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Abstract: Thermal stability, structure and mechanical properties of the multi-component 

Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 bulk metallic glass have been studied in detail. The glassy 

material displays good thermal stability against crystallization and a fairly large supercooled 

liquid region of 52 K. During heating, the alloy transforms into a metastable icosahedral 

quasicrystalline phase in the first stage of crystallization. At high temperatures, the 

quasicrystalline phase undergoes a transformation to form tetragonal and cubic NiZr2-type 

phases. Room-temperature compression tests of the as-cast sample show good mechanical 

properties, namely, high compressive strength of about 1,630 MPa and fracture strain of 

3.3%. This is combined with a density of 6.32 g/cm3 and values of Poisson’s ratio and 

Young’s modulus of 0.377 and 77 GPa, respectively. The mechanical properties of the 

glass can be further improved by cold rolling. The compressive strength rises to 1,780 MPa 

and the fracture strain increases to 8.3% for the material cold-rolled to a diameter reduction 

of 10%. 
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1. Introduction 

Multi-component bulk metallic glasses (BMGs) are of particular interest for engineering applications 

because of their positive combination of remarkable mechanical, physical and chemical properties [1-5]. 

In addition, multi-component BMGs have high thermal stability against crystallization and a wide 

super cooled liquid region [1-3], which helps in the thermoplastic processing of these alloys without 

crystallization [6]. 

The complete characterization of BMGs is a necessary prerequisite for their technological application. 

Metallic glasses are metastable phases and, when heated to a sufficiently high temperature, they tend to 

a more stable condition, i.e., they crystallize [7,8]. Therefore, investigations of the thermal stability of 

BMGs and their structure evolution during heating is of primary importance not only in order to 

analyze their stability against crystallization but also for controlling their microstructure, and finally 

for improving their properties [9]. This is particularly important when partially crystallized materials 

are considered, where a fundamental parameter that has to be taken into account is the temperature 

range of stability of the phase formed [10,11]. 

Another important point of interest in the development of BMGs as structural materials is the 

evaluation of their mechanical behavior. Metallic glasses show large values of yield stress and elastic 

strain [1-3,5], however, the plastic deformation at room temperature of these materials is generally 

inhomogeneous and occurs via highly localized shear bands, which finally leads to catastrophic failure 

with limited microscopic deformability [12]. Catastrophic shear banding in BMGs can be avoided by 

the creation of heterogeneous microstructures through compositional design to form BMG-matrix 

composites [13,14] or by the use of the proper mechanical pre-treatments, such as shot peening [15], 

cold rolling [16-18], channel-die compression [19] or elastostatic pre-loading [20]. Besides, for the 

improvement of the plastic deformability of BMGs, the analysis of the effects of shaping processes, 

such as rolling or forging, on structure, thermal stability and mechanical properties is of particular 

interest for the possible implementation of BMGs into a conventional industrial processing line. 

In this work, structure and mechanical behavior of the Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 bulk metallic glass 

produced by copper mold casting have been investigated in detail. The Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 

metallic glass was selected for the present investigation because this glassy material can be produced 

by different processing routes [21] and, therefore, it may offer interesting opportunities for a possible 

commercial application. The thermal stability of the glass was studied by differential scanning 

calorimetry and the temperature dependence of the structure and the temperature ranges of stability of 

the different phases formed during heating were investigated by in-situ X-ray diffraction using a  

high-energy monochromatic synchrotron beam. The mechanical properties of the glass were investigated 

by room temperature compression tests. Finally, the effectiveness of cold rolling as a mechanical  

pre-treatment for improving the mechanical behavior and as a suitable shaping process for the present 

BMG was evaluated. 
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2. Results and Discussion 

Figure 1a shows the isochronal (40 K/min) DSC scan of the as-cast Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 rod. 

Within the range of temperatures considered in this work, the DSC curve consists of a broad 

exothermic signal in the range 500–600 K (see shadowed area in Figure 1a), which can be ascribed to 

structural relaxation [22]. The broad exotherm is followed by an endothermic event associated with the 

glass transition at Tg = 629 K, which indicates the transformation from the solid-state glass into the 

supercooled liquid (SCL), before two exothermic heat flow events due to the crystallization of the SCL 

occur at higher temperatures (Tx1 = 681 K and Tx2 = 740 K). The supercooled liquid region,  

Tx = Tx1 − Tg, which reflects the thermal stability against crystallization of the SCL, is 52 K. The 

thermal stability data are in good agreement with those reported in previous studies for melt-spun 

ribbons and ball-milled powders with the same composition [21] (see Table 1). 

Figure 1. (a) Isochronal (40 K/min) DSC scan of the as-cast rod; and (b) density of the 

metallic glass as a function of the annealing temperature. 

 

Table 1. Temperature of the glass transition (Tg), onset of the first (Tx1) and the second 

(Tx2) crystallization peak and extension of the supercooled liquid region (Tx = Tx1 − Tg) 

for the Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 cast rod, melt-spun ribbon and ball-milled powder. 

 Tg (K) Tx1 (K) Tx2 (K) �Tx (K) Reference 

Cast rod 629 681 740 52 This work 
Melt-spun ribbon 637 688 742 51 [21] 
Ball-milled powder 636 685 737 49 [21] 

The XRD pattern of the as-cast rod taken at room temperature is shown in Figure 2 (300 K). The 

pattern displays only the broad diffuse maxima typical for an amorphous material without additional 

peaks due to crystalline phases. The amorphous nature of the as-cast material is confirmed by the TEM 

results in Figure 3a. The bright-field image is featureless with no traces of diffraction contrast due to 
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second-phase particles. In addition, the corresponding selected area electron diffraction pattern (inset 

in Figure 3a) shows the typical diffuse diffraction rings characteristic of amorphous materials.  

As well, high-resolution TEM (Figure 3b) shows the characteristic disordered structure of amorphous 

materials and no bright spots indicative of the presence of crystalline phases can be observed in the fast 

Fourier transform (FFT) of the image (inset in Figure 3b). Only few and dispersed ordered regions of 

about 3–5 nm can be observed at a higher magnification (Figure 3c). This is particularly clear in  

Figure 3d, which shows the inverse FFT of Figure 3c after the Fourier mask filtering. 

The structure evolution of the Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 bulk metallic glass during heating is shown 

in Figure 2, where the sequence of individual scans collected at different temperatures illustrating 

diffracted intensity vs. scattering vector (Q = 4sinθ/λ) are plotted as a function of temperature. The 

XRD patterns reveal that, besides the amorphous phase, no additional phases are formed up to 660 K. 

When the sample is heated to 680 K, corresponding to the onset of the first crystallization DSC peak in 

Figure 1a, the pattern displays the presence of additional diffraction contributions at Q = 25, 26 and  

43 nm−1 that overlap to the main amorphous maxima. The occurrence of these small, broad diffraction 

peaks indicates the formation of an ordered phase of nanoscale dimensions. The intensity of the small 

peaks grows with increasing temperature, which permits to unambiguously identify the phase formed 

at temperatures above 680 K as an icosahedral quasicrystalline (QC) phase. In addition to the 

diffraction signals of the QC phase, the diffuse diffraction maximum of the glassy phase is visible, 

indicating the presence of a residual amorphous phase. The QC phase is metastable and transforms to 

NiZr2-type phases with cubic (space group mFd3 ) and tetragonal (space group I4/mcm) crystalline 

structures at temperatures above 726 K (coinciding with the second crystallization event). A similar 

structural evolution has been observed for the corresponding alloy with the same composition 

produced by melt spinning and ball milling [21]. 

Figure 2. XRD patterns (λ = 0.01249 nm) of the as-cast Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 bulk 

metallic glass as a function of temperature. 
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Figure 3. TEM data for the as-cast Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 glassy alloy: (a) bright-field 

image of the as-cast material and (inset) corresponding selected area electron diffraction 

pattern; (b,c) high-resolution TEM micrographs and (insets) corresponding fast Fourier 

transforms (FFT); (d) inverse FFT of Figure 3(c) after the Fourier mask filtering. 

 

Although no phase changes can be observed in Figure 2 at temperatures below 680 K, the glassy 

structure undergoes structural changes in this temperature regime. This behavior can be observed in 

Figure 4, which shows the temperature dependence of the position, intensity and width of the main 

amorphous maximum at about Q = 26 nm−1. The position of the amorphous maximum, decreases 

linearly with increasing temperature up to about 530 K (Figure 4a) as a result of the thermal expansion, 

which is linked to the increase of the mean atomic spacing (i.e., dilatation) [23]. Above 530 K, at 

temperatures corresponding to the broad exothermic event in Figure 1a, the peak position remains 

almost constant. This behavior can be attributed to the additional effect of free volume annihilation 

that, by inducing shorter atomic distances and thus densification [23], counterbalances the effect of 

thermal expansion. An analogous effect can be observed for the intensity and width of the amorphous 

maximum (Figure 4b and c). At temperatures below 530 K, the intensity decreases and the width 

increases with increasing temperature. This is due to the Debye-Waller effect, which describes the 

attenuation of the X-ray scattering caused by the thermal agitation [24]. Above 530 K, this effect is no 

longer visible due to the additional contribution of the free volume annihilation and to the consequent 

densification of the material, as demonstrated by the increase of the density of the metallic glass with 

increasing annealing temperature (Figure 1b). 
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Figure 4. Temperature dependence of the (a) position; (b) intensity; and (c) width of the 

main amorphous maximum at about Q = 26 nm−1 in Figure 2. 

 

A typical room temperature stress-strain curve for the as-cast Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 BMG under 

quasistatic compressive loading is shown in Figure 5. The specimen exhibits an elastic regime of 

1.85% before yielding, which occurs at σy~1,500 MPa. The Young’s modulus, estimated by ultrasonic 

measurements, is 77 GPa. After yielding the stress increases with increasing strain and the sample 

shows an apparent work-hardening behavior up to 1,630 MPa and 2.6% strain. With further increase of 

strain, the stress-strain curve displays a work-softening behavior up to fracture, which occurs at  

σf = 1,570 MPa and at εf = 3.3% strain.  

Figure 5. Room temperature stress-strain curves for the as-cast and cold-rolled 

Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 BMG under quasistatic compressive loading. 
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The occurrence of large Poisson’s ratios has been proposed for explaining the enhanced plastic 

deformability of some BMGs [25,26]. For materials with a large Poisson’s ratio, the release of local 

stress concentrations is more likely to occur via shear deformation rather than through crack nucleation, 

leading to improved plastic deformation [5]. More specifically, metallic glasses having values of 

Poisson’s ratio larger than 0.31–0.32 are tough, while BMGs with smaller values are brittle [26]. The 

present Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 BMG displays a Poisson’s ratio of 0.377 and, therefore, it falls into 

the category of the tough BMGs. 

The room-temperature plasticity observed in Figure 5 may also be linked to the presence of the 

nanocrystals in the as-cast structure (Figure 3c and 3d). In certain BMGs derived from shape memory 

alloys, a deformation-induced precipitation of nanocrystals has been suggested as a process competing 

with the formation of the shear transformation zones (the fundamental units of plasticity in metallic 

glasses at low temperatures [27]), which leads to a small plastic strain even in tension [28]. This 

mechanism may be active during deformation of the Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 BMG. Although few in 

number, the nanocrystals may nevertheless interfere with the process of irreversible deformation, 

effectively limiting shear bands from propagating catastrophically and explaining the observed 

macroscopic plastic deformation. 

The Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 metallic glass not only displays interesting mechanical properties 

under compressive loading, but it also shows good damage tolerance when subjected to cold rolling. 

The cylindrical rod can be cold-rolled up to a diameter reduction of 10% without inducing visible 

cracks and, as a result, the cross-section of the sample is no longer round, as for the as-cast sample, but 

it displays two flat surfaces of about 600–700 m (Figure 6a). Plastic deformation during rolling is 

accommodated by the formation of two distinct families of shear bands (Figure 6b): semicircular shear 

bands originating from the flat surfaces (indicated by dotted lines in Figure 6b) and curved shear 

bands, which intersect the semicircular shear bands and extend towards the centre of the sample 

(dashed lines in Figure 6b). Such a shear band morphology is in agreement with that observed for other 

cold-rolled Zr-based cylindrical BMGs [17,18] and can be ascribed to the heterogeneous plastic 

deformation that characterizes rolling of cylindrical specimens. 

Besides for cold working and shaping of materials, cold rolling can be used to improve the mechanical 

behavior of BMGs [16,18]. The mechanical properties of the present Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 BMG 

are indeed improved by cold rolling (Figure 5). The yield strength of the material cold-rolled up to a 

diameter reduction of 10% is about 1,470 MPa, only slightly reduced with respect to the as cast 

material (1,500 MPa). On the other hand, the compressive strength rises from 1,630 MPa for the  

as-cast material to 1,780 MPa for the cold-rolled sample, which gives rise to a clear work-hardening 

behavior. As well, rolling has a significant effect on the fracture strain, which increases from 3.3% for 

the as-cast sample to 8.3% for the rolled material. A possible explanation for the improved mechanical 

behavior is given by the propagation-arrest mechanism of shear bands resulting from the creation of a 

heterogeneous microstructure consisting of hard and soft regions during rolling [18]. Most likely, the 

rolling-induced hard and soft regions necessitate different critical stresses to initiate deformation 

during the subsequent compressive test. The deformation of the soft regions may be activated at low 

stress, explaining the slightly lower yield strength of the cold-rolled sample compared to the as-cast 

material [12,18]. On the other hand, the hard regions may hinder or stop the propagation of the shear 

bands previously formed in the soft areas [12,18]. In order to accommodate further strain, new shear 
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bands have to be generated in the hard regions, which require increasingly higher critical stresses for 

shear band nucleation and propagation [18], explaining the work-hardening behavior visible in  

Figure 5. This propagation-arrest mechanism may assist initiation, branching and arresting of multiple 

shear bands effectively impeding a single shear band from propagating catastrophically [17,18] and 

resulting in the improved plastic deformation characterizing the cold-rolled material with respect to the 

as-cast samples. 

Figure 6. Cross-section of the metallic glass cold-rolled to a diameter reduction of 10%, 

revealing the formation of different types of shear bands. 

 

3. Experimental Section 

An ingot with nominal composition Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 (purity > 99.9 wt %) was prepared by 

arc melting in a titanium-gettered argon atmosphere. The ingot was remelted several times in order to 

achieve a homogeneous master alloy. From this ingot, cylindrical bulk samples with 2 mm diameter 

and 80 mm length were prepared by copper mold casting. The density of the samples was evaluated by 

the Archimedes principle. The thermal stability of the samples was investigated by differential scanning 

calorimetry (DSC) with a Perkin-Elmer DSC7 calorimeter at 40 K/min heating rate under a continuous 

flow of purified argon. The calorimeter was calibrated for temperature and enthalpy with high purity 

Indium and Zinc, giving an experimental error for the temperature and enthalpy of less than 1 K and 

0.5 J/g, respectively. The structure evolution of the as-cast rod during heating was studied by x-ray 

diffraction (XRD) in transmission configuration using a high-energy monochromatic synchrotron 
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beam (λ = 0.01249 nm) at the ID11 beamline of the European Synchrotron Radiation Facilities 

(ESRF). Diffraction data were collected at a constant heating rate of 40 K/min in order to compare the 

structural evolution with the thermal stability investigated by DSC. The structure of the as-cast sample 

was also investigated by using transmission electron microscope (TEM) using a Tecnai F30 transmission 

electron microscope operating at 300 kV. For the preparation of the TEM specimens, a thin slice of the 

as-cast rod was thinned down to 100 µm by grinding. It was then dimple grinded using a Gatan dimple 

grinding machine. Ion milling (Gatan-PIPS ion miller) was used to remove all mechanical damages 

and distortions introduced by the previous steps. Cylindrical specimens of 2 mm diameter and 4 mm 

length were prepared from the as-cast rod and tested with an Instron 8562 testing facility under 

quasistatic loading (strain rate ~1 × 10−4 s−1) at room temperature. Both ends of the specimens were 

polished to make them parallel to each other prior to the compression test. The strain during the 

compression tests was measured directly on the specimen using a Fiedler laser-extensometer. The  

as-cast cylindrical samples were cold-rolled at room temperature to a diameter reduction of 10% using 

a laboratory rolling mill. The surface morphology of the specimens was evaluated by scanning electron 

microscopy (SEM) using a Gemini 1530 microscope. Poisson’s ratio and Young’s modulus were 

evaluated by ultrasonic measurements using an Olympus 5900 PR ultrasonic pulser-receiver. 

4. Conclusions 

Thermal stability, structure evolution during heating and mechanical properties of the 

Zr58.5Ti8.2Cu14.2Ni11.4Al7.7 bulk metallic glass prepared by copper mold casting, have been extensively 

investigated. The thermal stability of the glass was studied by differential scanning calorimetry, and 

the temperature dependence of the structure was investigated by in-situ X-ray diffraction using a  

high-energy monochromatic synchrotron beam. The results reveal that the crystallization behavior of 

the present metallic is characterized by the annihilation of the free volume at temperatures below the 

glass transition resulting in the densification of the material. The glass displays good thermal stability 

against crystallization and a fairly large supercooled liquid region of 52 K followed by a double-step 

devitrification behavior characterized by the precipitation of a metastable quasicrystalline phase in the 

first stage of the crystallization process and by the formation of tetragonal and cubic NiZr2-type 

crystalline phases in the following crystallization event. Room temperature compression tests of the  

as-cast sample show good mechanical properties, namely, high compressive strength of about  

1,630 MPa and fracture strain of 3.3%. This is combined with a density of 6.32 g/cm3 and values of 

Poisson’s ratio and Young’s modulus of 0.377 and 77 GPa, respectively. The as-cast glass can be  

cold-rolled up to a dimensional change of about 10% without macroscopic damage. The cold-rolled 

material displays improved mechanical properties compared with the as-cast metallic glass, the 

strength rises to 1,780 MPa and the fracture strain increases to 8.3%. This not only offers the 

possibility to cold work the present BMG, but it gives a method to further improve the mechanical 

properties of the material. 
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