 8 5.53 
3 80.62 5 3.07 81.00 8 7.31 

Total 82.90 16 3.09 81.74 24 6.64 

Table 5. T-test statistical parameters for filtered and unfiltered data. 

N Mean Std. Dev. Std. Error t-value Sig. 
95% Conference interval 

Lower upper 

16 82.9 3.09 0.7726 107.3 0.00 81.25 84.55 
24 81.74 6.64 1.356 50.27 0.00 78.93 84.54 

Table 6. T-test pairs, one-way ANOVA and correlation statistical parameters. 

Layer 

Filtered data Unfiltered data 

N Corr. Sig. 
One-way ANOVA

N Corr. Sig. 
One-way ANOVA 

F-ratio Sig. F-ratio Sig. 

Pair 1  
(Hi & Sector) 

16 0.364 0.165 0.566 0.749 24 0.004 0.986 0.621 0.691 

Pair 2  
(Hi & Layer) 

16 −0.513 0.042 2.581 0.114 24 −0.035 0.873 0.121 0.887 

3.2. Hardness Variability of AISI 4140 Steel 

Based on the evolved outcome and findings, a stratified design over the cross-section circular faces 

of AISI 4140 is proposed as shown in Figure 4. Eight circumferential sectors of 45 deg angular space 

and fifteen radial layers have led to a total of 120 data readings located at the circumference-radial 

lines intersections as shown in Figure 4. 

Statistical features of the measured hardness values over both cross-section sides A and B along 

with their aggregated set are listed in Table 7. Although a significant statistical judgment is observed 
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for readings taken on side B, the use of the entire data for both sides seems to improve the significance 

and the adequacy of the data set.  

Figure 4. Stratifying design for hardness measurements over cross section surface. 

 

Table 7. Statistical analysis for entire data of both sides of AISI 4140 (Hm = HRB 99). 

Side 
Range 

Mean Std. Dev. 
Std. 

Error 
t-value Sig. 

95% Conference interval 

Min Max Lower Upper 

A 89 110.7 100.8 6.79 0.619 162.8 0.000 99.57 102.03 
B 90 111.3 105.9 4.61 0.421 251.7 0.000 105.07 106.74 

A+B 89 111.3 103.35 6.33 0.408 253.0 0.000 102.55 104.16 

When data for each side is individually dealt with, the “Detect Anomaly” analysis, with the specified 

criterion measures, as in the last section, suggested the exclusion removal of six data points from each 

side. However, when data for both sides were considered, ten cases from side B and two cases from 

side A were suggested for exclusion. As indicated in Table 8, statistical measures are rarely affected 

after outlier removal. With increasing data points, it is expected that the outlier impact is diluted and 

this justifies the emerged trend for the reference block when only 24-cases are considered. 

Figure 5 shows surface map, surface contour and response surface of the entire data of both section 

sides. This is accompanied by a color scale to indicate the hardness levels as judged by the color 

intensity. A hardness increasing trend at larger diameters or outer layers is observed over both sides. 

Also, it is generally shown that over side B, the recorded hardness values have greater values (compare 

mean values of both sides in Tables 7 and 8). Possible trends are shown when the plain raw data are 

plotted as in Figures 6 and 7. A slight positive trend and dependency on the bar diameter is detected; 

see Figures 6(a) and 7(a). However, as far as the hardness-sector sequence is concerned, (Figures 6(b) 
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and 7(b)), there is no solid evidence against the assumable random nature of the measured data. All the 

aforementioned findings are reflected by the statistical criteria as listed in Table 9 using T-test Pairs, 

One-Way ANOVA and the partial correlation criteria. 

Table 8. Statistical analysis after outlier inclusion of AISI 4140 (Hm = HRB 99). 

Side 
Range 

Mean Std. Dev. 
Std. 

Error 
t-value Sig. 

95% Conference interval 

Min Max Lower Upper 

A 89 110.6 100.7 6.90 0.646 155.9 0.000 99.40 101.97 

B 95.3 111.3 106.3 4.07 0.381 279.0 0.000 105.50 107.01 

A+B 89 111.3 103.4 6.49 0.430 240.0 0.000 102.56 104.25 

Figure 5. Surface map, contour and response surface of both sides. 

 

 



Materials 2012, 5                            

 

 

21

Figure 6. Hardness-Diameter-Sector sequence interrelations for side A. (a) Hardness-

Diameter-AISI 4140-Side A; (b) Hardness-Sector-AISI 4140-Side A. 

 
(a) 

 
(b) 

Table 9. T-test pairs, one-way ANOVA and correlation statistical parameters. 

Layer 

Side A Side B 

N Correlation Sig. 

One-way 

ANOVA N Correlation Significance 

One-way 

ANOVA 

F-ratio Sig. F-ratio Sig. 

Pair 1 (Hi & 

Diameter) 
120 0.160 0.080 0.983 0.476 120 0.141 0.125 2.497 0.004 

Pair 2 (Hi & 

Sector #) 
120 0.238 0.009 4.502 0.000 120 −0.025 0.789 2.359 0.028 

 

85

90

95

100

105

110

115

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

H
ar

dn
es

s 
(H

RB
)

Bar Diameter (mm)

85

90

95

100

105

110

115

1 2 3 4 5 6 7 8

H
ar

dn
es

s 
(H

RB
)

Seector Sequence



Materials 2012, 5                            

 

 

22

Figure 7. Hardness-Diameter-Sector sequence interrelations for side B. (a) Hardness-

Diameter-AISI 4140-Side B; (b) Hardness-Sector-AISI 4140-Side B. 

 
(a) 

 
(b) 

3.3. Hardness Variability of AISI 1020 Steel and AA 6082 Aluminum Alloy 

To attain more universal conclusions and to verify the aforementioned findings, the same 

experimental procedures were carried out considering different materials with different hardness 

levels, chemical composition and mechanical properties, as indicated in Table 1. 

Hardness measured values for AISI 1020 carbon steel are shown in Figure 8. Data distribution over 

both sides indicates a stochastic nature with tight confidence interval and mean. For AISI 1020, a 

similar qualitative trend to that of AISI is observed, where it is shown that hardness tends to have a 

slight and insignificant increasing trend with each bar diameter; see Figure 8(a), and sector sequence, 

Figure 8(b). However, for AA 6082 aluminum alloy, Figure 9 data shows a slight negative trend with 

the bar diameter parameter, Figure 9(a). 

85

90

95

100

105

110

115

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

H
ar

dn
es

s 
(H

RB
)

Bar Diameter (mm)

85

90

95

100

105

110

115

1 2 3 4 5 6 7 8

H
ar

dn
es

s 
(H

RB
)

Seector Sequence



Materials 2012, 5                            

 

 

23

Figure 8. Hardness variability as affected by bar diameter and sector sequence of  

AISI 1020. (a) Hardness-Diameter-AISI 1020-Both Sides; (b) Hardness-Sector-AISI  

1020-Both Sides. 

 

(a) 

 

(b) 
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Figure 9. Hardness variability as affected by bar diameter and sector sequence of AA 6082 

Aluminum Alloy. (a) Hardness-Diameter-AA 6082-Both Sides. (b) Hardness-Sector-AA 

6082-Both Sides. 

 

(a) 

 

(b) 

4. Conclusions 

Hardness homogeneity represents a key factor for a robust design considering the durability and 

reliability of most manufactured engineering products. In this context, the object was to examine the 

hardness variability of some ferrous and nonferrous structural engineering materials; AISI 1020 and 

AISI 4140 quenched and tempered hot alloy steel, as well as AA6082 aluminum alloy. Additionally, the 

measuring credibility of the reference block was examined. 
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Measurements were performed according to a stratified design covering the section’s entire area 

both in diagonal and circumferential directions. Hardness values were analyzed using appropriate 

statistical and graphical measures. 

Generally, a wide variability was observed in the measured hardness values using the current  

press-and-read digital portable tester, compared to those that may be obtained using conventional 

stationary instruments using 100 kg (9800 N) load and 1/16″ steel ball. Lower variability levels were 

obtained when the calibration was carried out using the provided reference block. Higher variability 

levels for test pieces may be mainly due to the material inhomogeneity along with the sample size used 

throughout the analysis (bigger data points statistically leads to wider scatter). Statistical parameters 

for the data over the apparatus reference block proved the reliability of the measuring system, where 

no strong evidence was found against the stochastic nature of hardness measures over the various 

stratified locations. Also, outlier elimination procedures were proved to be beneficial when a few, but 

still a sufficient number, of the measured points are considered.  

For all the materials tested with sufficient data, either from single or both section sides, a stochastic 

hardness pattern was observed with a dispersion domain that is within the acceptable confidence 

interval. However, for AISI 4140 and AISI 1020, a slight correlation trend was observed indicating 

lower hardness values toward the bars section center. A contradictory trend was detected for AA 6082 

aluminum alloy. However, no definite significant behavior was noticed regarding the effect of the 

sector sequence. 
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