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Abstract: Granular flows of 200 μm particles and the pile formation in a flat-bottomed 

hopper and bin in the presence of air and in a vacuum were predicted based on  

three-dimensional numerically empirical constitutive relations using Smoothed Particle 

Hydrodynamics and Computational Fluid Dynamics methods. The constitutive relations for 

the strain rate independent stress have been obtained as the functions of the Almansi strain 

including the large deformation by the same method as Yuu et al. [1]. The constitutive 

relations cover the elastic and the plastic regions including the flow state and represent the 

friction mechanism of granular material. We considered the effect of air on the granular 

flow and pile by the two-way coupling method. The granular flow patterns, the shapes of 

piles and the granular flow rates in the evolution are compared with experimental data 

measured under the same conditions. There was good agreement between these results, 

which suggests that the constitutive relations and the simulation method would be 

applicable for predicting granular flows and pile formation with complex geometry 

including free surface geometry. We describe the mechanisms by which the air decreases 

the granular flow rate and forms the convergence granular flow below the hopper outlet. 

Keywords: granular flow; granular pile; simulation; constitutive equation; flat-bottomed 

hopper and bin; smoothed particle hydrodynamics; discrete element method; two-way 

coupling method 
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1. Introduction 

Granular flows through a hopper and granular piles subsequently formed on the bottom of a storage 

vessel have been topics of extensive research for several decades. These granular flows and piles are 

used in many kinds of technologies, for example, the handling of minerals, grains, chemicals and 

pharmaceuticals, feeding solid fuels and mining, and appear widely in the natural environment. The 

correct elucidation for static and dynamic mechanisms of granular flow and pile formation contributes to 

the improvement of various production technologies and the prevention of natural geophysical hazards. 

Studies of the mechanism of granular flow in which multi-body contacts and multi-body collisions 

mainly occur are divided into two categories. One is the continuum approach and the other is the 

discrete particle model. The constitutive relations needed for closure in the continuum approach have 

been derived by many kinds of models. Recently, many of these studies have been reviewed by Yuu 

and Umekage [1]. Some other recent studies using the continuum model are as follows: Aranson and 

Tsimring presented the flows in inclined chutes, avalanches, rotating drums, simple shear cells and 

some unsteady flows without many fitting parameters using the continuum theory of partially fluidized 

granular flows [2,3]. They applied dissipative dynamics for the order parameter. Recently, Kamrin and 

Bazant proposed a stochastic flow rule (SFR) where partial fluidization propagates randomly along slip 

lines for granular materials [4]. The SFR assumes incipient yield everywhere and is currently used only 

in quasi-2-dimensional geometries. DorMohammadi and Khoei have developed the three-invariant cap 

plasticity model based on an isotropic-kinematic hardening rule [5]. The calculated stress ratio and the 

volumetric strain versus the axial strain in tri-axial test were compared with experimental results and 

fairly good agreements were observed between them.  

For the granular flow in the hopper, Yang et al. indicated the influence of the use of elastoplastic 

non-coaxial model for granular materials on wall pressure prediction in hoppers [6]. The granular 

material in hopper experiences considerable principal stress rotation. Employing the Nedderman and 

Tuzun kinematic model [7], Chou et al. constructed a boundary-value problem for granular material in 

a two-dimensional flat-bottomed hopper with eccentric discharge [8]. Drescher and Ferjani presented 

the evolution of half-width and height of granular layer in flat bottomed bins using the kinematic 

model [9]. Good agreement between the model and experiment was demonstrated. However the 

kinematic model would be essentially difficult to apply to the very dense granular material. Vidal et al. 

presented the wall overpressure in the hoppers due to discharge using the Drucker-Prager plasticity 

model [10]. They showed that, in the case of the flat-bottomed hopper, the overpressure occurred in the 

lower part of hopper. 

On the other hand, a typical discrete particle model is the Discrete Element Method (DEM), which 

yields simulation results that approximately describe the behavior of granular materials [11]. The 

multi- body interaction forces among particles are directly calculated in it. Many researchers have 

studied granular flows in two and three-dimensional hoppers and silos using DEM. They give 

acceptable qualitative simulation results for real phenomena. For example, Goda and Ebert, Zhu et al.,  

Ahn, Anand et al., Kruggel-Emden et al. and Wu et al. simulated the granular flows in containers and 

the granular discharge using DEM [12-17]. Ketterhagen et al. and Anand et al. investigated 

segregation of granular materials during discharge from hoppers [18-20]. Balevicius et al. studied the 

friction effect in filling and discharge of wedge-shaped hopper using DEM [21]. Kruggel-Emden et al. 
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simulated the granular flow within the hopper of rectangular design with a prism-shaped bottom using 

DEM [16]. They compared the two snapshots of the positions of 6mm spheres with the experimental 

snapshots at t = 2.4 s and 4.2 s after the hopper outlet was opened. Good agreement was demonstrated. 

Based on DEM simulation, Tuzun et al. showed that the great heterogeneity of bulk density exists in 

the granular pile and stratified layers of relatively dense and loose packing in the pile is evidence of 

shear bands [22]. Since the possible number of particles for which calculations can be made in DEM is 

tens of millions or fewer, DEM would not be applicable to simulate directly the mechanism in a real 

system which consists of a large number of granular particles, particularly small particles with 

diameters of less than 500 μm. 

Thus, the significant prerequisites for a better understanding of the mechanics of granular material 

are: more appropriate constitutive relations, better simulations to cover the typical phenomena of 

granular material and experiments for verification of constitutive models and simulation methods. 

Babic et al. derived the phenomenological forms of constitutive equations and presented the transition 

mechanism between rapid and quasistatic granular flows based on the DEM simulation results of two-

dimensional disks [23]. Their results would be used to determine unknown coefficients in the general 

constitutive equations. Recently, Ji and Shen derived the similar constitutive equations and studied the 

internal parameters including the contact time, the multiple collision group size and the coordination 

number for a 3-dimensional simple shear flow of soft poly-dispersed granular materials [24]. The 

results indicate that a relatively sharp transition between solid-like and gas-like phase exists for low 

shear rates, when concentration varies from high to low. One of the objectives set by the present 

authors was to derive constitutive relations based on the mechanical data of granular materials 

obtained by DEM calculation. The microstructures of individual particles in granular material have 

been considered in such constitutive relations. It is desirable for the derivation of constitutive relations 

for a continuum model to use data in mechanical fields which usually appear in granular flows and 

piles. The data for a huge number of particles are not necessary to calculate constitutive relations. 

Therefore, uses of DEM data which describe the behavior of various granular particles seem to be 

suitable for the derivation of constitutive relations for the continuum approach to granular materials. 

The present authors calculated three-dimensional stresses, strains which are represented by the 

Almansi strain tensor including the large deformation and bulk density of cohesionless granular 

material in the same granular stress and strain field of Yuu et al. using three-dimensional DEM [1,25]. 

Based on these data, three-dimensional stress and strain relations, which are the numerically empirical 

constitutive relations, have been calculated and the numerically empirical constitutive equations for 

granular materials have been obtained by the same method as Yuu et al. [1,25]. 

The difference between the constitutive relations of the present paper and references [1] and [25] is 

that the present constitutive relations are the functions of Almansi strain tensor Ea and its scalar, on 

the other hand the constitutive relations of references [1] and [25] are the functions of the infinitesimal 

strain tensor γ and its scalar or the normal and shear infinitesimal strain sizes. Ea is rotation invariant. 

The constitutive relations of the present study are rotation invariant because the constitutive relations 

of the present study are the functions of Almansi strain tensor Ea and its scalar. Thus, the present 

constitutive relations are objective and applicable to the large deformation. Since the rotation is 

included in infinitesimal strain tensor γ, γ is not rotation invariant. Thus the infinitesimal strain tensor 

γ is not applicable to the large deformation in which the rotation frequently occurs. The infinitesimal 



Materials 2011, 4            

 

 

1443

strain tensor γ is not applicable to the present granular flows because there are large deformations in 

the present granular flows in the hopper and bin. 

This paper mainly aims to describe the unsteady, large scale flows of granular materials and the pile 

formation including the final stage of pile with angle of repose using the present constitutive relations 

and SPH, and to validate the present constitutive relations. When the slit is opened, the granular 

material flows out and complex and large-scale flows, including large deformation, occur. Since the 

unsteady flows have many flow states and many phenomena, the comparison of unsteady flows 

between calculated and the experimental data gives the detail validation. So we use a large slit which 

generates unsteady and large-scale flows. The present granular flow from the large slit is a typical 

unsteady and large scale granular flow and presents detailed information about granular flow. Using 

SPH and constitutive relations, the detailed unsteady flows and piles of small particles which would be 

difficult to be simulated by DEM could be simulated. 

In this paper, we present simulation results of those granular flows of 200 μm particles and piles in 

a flat-bottomed hopper and bin for the typical examples of important phenomena for granular material 

using our numerically empirical constitutive relations and verify our constitutive relations and the 

simulation method by comparing them with the experimental results. We considered the effect of air 

on the granular flow and pile by the two-way coupling method which employs Smoothed Particle 

Hydrodynamics (SPH) method for the granular continuum and computational fluid dynamics (CFD) 

for the air with an interacting coupling term and present the interaction mechanism between the air and 

the granular particles in a hopper and a bin. 

A brief review and explanation of the SPH method is described in the next chapter. 

2. Description of Simulation 

2.1. Granular Flows and Piles in a Flat-Bottomed Hopper and Bin 

Yuu et al. calculated the granular stress in granular flows using DEM for spherical glass beads and 

indicated that the stress in the granular material is represented by the strain rate-independent 

(quasistatic) stress by multi-body contacts and collisions and the strain rate-dependent stress by two 

body collisions [26]. The calculated granular stresses and the snap shots of granular flow are in fairly 

good agreement with the experimental results [26]. Yuu et al. showed that the strain rate-dependent 

stress is less than about 5% of the strain rate-independent stress [26], when ( upi/  xj)(Dp/g)0.5 for i ≠ j 

is less than about 0.2 and ( upi/  xj)(Dp/g)0.5 for i = j is less than about 0.04, where  upi/ xj is the 

granular velocity gradient, Dp is particle diameter and g is gravitational acceleration. Based on the 

calculated results of the present study, the maximum values of ( upi/  xj)(Dp/g)0.5 for i ≠ j and (  upi/ 

xj)(Dp/g)0.5 for i = j were about 0.2 and 0.05, respectively. Therefore, the above conditions are almost 
satisfied in the granular flows of the present study. The inertial number I=  ij Dp/(p/ρp)

0.5 for  

i ≠ j has been considered by Jop et al. and da Cruz et al. [27,28], where  ij for i ≠ j is the shear strain 

rate, p is an isotropic pressure which corresponds to the averaged normal stress τ defined by Equation 

8 in the present study and ρp is real particle density. Da Cruz et al. indicated that when I is less than 

10−2, the granular flow is in the quasistatic regime. The inertial number I of the present study is less 

than 10−2 in about 95% of the present granular flow field except the region below the hopper outlet. 
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Thus the main region of the present granular flow is in the quasistatic regime. Therefore the strain  

rate-independent stress plays an important role in the present granular flow and the constitutive relations for 

the strain rate-independent stress are essential for the continuum approach. As shown in Equations 1–6, we 

assume that the strain rate-independent stress τps in the granular flow is represented by the Almansi 

strain tensor Ea and A1-A6 which are the nonlinear functions of the scalar [Eaij Eaij]
0.5 [29], where Eaij 

is the component of Ea. The summation convention with respect to repeated subscript is used in this 

study. Equations 1–6 are our numerically empirical constitutive equations and show the components of 

the strain rate-independent stress, τps, ij. 

τps, xx = f(ρb)[A1 Eaxx + A2(Eayy + Eazz) + A3(Eaxy + Eaxz)]α (1) 

τps, yy = f(ρb )[A1 Eayy + A2(Eazz + Eaxx) + A3(Eayx + Eayz)]α (2) 

τps, zz = f(ρb )[A1 Eazz + A2(Eaxx + Eayy) + A3(Eazx + Eazy)]α (3) 

τps, xy = (A4 Eaxy + A5 Eaxz + A6 Eazy)τ (4) 

τps, yz = (A4 Eayz + A5 Eayx + A6 Eaxz)τ (5) 

τps, zx = (A4 Eazx + A5 Eazy + A6 Eayx)τ (6) 

τps, yx = τps, xy, τps, zy = τps, yz, τps, xz = τps, zx (7) 

τ = |τps, xx + τps, yy + τps, zz|/3 (8) 

where ρb is bulk density of granular material and τ is the averaged normal stress. 

Lubliner suggests in his book that the Almansi strain tensor Ea is the most commonly used strain 

tensor for large deformation [29]. The rotation is excluded in Ea and A1-A6 are scalar functions of Ea. 

Therefore, the constitutive equations 1–6 are objective [29]. Equation 9 gives Ea. 

Ea = (I − B−1)/2 (9) 

where B defined by Equation 10 is the left Cauchy-Green tensor and I is the unit tensor. 

B = FFT (10) 

where F is the deformation gradient tensor and the superscript T means the transpose. The components 

of F are given by Equation 11. 

FiI =  xi/XI (11) 

where xi = xi(XI, t), and XI is the initial location at time t = 0. 

The components of B are given by Equation 12: 

Bij = ( xi/ XI)( xj/XI) (12) 

Appendix A shows the calculation method of Eaij using Equations 9 and 12 in SPH. 

A scaling factor α in Equations 1–3 is the ratio of the characteristic normal stress τa for the real field 

to that τaa of the criterion field in which the numerically empirical constitutive equations have been 

calculated, that is, α = τa/τaa. The scaling factor α was taken as the ratio of τa = (bulk density) 

(gravitational acceleration) (maximum height of granular layer) = ρb g hm to τaa = the maximum vertical 

normal stress in the criterion field. In the present calculation α = τa/τaa = (1500) (9.8) (0.0867)/(130) = 9.80 

was used. 
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The functions A1–A6 have been obtained by the same method of Yuu et al. using the same data of 

DEM results in the granular stress cell for obtaining constitutive equations of 200 μm particles [1,25]. 

Yuu et al. calculated 16,711 DEM particles which were 200 μm spherical glass beads. The constitutive 

relations in the present study are specific to the particle size. Strictly speaking, for each particle size a 

different set of functions A1–A6 should be obtained using DEM. In the present study the constitutive 

relations for 200μm glass beads were employed to simulate granular flows of 200 μm glass beads.  

The outline of the method to obtain A1–A6, namely the constitutive equations 1–6, is as follows:  

As indicated in References [1,25], the components of the stress and strain, and the packing fractions 

ρb/ρp of the computational cell in the granular stress field for obtaining constitutive equations were 

calculated using DEM. When we used DEM data in the stress cell [1,25], the components of the 

Almansi strain tensor were calculated by the similar method to that shown in Appendix A. In these 

calculated results, the packing fractions ρb/ρp of the computational cell in the granular stress field were 

0.594–0.604 [25]. The difference of the packing fractions was small. The averaged value 0.6 was used 

for the calculation to obtain A1–A6 in the present calculation. We used the simple linear equation of 

state, f(ρb) = (5/3)(ρb/ρp). The constant 5/3 was decided by f(ρb) = 1.0 at ρb/ρp = 0.6 in the criterion field of 

the DEM calculation to obtain the constitutive equations. The scaling factor α is equal to 1, because the 

stress field is identical to the criterion stress field calculated using DEM for the constitutive equations. 

Substitution of components of the stress and the strain Ea obtained by DEM as mentioned above, the 

packing fraction, ρb/ρp = 0.6, and the scaling factor, α = 1, into Equations 1–6 gives the algebraic 

equations for A1–A6. The solutions give A1–A6 for each stress and strain in the granular material. We 

assumed that A1–A6 are functions of the scalar |Eaij| only. The results for A1–A6 were plotted in 

figures of which abscissas are the scalar |Ea| = [Eaij Eaij]
0.5 of Ea. For example, Figure 1 shows the 

results of A1 and A4. The maximum value was reached in the initial elastic region. Substitution of the 

functions obtained by fitting A1–A6 into Equations 1–6 gave the numerically empirical constitutive 

equations. The functions A5 and A6 which were much smaller than A4 were omitted in this paper. All 

of these fitting functions of A1–A4 are shown in Appendix B. Figure 2 shows τps,zx for an example of 

τps, ij obtained using A1–A4 in the stress cell for the constitutive relations. Region A in the figure is an 

initial elastic region and A’ is a transitional region between the elastic and the plastic regions. The 

plastic deformation starts at point B, namely the yielding point. Therefore the reference to a yield 

condition is not necessary in our constitutive equations. It is obtained automatically. The region A’ and 

the point B show the granular friction process. First the elastic deformation occurs through the process 

A. When the deformation process advances and reaches point B, plastic deformation occurs and the 

granular material flows clearly. If the strain increment becomes negative, in other words the strain 

decreases, the unloading process takes place, for example, at point C and the stress decreases rapidly 

through process D1. If the strain increases, the reloading process begins through D2. Region D2 and 

point F are reloading elastic process and yielding point. Similarly G, H, I and J are other examples of 

unloading and reloading processes. The gradient of D2 is higher than that of A. This means that larger 

stresses, in other words larger forces, are necessary for deformation under the reloading process. Through 

these processes, the flow velocity decreases and the granular material finally becomes quiescent. 
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Figure 1. Calculated results of A1 and A4 by Discrete Element Method (DEM) data and 

fitting formulas in Appendix B. Scalar |Ea| is defined as [Eaij Eaij]
0.5 = [Eaxx

2 + Eayy
2 + Eazz

2 

+ 2(Eaxy
2 + Eayz

2 + Eazx
2)]0.5. 

 

Figure 2. Strain rate-independent shear stress τps,zx obtained by the constitutive Equations (1)–(6). 

 

For confirmation, the stresses obtained by the constitutive equations with these functions are 

compared with the stresses obtained by DEM in Figure 2. It is not surprising that good agreement is 

obtained. Figures 1 and 2, and Appendix B describe the main features and asymptotic behavior of  

A1–A4 and the strain rate-independent stress τps. 

The strain rate-dependent stress τpd, ij is the stress due mainly to two body particle collisions and is 

represented by a function of the strain rate. Almost the same equations as the first terms of Yuu et al. [26], 

which are the basically similar equations to Equation 3 of Jop et al. [27], were used for the strain rate-

dependent stresses τpd, ij in this paper. The equations used were as follows: 

τpd, i j = −B1( Dp / g )0.5  ij τ for i = j (13) 

τpd, i j = −B2( Dp / g )0.5  ij τ for i ≠ j (14) 

The constants B1 = 1.67 and B2 = 0.0175 were obtained according to the results of Yuu et al. [26]. 



Materials 2011, 4            

 

 

1447

The SPH method can be extended to simulate many kinds of dense granular phenomena using 

constitutive relations, particularly granular flows from a container by Sugino and Yuu, granular 

collapse by Yuu et al, post-failure flows by Bui et al. and flows of fractured ice through wedge-shaped 

channels by Gutfraind and Savage [25,30-32]. The details of SPH calculation procedure are omitted 

here, because Monaghan has described it in detail [33]. The computational domain of continuum 

granular material is divided into many imaginary (hypothetical) particles which overlap with each 

other, and the Lagrangian trajectories of these particles with mutual interactions are calculated to 

describe the mechanical field of the granular material, which is assumed to be a continuum. The 

distribution of a physical quantity associated with the imaginary particles is given by the kernel 

function and the value of a physical quantity at a point which is a center of an imaginary particle is 

obtained by integration over all of the overlapping imaginary particles. 

The smoothed value <f(xk)> for the physical quantity f(xk) at position xk in the SPH method is 

defined as follows: 

       xxxxx dfwf llkk  (15) 

where xk and xl are the position vectors of the centers of imaginary particles k and l, and w(xk − xl) is 

the kernel function. ρb(xl)Δxl = m0 shows the relation between the bulk density ρb and an imaginary 

particle mass m0 , where Δxl = ΔxlΔylΔzl in the three-dimensional case. 

The bulk density of granular material is obtained using the continuity equation (mass conservation 

equation of granular material) transformed as: 

i

b
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u
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d




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


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 (16) 

where t and upi are time and granular velocity component. 

The interactions of other imaginary particles whose centers are within the sphere of 2hk in  

radius are taken into account to obtain the smoothed values at the center of particle k [34], where  

hk = [m0/ρb(xk)]
1/3 is a distance between imaginary particle centers at xk. The third order spline 

functions which are the same formula of Monaghan were used for kernel functions in the present  

study [33]. Imaginary particles of 20–60 existed in the sphere of 2hk in radius. The rapid approach of 

imaginary particles towards one another causes an unnecessarily large stress gradient in SPH 

calculation. Usually, the viscosity term is added to the stresses to prevent the occurrence of an 

unnecessarily large stress gradient. We used the same formula as Monaghan for this term [33,35]. 

The governing equation is the three-dimensional momentum conservation Equation 17 of granular 

material and the continuity Equation 16. 
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 (17) 

Here τps, ji is the strain rate-independent stress tensor obtained by the constitutive equations 1–6. The 

calculation method of Ea in the constitutive Equations 1–6 in the granular flow by SPH method is 

shown in Appendix A. The strain rate dependent stress τpd,ji is obtained by Equations 13 and 14.  

In Equation 17, Φ, P, and gi are the void fraction (1 − ρb/ρp), the air pressure, and the component of 

gravitational acceleration, respectively. 
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The strain rate independent stress τps, ij mainly acts on granular materials which have particles in 

contact with one another. Yuu and Umekage showed that the strain rate-independent stress acts on 

granular materials in the region in which the packing fraction ρb/ρp is larger than about 0.5 in the 

compression [36]. Therefore, we assumed that, if ρb/ρp is less than 0.5, the strain rate-independent stress 

at that point rapidly decreases by the factor [ρb/(0.5ρp)]
96. This stress is obtained by multiplying the 

components in Equations 1–3 by [ρb/(0.5ρp)]
96. For powers of 96 or above, the calculated results were 

not significantly different. The difference between the simulation results obtained using the 96th power 

and the 300th power was negligibly small. On the other hand, taking the power below 96 affected the 

calculated results. This means that taking the power below 96 does not represent the above-mentioned 

rapid decrease of the strain rate-independent granular stress. Thus, we used the 96th power, namely the 

factor [ρb/(0.5ρp)]
96, to represent the rapid decrease of the strain rate-independent stress when ρb/ρp 

becomes less than 0.5. 

When the increment of normal strain component in the main direction that is vertical in the present 

calculation becomes negative at a location, we take the location as the end of the loading process and 

the beginning of an unloading process in the present calculation. The rapid decrease of stress for 

unloading is calculated using the unloading process constitutive equations which are omitted here.  

At the end of the unloading process, the point xi was set to the initial point XI for the calculation of the 

Almansi strain tensor. If the main normal strain increases, the reloading process occurs. The stresses 

are calculated using the reloading process constitutive equations, which are omitted here. The unloading 

and the reloading constitutive equations are similar to the initial elastic region of Equations 1–6 for the 

loading process as shown in Figure 2. 

The particle source term Spi on the right-hand side of Equation 17 indicates the mutual interaction 

between real granular particles and air. When Equations 16 and 17 for the granular flow and the 

Navier-Stokes Equation 18 and the continuity equation 19 for the air flow are solved simultaneously, 

the motions of granular material and air are linked through the interaction terms Spi for granular 

particles and −Spi for air. This is the two-way coupling method [34,37]. Substitution of the drag 

coefficient into the equation derived by Squires and Eaton [38] gives the equation for Spi, which is 

described in the next section. As shown in Equations 16 and 17, one can solve Equations 16 and 17 as 

Lagrangian differential equations. The second order Runge-Kutta method is used for the Lagrangian 

time derivative terms. The trajectories of imaginary particles are obtained. The time step Δt = 2 × 10−6 s 

was used for the numerical calculation in order to satisfy the Courant condition based on the speed of 

sound in the granular continuum using the same method as Gutfraind and Savage [32]. The  

second-order central difference scheme was used for spatial derivative terms. 

2.2. Air Flow in a Flat-Bottomed Hopper and Bin 

The governing equations for the air flow are the three-dimensional Navier-Stokes equations with 

interaction terms between the air and particles, and the fluid continuity equation as given in the 

following equations [39], 
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 (18) 
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0
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
 (19) 

Here, ui and P are the air velocity component and air pressure, averaged in the air space. ρ and μ are 

the air density and air viscosity. 

Substitution of the drag coefficient into the equation of the drag force gives the equation for Spi.  

We used Schiller and Naumann’s experimental drag coefficient [40], which is applicable to flows of 

the particle Reynolds number Rep = Dp|u − up|ρ/μ < 1000, where |u − up| is the relative velocity scalar 

between the air and the real particle. In the present calculation we used Dp = 200μm, which is the same 

as the glass bead diameter for DEM data by which we obtained the constitutive Equations 1–6 and  

the same as that used in the experiment. The maximum particle Reynolds number in this study was 

about 150. The equation of Spi is: 

       piippi uunDS
687.0

pRe15.013 /Cc (20) 

where n is the number density obtained by dividing the bulk density of the granular continuum by the 

real particle mass, ρb/[(πDp
3)/6]. The correction factor ξ(Φ) in the above equation describes the effect 

of neighboring particles on the drag force. We used the experimental Equation 21 presented by 

Umekage and Yuu [41]. This equation is applicable to particles of which packing fraction is less than 

0.74 for the most densely packing. 

ξ(Φ) = 3.8 − 5.4/Φ + 2.6/Φ2 (21) 

Figure 3. (a) Computational domain and boundary conditions; (b) Experimental apparatus 

for snapshot of granular flow; and (c) Experimental apparatus for granular flow rate. Bold 

and dotted lines in (a) show the solid wall boundary conditions (side and bottom walls) and 

free boundary conditions (top of hopper and front and rear walls of hopper and bin). 

 
 

The slip factor Cc in Equation 20 is 1.0 for a particle of Dp = 200μm at atmospheric pressure [42]. 

The pressure equation derived by taking the divergence of Equation 18 was solved by the relaxation 
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method [43]. Uniform cubic cells were used for the present computation of air flows. The size and the 

number of air computational cells are 1.25 mm and 64,000, respectively. Since the Reynolds number 

based on the slit width of the hopper in the present study was less than 2600, the air flows were 

laminar. In this case, 1.25 mm of the air computational cell size is sufficiently small to represent the air 

flows in the hopper and bin shown in Figures 3(a) and 3(b). The fourth-order and the second-order 

central difference schemes were used for the convection terms and for other spatial derivative terms, 

respectively, in Equations 18 and 19. The second-order Runge-Kutta method was used for the time 

derivative terms. 

3. Computational Domain, Conditions and Procedure 

The region above the slit is a hopper and the region under the slit is a bin as shown in Figures 3(a) 

and 3(b). The dimensions of the computational domain shown in Figure 3(a) are the same as that of  

the experimental apparatus shown in Figure 3(b) except the length in the y-direction. Five-millimeter 

length in the y-direction of the computational domain represents the center region of 30 mm length of 

the experimental apparatus. We experimentally validated that a length of more than 30 mm in the  

y-direction of the experimental apparatus did not affect measured granular flow patterns. This means 

that the effect of the front and the rear glass walls of the experimental apparatus on the granular flow in 

the center region of 30 mm length in the y-direction of the apparatus is negligibly small. The boundary 

conditions are shown in Figure 3(a). A partition is 5 mm cubed. We introduce the hypothetical outer 

computational domain of which width is one partition, 5 mm, along the solid wall and the free 

boundaries. The imaginary particle configuration in the outer computational domain is symmetric with 

the imaginary particle configuration in the adjoining part of the interior computational domain. The 

hypothetical outer particle velocity component perpendicular to the solid wall boundary is set to be 

opposite to the inner particle velocity component. The other velocity components and the physical 

quantities of the hypothetical outer particles are equal to those of the inner particles. Twenty seven 

partitions shown in Figure 3(a) around the reference particle i were used for searching the imaginary 

particles including the hypothetical outer particles in the interaction range 2 hi. When the shear and 

normal stress ratio, for example |τps,zx/τps,zz|, within hk adjoining the bottom and the side walls in the 

calculation of the granular flow and the pile formation process became less than 0.3, which was the 

friction coefficient between the granular layer and the solid wall. The velocity parallel to the wall was 

rapidly decreased to zero by multiplying by 0.95 for each time step Δt. In the SPH method, Lagrangian 

motions of the imaginary particles are calculated, and thus the free surface is obtained automatically. 

No constraint is needed at the free surface of SPH calculation. The initial imaginary particle 

configuration is regular and uniform. The number of imaginary particles and the initial length between 

the imaginary particle centers are 9000 and 1.67 mm, respectively. The calculation using 21,460 and 

1.25 mm has given almost the same results of the granular flows in the same hopper and bin. Thus the 

imaginary particle number 9000 and the initial length 1.67 mm are reasonable to represent granular 

flows in the hopper and bin shown in Figures 3(a) and 3(b). The initial packing fraction is 0.6 which is 

equal to the averaged initial packing fraction of the experiment. The initial imaginary particle velocity 

and the initial air velocity in the whole region were zero and the sedimentation of imaginary particles 

was started under gravity. When the settling velocity of imaginary particles became less than hundreds 
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of micron per second after sufficient sedimentation, we assumed that this was the initial state and the 

slit at the center of the flat-bottom of the hopper was opened instantaneously. This means that the wall 

conditions at the slit were removed instantaneously. Then the granular material flowed through the slit 

and piled on the bottom of the bin. Air flows in the hopper and the bin were generated by the granular 

flow. The experiment was done similarly. Main computational and experimental conditions are shown 

in Table 1. 

Table 1. Computational and experimental conditions. 

 Computational conditions. Experimental conditions. 

Particle Spherical glass beads Spherical glass beads 

Particle diameter, Dp 200 μm 201 μm 
Standard deviation of Dp 0 μm 6 μm 

Particle density, ρp 2500 kg/m3 2490 kg/m3 
Initial particle bed height 83.3 mm 83.3 mm 

Initial packing fraction, ρb/ρp 0.6 0.6 
Imaginary particle mass of SPH, m0 6.94 × 10−6 kg － 

Number of imaginary particles of SPH 9000 － 
Initial distance between imaginary  

particle centers of SPH, hk 
1.67 mm － 

Computational cell sizes of air velocity, 

Δx = Δy = Δz 
1.25 mm － 

Number of computational cells of air  

velocity, Nx × Ny × Nz 
80 × 4 × 200 = 64,000 － 

Time Step, Δt 2.0 × 10−6 s － 

We used a PC, which was a DELL Precision 390 (3.2 GHz), for the computation. It took about  

600 hours for SPH and CFD calculation of 1.0 s real time phenomena for the granular flows and piles 

in the hopper and bin. 

4. Experimental Apparatus 

Figure 3(b) shows the experimental apparatus. Photographs taken by a digital video camera, SONY 

DCR-TRV20, of which shutter speed is 1/500 s, show the experimental results. A snapshot is obtained 

per 0.0333 s. The spherical and nearly mono-dispersed glass bead powder was used for the present 

experiment. The averaged diameter, the standard deviation and the particle density ρp are 201 μm,  

5.6 μm and 2500 kg/m3, respectively. These values are almost the same as those used for the present 

calculation as shown in Table 1. The vacuum pomp (ULVAC KIKO Inc. GVD-200A, Ultimate 

pressure 0.07 Pa) in Figure 3(b) was used to maintain a vacuum in the apparatus for the experiment in 

a vacuum. Figure 3(c) shows the experimental apparatus for measuring the granular mass flow rate.  

As shown in Figure C1 of Appendix C, a plastic plate was inserted to stop the granular flow from the 

slit. The plastic plate was stopped by a trigger plate and was stretched by four strong rubber bands in 

Figure C2. The trigger plate was connected to a solenoid valve by a piano wire in Figure C2. The 

trigger plate was released by the solenoid valve as shown in Figure C3 and the plastic plate was pulled 

out. After that, the clearance was rapidly choked by the shrinking rubber cement already applied. The 
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action time of the solenoid valve is 0.005 s. A snapshot by the video camera we used is obtained per 

0.033 s. The first snapshot showed the stationary plastic plate and in the second snapshot after 0.033 s 

the plastic plate already disappeared. Therefore the initial state exists at 0.0 s–0.033 s. The accuracy of 

the video camera is 0.033 s, so we assumed that the second snapshot was the initial state of the flow 

pattern experiment. The same procedure was done in the experiment of granular flow rate. The 

granular mass from the hopper outlet was measured by the load cell of which the accuracy is 10−3 N, 

Kyowa Electronic Instrument, during 1.0 s using 10 ms sampling time. The time derivative of the 

granular mass gives the flow rate. As shown in Figure 3(c), the thick paper of which top is near the 

hopper outlet was set to reduce the momentum of granular flow. 

5. Results and Discussion 

5.1. Granular Flows and Piles in a Flat-Bottomed Hopper and Bin 

Figure 4 shows the comparison of the calculated granular flow patterns and piles with the 

experimental results in the flat-bottomed hopper and bin. Dots in the calculated results in the figures 

indicate 50 dots per one imaginary particle distributed randomly in a sphere of radius 2hk, interacting 

range, in the continuum of granular materials using normal random numbers with the standard 

deviation = (2/3)hk for visualization of the calculated results, where hk is a distance between imaginary 

particle centers. We plotted dots around centers of all imaginary particles existing in the computational 

domain. In this paper, the presence of air means the presence of air under the atmospheric pressure and 

the very low pressure means 10 Pa of which state is nearly a vacuum. Figures 4 (a)1 and (b)1 show the 

calculated and the experimental initial states in the presence of air, and Figures 4 (c)1 and (d)1 show 

the initial states in a vacuum, respectively. Figures 4 (a)2–(a)4 and Figures 4 (b)2–(b)4 show the 

calculated and the experimental granular flow patterns in the presence of air, and Figures 4 (c)2–(c)4 

and Figures 4 (d)2–(d)4 show the calculated and the experimental granular flow patterns in a vacuum 

at t = 0.17, 0.2 and 0.3 s after the slit is opened, respectively. The slope of the top free surface of the 

granular flow in the hopper in a vacuum is steeper than that in the presence of air. The stripes that 

appeared alternately in the calculated granular flow patterns through the hopper outlet indicate the high 

and low bulk density bands. The granular flow areas from the slit outlet to the top of the granular pile 

on the bottom of bin in Figures 4 (a)2 and (c)2 were magnified in order for the stripes to be 

recognizable and shown in Figures 4 (a’)2 and (c’)2. These stripes are not clear in the experimental 

snapshots of granular flow patterns. The high and low bulk density bands would be caused by the 

dynamic arches like the stick slip flow which formed in the upper stream on the hopper outlet. The 

calculated and the experimental flow patterns shown in these figures indicate that the granular flow 

reaches the bottom of the bin and the granular material begins to pile on the bottom of the bin. The 

stripes which indicate the periodic fluctuation in the calculated granular flow continues downstream to 

the top of the pile. The width of the granular flow in the presence of air through the outlet becomes 

narrower as it flows downstream as shown in Figures 4 (a)2–(a)4 and Figures 4 (b)2–(b)4, namely, the 

granular flow below the hopper outlet is converged. This is the convergence flow from the hopper 

outlet. It is not clear what causes the convergence flow. Figures 4 (c)2–(c)4 and Figure 4 (d)2–(d)4 

show that the convergence flow does not arise in the granular flows in a vacuum and in the very low 
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pressure. Therefore, the air would primarily cause the convergence flow. We discuss the mechanism 

later. Flow patterns in the hopper show the funnel flow which is such that the granular material above 

the slit is mainly in motion and there are large quasistatic regions on both sides of the hopper bottom. 

The granular flow through the outlet has collided with the bottom of the bin and separated to both side 

walls of the bin. The granular material that has impacted on side walls slightly climbs along them. The 

size of pile on the bottom of the bin in these figures shows that the granular flow rate in the presence of 

air is smaller than that in a vacuum. As discussed later, the interaction between granular particles and 

the air flow reduces the granular flow rate. A small swelling appears on the center of the top surface of 

the granular flow in the hopper. Both figures of the granular flows in the presence of air and in a 

vacuum show the small swelling. The observation of the granular flows suggests that the collision of 

the granular flows from both sides of the top surface in the hopper would raise the granular particles 

and form the small swelling at the center of the top surface. 

Figures 4 (a)5, (b)5, (c)5 and (d)5 show that more than half of the granular material has flowed out 

through the hopper outlet at t = 0.4 s. The free surface on the pile in the bin is nearly horizontal and 

does not form the angle of repose. The pile grows with the similar shape to those at t = 0.2 s and 0.3 s. 

The shape of pile at t = 0.5 s in the presence of air is still similar to those at t = 0.2s–0.4s as shown in 

Figures 4 (a)6 and (b)6, but on the other hand the pile in a vacuum is forming the angle of repose 

because the granular flows from the hopper outlet become quite small and the streams on the free 

surfaces on the pile in the bin are small as shown in Figures 4 (c)6 and (d)6. Figures 4 (a)7, (b)7, (c)7 

and (d)7 show that the flow patterns and piles of granular material at t = 1.0 s are nearly the final flows 

and shapes of piles in the hopper and the bin. The calculated velocities of granular flows except on the 

free surfaces and in the small flows from the hopper outlet are less than about 400 μm/s. Therefore, the 

granular material is almost quiescent. The angles of repose obtained from the calculated piles as shown 

in Figures 4 (a)7 and (c)7 are about 30 degrees (=0.52 rad) which are equal to the experimental angles 

of repose measured from the experimental piles in Figures 4 (b)7 and (d)7. Figure 4 shows that the 

calculated time evolution of granular flow patterns, the sizes and shapes of piles in the hopper and in 

the bin in the presence of air and in a vacuum are in fairly good agreement with those of the respective 

experiments. The presence of air largely affected the granular flow of 200 μm particles and changed 

the whole granular flow pattern.  

The simulation and experimental results of the granular flows and piles of small particles and large 

outlet are rare at the present stage. Thus, the direct comparison of the present results with other results 

which are dependent upon the geometry of hopper and bin, particle size and other factors is difficult. 

The time evolution of surface angles, of which dependency upon the geometry of hopper and bin, 

particle size and others would be comparatively small, of the present simulation and experimental 

results is compared with the results of DEM, Spot, Weighted spot and Weighted spot, β = 3 by  

Rycroft et al. [44] in Figure 5. In this figure, the initial state (t = 0) is the state when the flat free 

surface begins to incline. The results show that the free surface angles increase with increasing time. 

The simulation result of Weighted spot, β = 3 correspond well with the results of DEM by Rycroft et 

al. It is unclear whether the parameter of biasing, β = 3, is widely applicable to various granular flows 

with free surface. The present simulation results of the evolution of surface angle averaged on the free 

surface is in good agreement with our own experimental results. The initially flat free surface becomes 

more inclined and the angle gradually increases to the angle of repose as shown in Figure 4. 
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Figure 4. Calculated and experimental snapshots of granular flow in the flat-bottomed 

hopper and bin. (a)1, (a)2, (a)3, (a)4, (a)5, (a)6 and (a)7 Calculated results in the presence 

of air. (a’)2 Granular flow areas from the slit outlet to the top of the pile on the bottom of 

(a)2. (b)1, (b)2, (b)3, (b)4, (b)5, (b)6 and (b)7 Experimental results in the presence of air. 

(c)1, (c)2, (c)3, (c)4, (c)5, (c)6 and (c)7 Calculated results in a vacuum. (c’)2 Granular flow 

areas from the slit outlet to the top of the pile on the bottom of (c)2. (d)1, (d)2, (d)3, (d)4, 

(d)5, (d)6 and (d)7 Experimental results in the very low pressure (10Pa) air. The movie of 

these granular flows is available at the supplementary material of this paper.  
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Figure 4. Cont. 
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Figure 4. Cont. 

 
 

 

Figure 5. Time evolution of the free surface angle. 
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In the present model, the diffusion of particles is not considered. However, Rycroft et al. [45] 

showed that the particle diffusion length is a linear function of particle diameter. Since the particle 

diameter (=0.2 mm) of the present study is small, the diffusion described in the spot model does not 

seem to be very large. The diffusion-like phenomena generated by the nearly periodical fluctuation of 

particle velocity by the stick-slip would not be so small. 

Figure 6 shows the evolution of the calculated granular flow rates from the hopper outlet in the 

presence of air Q and in a vacuum Q* and the experimental granular flow rate in the presence of air QE. 

At the present stage, measuring the granular flow rate in a vacuum has been difficult for us. Thus, we 

have not measured the granular flow rate in a vacuum. The granular flow rate in the presence of air is 

nearly constant during t = 0.05 − 0.33 s except for the period shortly after opening the slit. It decreases 

gradually because a sufficient amount of granular material to maintain the nearly constant flow rate 

does not exist in the hopper. The evolution of the flow rate Q is in fairly good agreement with the 

experimental results QE. Figure 6 indicates that the granular flow rate in a vacuum Q* is larger than 

that in the presence of air Q during the period t < 0.3 s in which a sufficient amount of granular 

material in a vacuum exists in the hopper. The maximum granular flow rate in a vacuum is about 1.5 

times larger than that in the presence of air at t = 0.12 s. The mechanism of the difference by the 

interstitial air is discussed later. The granular flow rates Q, QE and Q* reached extreme values shortly 

after opening the slit, around t = 0.02 s, as shown in Figure 6. The evolution of the calculated vertical 

granular velocity at the center of the hopper outlet in Figure 7 shows the similar extreme value around 

t = 0.03 s. In this paper, the granular velocity, the bulk density and the stress calculated using SPH 

shown in Figures 7–9 and 12 are averaged values in an air computational cell. The high bulk density 

region was formed at the bottom of the hopper by the sedimentation of granular particles before 

opening the slit as shown in Figure 8(a). When the slit is opened, the vertical granular velocity upz is 

accelerated by gravity. The maximum of the product, ρbupz, which is the granular flow rate per unit 

area, was reached shortly after opening the slit, namely at about 0.02 s. After that, the bulk density at 

the slit decreased because the very high bulk density region in the hopper bottom flowed out and the 

granular flow rate decreased. Hence, the maximum of upz was reached at 0.03 s, which is slightly 

different from 0.02 s, as seen above. After 0.03 s, the growing granular stress by the deformation 

decreases upz. After that, another deformation process would decrease the granular stress and increase 

upz. as shown in Figure 7. The experimental vertical granular velocity above the hopper outlet center in 

the plane hopper measured by Sielamowicz et al. showed nearly the same extreme value shortly after 

opening the slit [46]. Figure 6 shows that the granular flow rates Q, QE and Q* fluctuated. The detailed 

calculated results in the presence of air gave that the frequencies of the granular flow rate fluctuation at 

the hopper outlet at z = 100 mm, the bulk density fluctuation, the vertical granular velocity fluctuation, 

the vertical normal stress τps,zz fluctuation and the scalar of the Almansi strain tensor Ea fluctuation at 

x = 50 mm and z = 105 mm slightly upper center of hopper outlet are 0.0058 s, 0.0066 s, 0.0065 s, 

0.0061 s and 0.0071 s, respectively. These are almost the same frequencies. The similar results were 

obtained in a vacuum. This suggests that the stick-slip like fluctuations of stress and strain in the 

granular flow in the hopper would cause these fluctuations. Figure 7 shows that the amplitude of 

granular velocity fluctuation in a vacuum is larger than that in the presence of air. This would be 

because the air drag force stabilizes the motion of particles in the granular flow.  
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The fairly good agreement shown in Figures 4 and 6 suggests that our constitutive relations of 

Equations 1–6 represent the mechanics of granular materials in the hopper and bin. 

Figure 6. Evolution of granular flow rates from the hopper outlet, where Q, and Q* are the 

calculated granular flow rates in the presence of air and in a vacuum, respectively, and QE 

is the experimental granular flow rate in the presence of air. 

 
 

Figure 7. Evolution of calculated vertical granular velocities at the center of slit, upz, in the 

presence of air and, u*
pz in a vacuum. The granular velocity is a calculated value averaged 

in an air computational cell. 
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Figure 8. Calculated iso-contour of packing fraction ρb/ρp in the presence of air in the 

center cross-section of the computational domain y = 2.5 mm. The packing fraction is the 

calculated value averaged in the air computational cell. 

 
 

Figure 9. Calculated iso-contour of vertical normal stress (strain rate independent stress), 

τps,zz in the presence of air in the center cross-section of the computational domain  

y = 2.5 mm. The stress τps,zz is a calculated value averaged in an air computational cell. 
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Figure 8 shows calculated iso-contours of the packing fraction, ρb/ρp, in the presence of air at 0 s 

(the initial state), 0.2 s and 1.0 s after the slit is opened. Figure 8(b) shows high and low bulk density 

bands in the granular flow below the hopper outlet as shown in the calculated granular flow patterns in 

Figure 4. High bulk density regions are formed near both side corners in the bottom of the hopper at  

t = 0.2 s and the bin at t = 1.0 s. The bulk density in the center region of the pile on the bottom of the 

bin is slightly lower than those in the other regions on the bottom at t = 1.0 s. The granular flow toward 

the side walls of the bin has reduced the bulk density in the center region of the pile and the side walls 

which dammed up the granular flow has increased the bulk density in the side corners in the bin.  

As shown in Figure 8, the bulk density changes remarkably between the hopper and bin. Figure 9 

shows the calculated iso-contours of the vertical normal stress component of the stress independent of 

the strain rate in the presence of air at 0.2 s and 1.0 s after the slit is opened. Since the packing fraction 

in the region below the hopper outlet is less than 0.5, the stress, independent of the strain rate, does not 

act on the granular flow in this region. The results show that there are many stripes and spots of the 

stress iso-contour. The elastic and the plastic deformations in the deformation process, including the 

stick slip and the unloading and reloading processes, would mainly cause the sharp local changes and 

form the complex iso-contours. The calculated horizontal normal stress showed the similar iso-

contours, omitted in this paper, to those of the vertical normal stress. The values of the horizontal 

normal stress were roughly two thirds of the vertical normal stresses. 

The weight of the granular material in the hopper and the bin at the nearly final stage, t = 1.0 s in 

Figure 4 (a), is equal to the total sum of the calculated forces acting on the bottoms of the bin and the 

hopper, the side walls and the front and the rear surfaces within the difference of about 2%.  

5.2. Effect of Air on Granular Flow in a Flat-Bottomed Hopper and Bin 

The effect of interstitial air in an open silo was investigated experimentally by Pennec et al. and that 

in an hourglass was done experimentally by Veje and Dimon and Mute et al. [47-49]. Pennec et al. 

experimentally showed that the dilation of granular material and an interaction with interstitial air 

cause the silo hiccups. Figure 10 shows calculated air velocity vector diagrams in the x–z plane at  

t = 0.17 s and 1.0 s. Air flows in the hopper and the bin are generated by the descending granular flow 

from the hopper outlet. The air is dragged by the descending granular particles, and the air flows 

impact the bottom of the bin, ascend along the walls of the bin and form the large vortices. When a 

sufficient amount of granular material exists in the hopper, the air is sucked into the granular flows 

(shear zone) in the hopper from the edge of the hopper outlet as shown in Figure 10(a). The calculated 

vertical distribution of air pressure at the horizontal location x = 31 mm that is near the edge of the 

hopper outlet at t = 0.17 s is shown in Figure 11(a). The result clearly indicates the rapid pressure 

decrease near the hopper outlet (z = about 100 mm). At the initial state, t = 0, only the air exists in the 

bin. When granular material flows out from the hopper outlet to the bin, the air flows up from the bin 

to the hopper owing to the mass conservation of air. The air is sucked from the edge of the hopper 

outlet as shown in Figure 10(a). The sucked air creates the inflow which ascends through the granular 

material in both sides of the hopper and forms large pair vortices in the granular material in the hopper 

as shown in Figure 10(a). These large pair vortices create another large pair of air vortices on the free 

surface of granular material in the hopper. The region in which the descending velocities of air are 
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small in the central region of the hopper as shown in Figure 10(a) is the plug flow zone. As the 

granular material flows out from the hopper, the plug flow zone on the hopper outlet decreases, elapsing 

after the initial state and finally disappearing, as shown in Figure 10(b) and Figures 4(a)7–(d)7. The air 

flow pattern drastically changes after the disappearance of the plug flow zone. As shown in  

Figure 10(b), the air descends along the piles in the hopper and ascends from the center region of the 

hopper outlet. These air flows form a large pair of vortices in the hopper. The air flow in the bin also 

forms large pair vortices on the pile in the bin. 

Figure 10. Calculated air velocity vector diagrams in the presence of air in the center 

cross-section of the computational domain y = 2.5 mm. The point of the arrow head and the 

length of the arrow indicate the position in the flow field and the size of the velocity  

vector, respectively. 

 

Figure 11. Distributions of air pressure P. (a) Vertical distribution at t = 0.2 s and  

x = 31 mm that is near the edge of hopper outlet and y = 2.5 mm. (b) Horizontal 

distribution at t = 0.2 s and 50 mm height from the bottom of the bin and y = 2.5 mm. 
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As mentioned earlier, the calculated granular flow patterns in the presence of air well describe the 

convergence flow in the measured flow patterns at the presence of air as shown in Figure 4. There is 

not a clear convergence flow through the hopper outlet in the calculated and the experimental granular 

flows in a vacuum and in the very dilute air as shown in Figure 4. Figure 11(b) shows that the air 

pressure outside the granular flow is higher than that inside the granular flow in the bin. The air 

pressure decreases toward the center of granular flow. The interaction between granular particles and 

air creates both flows of particles and air toward the center of the bin. Consequently, the equilibrium 

horizontal distribution of the air pressure in Figure 11(b) and the convergence granular and air flows 

below the outlet are formed as shown in Figures 4 and 10(a). 

The descending granular velocity in the presence of air at 20 mm above the hopper outlet is smaller 

than that in a vacuum as shown in Figure 12. This figure also indicates that the direction of the air 

vertical velocity at the same height, 20 mm, from the hopper outlet is upward in the area between the 

plug flow zone and the side walls, and the direction becomes downward in the plug flow zone. The 

descending air velocity is much smaller than that of the granular flow. This means that the relative 

velocity between the granular particle and the air is large. These results suggest that the interaction 

between the granular motion by gravity and the quiescent air is large and causes the air motion and it 

reduces the descending granular velocity. The interaction between granular particles and air is mainly 

represented by Spi term in Equations 17 and 18. The interaction term Spz which acted on particles 

against gravity was about 50% of gravity term in Equation 17 in the central region (x = 20 mm~80 mm) 

at 20 mm height from the hopper outlet at t = 0.2 s after the opening of the slit. As the mean free path 

of the air at 10 Pa becomes about 104 times longer than that at atmospheric pressure [50], the slip 

factor Cc in Equation 20 becomes about 12 times larger [42]. Thus, Spz is very small and the 

descending granular velocity becomes larger at the very low pressure, 10 Pa, than that in the 

atmospheric pressure. The calculated horizontal distributions of the packing fraction near the hopper 

outlet indicated that the bulk density in the presence of air is almost the same as that in a vacuum. 

Therefore, the reduced descending granular velocity by the air decreases the granular flow rate. 

Figure 12. Calculated horizontal distributions of vertical granular velocities upz in the 

presence of air and upz
* in a vacuum and vertical air velocity uz at t = 0.2 s and 20 mm 

above the hopper outlet and y = 2.5 mm. 
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6. Conclusions 

We have obtained the numerically empirical constitutive equations for the strain rate-independent 

stress as the functions of the Almansi strain including the large deformation by the same method as 

Yuu et al. [1,19]. The relations cover the elastic and plastic regions including the flow state. The  

non-linearity of the relations is considered by the functions of scalar of the Almansi strain tensor.  

The relations take account of the bulk density effect by the simple linear equation of state and 

represent the friction mechanism of granular material. We have presented simulation results of the 

evolution of granular flows of 200 μm particles and piles in a flat-bottomed hopper and bin in the 

presence of air and in a vacuum using our three-dimensional constitutive relations by SPH and  

two-way coupling methods. The granular flow patterns, the shapes of piles and the granular flow rates 

in the evolution in the presence of air were compared with the experimental data measured under the 

same conditions. The granular flow patterns and the shapes of piles in a vacuum were also compared 

with the experimental data. The good agreement between these results shows that the present 

constitutive relations and the simulation method would be applicable for granular quasistatics and 

dense granular dynamics in a hopper with complex flow geometry, including free surface. We have 

presented the effect of air on the granular flow of 200 μm particles in a hopper and a bin and shown 

that the air largely affects the granular flow of 200 μm particles in a flat-bottomed hopper and bin. 

These results have indicated the mechanism by which the air decreases the granular flow rate and the 

formation mechanism of the convergence granular flow below the hopper outlet by the interaction 

between the granular particles and air flows. The simulation results have indicated the formation 

mechanism of the granular flow rate peak occurred shortly after opening the slit. 
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Appendix A: Calculation of Eaij in SPH 

In the SPH calculation we labeled each imaginary particle with its initial coordinate XI and 

advected the imaginary particles with the flow. We obtained xi = xi (XI, t) of these imaginary particles. 

We calculated the components of the deformation gradient tensor, FiI =  xi/  XI, and the left  

Cauchy-Green tensor, Bij = ( xi/ XI)(  xj/ XI), using the obtained xi = xi(XI, t) and obtained the 

Almansi strain tensor Eaij. The sphere of 1.2hk in radius of which center is (xi)k of the imaginary 

particle k was divided into two half spheres A and B in the direction xi as shown in Figure A. Values 

(xi − XI) and XI of the imaginary particles existing in each half sphere were averaged. Usually  

4~7 imaginary particles existed in each half sphere. We assumed that  (xi − XI) / XI = [(xi − XI) 

averaged in the half sphere A − (xi − XI) averaged in the half sphere B]/[averaged XI of imaginary 

particles in the half sphere A − averaged XI of imaginary particles in half sphere B]. Other values, for 

example  (xj − XJ)/  XJ and  (xi − XI)/  XJ, were calculated by the same method. Using them,  

FiI and Bij were obtained and Eaij was obtained. 

Figure A1. Example of spheres of 1.2hk in radius, half spheres (A and B) and trajectory  

of imaginary particle for the calculation of the deformation gradient tensor F, the left 

Cauchy-Green tensor B and the Almansi strain tensor Ea. 
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Appendix B: Non-linear Functions of A1, A2, A3, and A4 in Constitutive Equations (1)–(6) 

The fitting functions of A1, A2, A3 and A4 are as follows: 

A1 = 9.4 × 1013a2 + 2.0 × 109a + 9.0 × 105, 0 ≤ a < 0.000045 

A1 = −8.0 × 1014a2 + 8.0 × 1010a − 8.0 × 105, 0.000,045 ≤ a < 0.00005 

A1 = −1.2 × 1017a3 + 6.7 × 1013a2 − 1.4 × 1010a + 1.7 × 106, 0.000,05 ≤ a < 0.0002 

A1 = 1.2 × 1012a2 − 2.1 × 109a + 1.1 × 106, 0.0002 ≤ a < 0.0004 

A1 = −3.6 × 1014a3 + 1.2 × 1012a2 − 1.5 × 109a + 9.0 × 105, 0.0004 ≤ a < 0.001 

A1 = −3.8 × 1012a3 + 4.1 × 1010a2 − 2.0 × 108a + 4.4 × 105, 0.001 ≤ a < 0.0035 

A1 = −1.4 × 1012a3 + 2.7 × 1010a2 − 1.6 × 108a + 4.1 × 105, 0.0035 ≤ a < 0.007 

A1 = −6.2 × 108a3 + 5.5 × 107a2 − 2.1 × 106a + 4.1 × 104, 0.007 ≤ a ≤ 0.035 

A2 = 9.4 × 1013a2 + 2.0 × 109a + 3.0 × 105, 0 ≤ a < 0.000045 

A2 = −8.0 × 1014a2 + 8.0 × 1010a − 1.4 × 106, 0.000,045 ≤ a < 0.000055 

A2 = 7.8 × 1016a3 − 6.2 × 1012a2 − 4.8 × 109a + 8.5 × 105, 0.000,055 ≤ a < 0.00016 

A2 = −7.0 × 1015a3 + 7.4 × 1012a2 − 2.6 × 109a + 5.0 × 105, 0.000,16 ≤ a < 0.00045 

A2 = −2.3 × 1014a3 + 6.2 × 1011a2 − 5.7 × 108a + 3.3 × 105, 0.000,45 ≤ a < 0.001 

A2 = 1.7 × 1013a3 − 9.5 × 1010a2 + 1.2 × 108a + 1.0 × 105, 0.001 ≤ a < 0.0025 

A2 = −2.7 × 1011a3 + 6.9 × 109a2 − 5.8 × 107a + 2.0 × 105, 0.0025 ≤ a < 0.007 

A2 = 3.1 × 108a2 − 8.5 × 106a + 7.6 × 104, 0.007 ≤ a < 0.012 

A2 = 1.5 × 106a2 − 5.7 × 105a + 2.6 × 104, 0.012 ≤ a ≤ 0.035 

A3 = 7.3 × 1012a2 + 7.3 × 107a + 3.0 × 105, 0 ≤ a < 0.000165 

A3 = −1.8 × 1014a2 + 6.2 × 1010a − 4.7 × 106, 0.000,165 ≤ a < 0.000175 

A3 = 1.5 × 1016a3 − 1.1 × 1013a2 + 5.7 × 108a + 6.5 × 105, 0.000,175 ≤ a < 0.0004 

A3 = −1.2 × 1014a3 + 5.1 × 1011a2 − 7.4 × 108a + 3.9 × 105, 0.0004 ≤ a < 0.0016 

A3 = −9.0 × 1011a3 + 1.1 × 1010a2 − 4.8 × 107a + 7.4 × 104, 0.0016 ≤ a < 0.004 

A3 = −2.3 × 1010a3 + 1.5 × 109a2 − 1.4 × 107a + 3.2 × 104, 0.004 ≤ a < 0.007 

A3 = 6.7 × 109a3 − 2.8 × 108a2 + 3.9 × 106a − 1.9 × 104, 0.007 ≤ a < 0.015 

A3 = −2.2 × 105a2 + 4.4 × 104a − 1.9 × 103, 0.015 ≤ a ≤ 0.035 

A4 = 4.6 × 1010a2 + 1.4 × 106a + 1.5 × 103, 0 ≤ a < 0.00011 

A4 = −3.0 × 1011a2 + 7.2 × 107a − 2.1 × 103, 0.00011 ≤ a < 0.000,13 

A4 = 3.1 × 1012a3 − 5.7 × 108a2 − 3.7 × 106a + 2.7 × 103, 0.000,13 ≤ a < 0.00055 

A4 = −3.9 × 1011a3 + 1.9 × 109a2 − 3.2 × 106a + 2.3 × 103, 0.000,55 ≤ a < 0.0019 

A4 = −2.7 × 109a3 + 4.6 × 107a2 − 2.8 × 105a + 7.3 × 102, 0.0019 ≤ a <0.006 

A4 = −7.4 × 107a3 + 3.1 × 106a2 − 4.6 × 104a + 3.0 × 102, 0.006 ≤ a < 0.015 

A4 = 6.9 × 104a2 − 5.0 × 103a + 1.1 × 102, 0.015 ≤ a ≤ 0.035 

where a = (Eaij Eaij)
0.5 
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Appendix C: 

Figure A2. Apparatus for instant opening of slit. 
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