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Abstract: In this work we review our new methods to computer generate amorphous 

atomic topologies of several binary alloys: SiH, SiN, CN; binary systems based on group 

IV elements like SiC; the GeSe2 chalcogenide; aluminum-based systems: AlN and AlSi, 

and the CuZr amorphous alloy. We use an ab initio approach based on density functionals 

and computationally thermally-randomized periodically-continued cells with at least 108 

atoms. The computational thermal process to generate the amorphous alloys is the 

undermelt-quench approach, or one of its variants, that consists in linearly heating the 

samples to just below their melting (or liquidus) temperatures, and then linearly cooling 

them afterwards. These processes are carried out from initial crystalline conditions using 

short and long time steps. We find that a step four-times the default time step is adequate 

for most of the simulations. Radial distribution functions (partial and total) are calculated 

and compared whenever possible with experimental results, and the agreement is very 
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good. For some materials we report studies of the effect of the topological disorder on their 

electronic and vibrational densities of states and on their optical properties.  

Keywords: amorphous alloys; computational simulations; bulk metallic glasses; electronic 

structure; vibrational densities of states  

 

1. Preamble: Atomic Topology versus Properties 

It is an obvious fact that the atomic constituents of matter, their interactions and their spatial 

arrangements determine the properties of the material. It is desirable then to look at the structure of a 

substance in order to have a close idea of the properties that one should expect when dealing with it. 

This explains the development of experimental techniques that early on gave a picture of the 

distribution of atoms long before there were theoretical advances as a necessary counterpart. This is 

especially true when dealing with complex materials, like the amorphous and the porous, where 

analytical developments were at best applicable to only a very restricted class of substances. 

Computational simulations had to come of age for them to be really helpful and useful, ab initio 

techniques had to be further developed to provide results that would not be parameter dependent or 

potential dependent. But not everything is that simple. Ab initio methods are very computer demanding 

which restricts the size of the samples that can be studied with these methods to at most only a few 

hundred atoms. This implies that nanoscopic structures can be dealt with reasonable confidence, but 

mesoscopic properties will have to wait until the first principles methods are further optimized to be 

able to handle larger number of constituents and defects. There are also a notable amount of 

‗approximations‘ that depend either on the particular method used, or the type of wave functions, or 

whether full core or pseudopotentials are incorporated in the calculations, since these determine the 

quality of the approximation.  

Another factor to be considered is the fact that the calculations have to be carried out on a large 

enough number of atomic constituents to guarantee results that represent the extended structure, 

otherwise the limited sample may not be representative of the bulk since boundary or surface effects 

may significantly alter the outcome of a calculation. To palliate these deficiencies the supercell 

approach has been developed which consists in constructing large atomic cells, with amorphicity or 

porosity, subject to periodic boundary conditions that extend them throughout space giving a ‗false‘ 

sense of a material in the bulk. Evidently the size of the supercell that can be handled with ab initio 

techniques is a limiting factor when dealing with extended mesoscopic defects. Strictly speaking an 

amorphous material would have to have a supercell that contains some 10
23

 atoms since its structure is 

not repetitive and since there are no simplifying Bloch-like theorems-like in the crystalline state—that 

would allow handling smaller but nevertheless representative atomic arrangements; a description of 

such a large structure would be impossible by any means. So what is there to do? It turns out that 

supercells that contain a number of atoms much smaller than 10
23

 can give us realistic information of 

the short and middle range ordering that may exist in a material, since the lengths involved would be 

of the order of tens of angstroms, which is accessible in a first principles computational simulation. 
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Thus, in non-crystalline bulk materials and with present day techniques the ab initio approximations 

can be used to describe: 

 Small nanoscopic defects 

 Short and middle range ordering 

If this is combined with the presence of periodically extended large supercells we can hope to 

create an approximate representation of amorphous materials since long range ordering is absent in 

these disordered atomic structures. Periodic supercells are frequently used in the field of computer 

simulations of complex (amorphous, porous, liquids, etc.) materials, acknowledging the impossibility 

to deal with samples large enough to be fully representative. This leads to the appearance of a spurious 

periodicity in the simulations that is extrinsic to the problem. 

But how do we go about generating an amorphous supercell? Or a porous supercell for that matter? 

Regarding amorphicity, we have previously reported successful calculations using a new approach that 

we have denominated the undermelt-quench approach [1]. Regarding porosity we developed a  

simple process that we named the expanding lattice approach to generate amorphous nanoporous 

structures [2]. Both techniques are innovative and useful to describe a certain class of materials. In this 

review work we concentrate on the approach used in Reference 1, and report some of our results, some 

new and some already published, for amorphous semiconducting and metallic alloys.  

2. Antecedents [1] 

The generation of amorphous topologies has a long history of approaches using a variety of force 

fields and different dynamical approximation methods. Since crystalline semiconductors provoked a 

revolution in electronics it is understandable that amorphous semiconductors were extensively 

produced and studied experimentally. This in turn provoked the development of theoretical models 

that contributed to the understanding of the atomic structure of these disordered materials. Amorphous 

metallic systems are on the other hand very difficult to produce in the laboratory since they tend to 

crystallize rapidly because the amorphous phases can be very unstable. In some materials, high cooling 

rates of ~10
6
 K/s are needed to bypass crystallization and this restricts the thickness of the samples 

obtained to a few micrometers [3]. The first attempts at producing metallic glasses were done by metal 

deposition on cold substrates which invariably led to thin film samples. Metallic glasses obtained by 

rapidly quenching melts were reported in 1960 by Klement et al. who quickly cooled an Au–Si alloy 

from about 1,300 °C to room temperature leading to samples in the micrometer regime [3]. Ab initio 

modeling of metallic systems has been widely used to study local structures in pure and alloyed liquid 

metals [4], but its application to the generation of amorphous atomic topologies of solid metallic alloys 

has been very limited due perhaps to the small number of atoms that can be dealt with, despite their 

potential and necessary applicability to Bulk Metallic Glasses (BMG). Recent work reports the use of the 

Honeycutt-Anderson method to analyze amorphous alloys generated via computer simulations [5]. 

For amorphous systems the attempts to generate reasonable atomic topologies can be classified via 

two extremes: (i) calculations based on ad hoc classical, parameter-dependent potentials, constructed 

for the specific purpose of generating amorphous samples of certain materials; (ii) quantum methods, 

parameterized and ab initio, that can deal from the outset with the thermalization processes used to 

generate the amorphous structures; with the interactions among electrical charges that lead to their 
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structures and lead to their electronic and related properties, to understand their physical and chemical 

behavior. Much simulational work has been carried out both on pure elements and on alloyed  

systems [1]. However, for the purposes of the present work we shall ignore some of the results we 

have obtained for pure elements and will concentrate on the description of amorphous semiconducting 

and metallic alloys. 

For solid amorphous metallic systems the generation of disordered structures using first principles 

techniques is to our knowledge non-existent. There is some published work on the properties of liquid 

metallic systems: pure elements, alloys, and semiconductors, like Si and Ge, which are metallic in 

nature when in the liquid state. In what follows we report some of our unpublished results on the 

generation of amorphous metallic alloys in the solid state. 

Since 1985 Car-Parrinello molecular dynamics [6] and quenching from the melt of  

periodically-continued supercells have been extensively used to ab initio generate amorphous 

structures of covalent semiconductors. Without doubt the pioneering work of Car and Parrinello has 

been a landmark in the development of the field, and has permeated most efforts up to the present. This 

technique of quenching from the melt is frequently used and in the literature is commonly known as 

the melt-and-quench approach; it invariably generates a large number of bond defects, floating or 

dangling, in amorphous semiconductors when their liquid phases are metallic with larger coordination 

numbers. There is another common approach to the generation of amorphous substances in which 

‗perfect‘ random networks are constructed by hand, by switching bonds and adjusting plane and 

dihedral angles, where no bond defects are incorporated. The two procedures are opposite and only 

partially represent real amorphous materials. So it was necessary to search for a different thermal 

procedure that avoids the melting history of the first process and the ‗perfect‘ construction of the 

second, hence the undermelt-quench approach that we have developed [1]. 

Car, Parrinello and collaborators applied their first-principles plane-wave molecular dynamics 

method (Car-Parrinello Molecular Dynamics, or CPMD) to C, Si, and Ge. Their simulations were done 

starting from the corresponding liquid phases and, after cooling them, radial distribution functions 

(RDFs) were calculated for the range 0 < r < l/2, where l is the length of the supercell edge used and 

generally includes the first two radial peaks. Even though the RDFs obtained reproduce reasonably 

well the first two peaks of the experimental results, the overall agreement with experiment varies from 

material to material. Furthermore, the procedure of quenching from the melt produces a large number 

of overcoordinated atoms since some of the liquid phases of these semiconductors are metallic;  

e.g., liquid silicon and liquid germanium have average coordination numbers between 6 and 7, and the 

quenching from the melt preserves some of this overcoordination. This excess of bond defects makes 

the electronic and/or optical gaps difficult to observe.  

Chronologically, the first application of CPMD was to amorphous Si, a-Si [6] and then to liquid 

silicon [7,8] and most of the existing calculations stem from this original work [7-12]. Car and Parrinello 

performed this first ab initio molecular dynamics (MD) study on an fcc periodic supercell with 54 atoms 

of silicon using their plane wave MD method. In their approach a non-local pseudopotential was used 

together with the parameterized local density approximation (LDA) form of Perdew and Zunger for the 

exchange-correlation effects [7]. They obtained good agreement up to the second radial peak, with the 

experimental RDF of a-Ge rescaled to simulate a-Si, and argued that because of the size of their 

supercell, distances larger than 6 Å could not be studied. They pointed out that comparisons of 
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simulated and experimentally determined atomic structures should be carried out with care in view of 

the large number of defects generated in the simulation. A typical simulation for a-Si was started 

above the melting point at about 2,200 K, and the liquid was allowed to equilibrate for ≈ 0.7 ps before 

it was quenched down to ≈300 K at a cooling rate of ≈2 × 10
15

 K/s. During the initial quenching the 

volume of the cell was gradually changed to 1080 Å
3
, the crystalline value. 

Since then several works have appeared that generate disordered structures using CPMD and the 

melt-and-quench procedure. We now present a brief résumé of the pertinent works for our purposes, 

introducing the nomenclature where generally a-AB refers to the family of amorphous alloys that have 

varying contents of the elements A and B, whereas a-AxB1−x or a-AyBz refer to a specific alloy. 

Sometimes we shall use the nomenclature a-ABx just to be consistent with the established 

identification procedure of having an amorphous alloy that has 1 part of element A for x parts of 

element B. 

Let us begin with amorphous hydrogenated silicon. Simulating a-SiH is a difficult task since there 

seems to be a strong dependence of its atomic topology on deposition conditions; also, the chemical 

reactivity of hydrogen is another factor that has to be addressed. Finally, the high mobility of H 

compared to the mobility of Si, and the role of its zero point energy have to be taken into account, 

indicating the necessity of a quantum mechanical ab initio approach to this material. The corresponding 

CPMD work is due to Buda et al. where the plane-wave Car-Parrinello method was applied to an 

amorphous hydrogenated cubic cell of 64 silicons and 8 hydrogens (11% concentration) [13]. These 

authors started out with a liquid material containing both silicon and hydrogen atoms which was 

rapidly quenched, maintaining a density equal to the value of the crystalline material. They report only 

partial distribution functions and the H-H RDF obtained in these simulations compares poorly to the 

existing neutron scattering experiments. We believe that the poor agreement is mainly due to the fact 

that the simulational supercells are melted before being solidified. Fedders and Drabold [14] and Tuttle 

and Adams [15] have also studied a-SiH from first principles. Fedders and Drabold do not report any 

RDF, total or partial, whereas Tuttle and Adams report only the Si-Si and the Si-H RDFs of a cell of 

242 atoms with 11% hydrogen. Tuttle and Adams generated their structures from a liquid at ≈1,800 K, 

which was then quenched to produce an amorphous sample at 300 K. They assumed that the mass of 

each hydrogen atom equals the mass of each silicon atom leading to an unrealistic representation of 

the diffusion of hydrogen in the sample. This unrealistic assumption implies an unrealistic H-H RDF 

so perhaps that is why no H-H RDF is reported in their work. Furthermore, the high mobility of the 

hydrogen atoms relative to the mobility of the heavier silicons makes the handling of an adequate time 

step in the simulation more difficult. 

There were no CPMD-based calculations for a-SiN before the publication of the results of our 

group in 2002, results that shall be presented in Sections 4 and 5. As far as we know a-SiN alloys have 

not been the subject of any other type of quantum molecular dynamics simulations up to the present, 

and therefore our work was the first, and so far it is the only ab initio study of this material. 

For a-CN, there are some ab initio studies using the CPMD approach [16,17]. McKenzie and 

coworkers use random networks that were generated by the melt-and-quench method on a crystalline 

64-atom supercell. They studied the electronic density of states to investigate the probable doping 

mechanism of carbon by nitrogen. Only three different densities were considered, each for two 

concentrations, influenced by the experimental work of Walters et al. [18]. The two concentrations 
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were C62N2 and C56N8, and the three densities were 2.45, 2.95 and 3.20 g/cm
3
. An additional 

simulation was carried out for a density of 2.7 g/cm
3
 and a concentration of C60N4. They claimed that, 

contrary to the experimentally found substitutional doping, their results did not indicate that for low 

concentrations nitrogen behaves as a dopant in amorphous carbon. 

The first CPMD simulation concerning the structure of amorphous silicon carbide, a-Si0.5C0.5, was 

reported in 1992 by Finocchi et al. [19]. They performed CPMD on two different samples, one with  

27 C and 27 Si atoms randomly distributed throughout the diamond crystalline positions, and the other 

with 32 C and 32 Si atoms randomly distributed throughout the rock-salt crystalline structure 

positions. Both samples have a density of 3.1 g/cm
3
. The authors used a melt-and-quench procedure 

where the samples were heated up to a temperature of approximately 4000 K, then they were 

equilibrated during a 1 ps interval and cooled down to approximately 500 K. The authors affirmed that 

the two samples had very similar structural properties, thus they concluded that the simulations were 

not dependent on the initial structures. The electronic properties of these samples were calculated at 

the  point, despite the small number of atoms and the small size of the supercells. In this work the 

authors reported the total and partial RDFs, and the electronic density of states (eDOS). The authors 

observed that the RDFs had a peak around 1.5 Å due to C-C bonds and 1.9 Å due to Si-C bonds, so the 

first coordination shell was formed by two different bond types, also 40–45% of the bonds present in 

the sample were C–C homonuclear bonds. Two conclusions were drawn in the analysis of the 

electronic structure of the amorphous samples: the first was that the material is a semiconductor; the 

second was that the ionicity gap observed in crystalline silicon carbide, c-SiC, located at about −11 eV 

with respect to the Fermi level disappears. 

The second CPMD work was also done by Finocchi et al. and had the objective of studying the 

local atomic environment of a-Si0.5C0.5 [20]. Here the authors generated the amorphous structure of 

SiC using a technique very similar to the previous work [19]. In this paper they could not establish a 

sample structure either chemically ordered or completely random. The general remark was that a 

detailed analysis of each atomic species is of vital importance in order to understand its  

physical properties.  

In order to explore the local atomic environment of a-(SiC)H, Finocchi and Galli in 1994 worked 

out a CPMD amorphization of a simple cubic supercell of 3.18 g/cm
3
 which was made up of 32 C,  

32 Si and 12 H atoms [21]. The a-(SiC)H sample was produced by a rapid quenching from the melt, at 

~4,000 K, to 500 K, using the same procedure as in Reference 19. The authors reported the total and 

partial distribution functions, and the coordination numbers, but since we have not studied this system 

we shall not dwell on it. 

There are a few CPMD studies on amorphous GeSe2. Recently, Massobrio and Pasquarello 

generated amorphous networks by cooling a 120-atom liquid supercell [22,23]. They used 40 Ge and 

80 Se and a periodic cubic supercell with an edge length of 15.16 Å and a density of 4.38 g/cm
3
. There 

are ab initio works based on the Harris density-functional method developed by Sankey and  

coworkers [24]. In the first work, Cappelletti et al. studied the vibrations in amorphous GeSe2 using a  

diamond-like supercell of 63 atoms, 20 Ge and 43 Se [25]. They applied the melt-and-quench process 

to their model and did some removing and adding of atoms to end up with exact stoichiometry: 21 Ge 

and 42 Se, and a resulting density of 4.20 g/cm
3
. They compared their vibrational density of states 

(vDOS) results with the experimental one. In the second work on a-GeSe2, Cobb et al. report a  
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216-atom supercell [26]. In this ab initio study they reported topological, vibrational and electronic 

properties that will be compared with our results later on. 

For completeness, and to the best of our knowledge, there is no CPMD work reported on a-InSe, 

but tight-binding calculations were performed by Kohary and collaborators [27]. They amorphized  

In-Se with different densities and numbers of atoms per supercell, depending on the basis set: 64 and 

124 atoms for DNP and SN basis sets. These cells were made amorphous by the melt-and-quench 

procedure. The positions of the first peak were in the range of 2.60 and 2.76 Å. They concluded that 

there were no Se-Se homopolar bonds for a-In0.5Se0.5.  

No CPMD works on aluminum-based alloys were found, except for a calculation of Alemany et al. 

where the Kohn-Sham ab initio molecular dynamics is applied to study liquid aluminum near the 

melting point [28]. Our own work, which shall be presented at a later stage, is based on the Lin-Harris 

MD, LHMD, and is not self consistent as the CPMD. 

Finally, theoretical studies via simulational modeling exist for the glassy system CuZr, g-CuZr, but 

not for the amorphous CuZr, a-CuZr. Wang et al. performed some ab initio molecular dynamics 

(AIMD) and reverse Monte Carlo studies (RMC) on a sample with the same concentration they had 

used for their X-ray diffraction (XRD) analysis [29]. By comparing the AIMD with the XRD results, 

and RMC with extended X-ray absorption fine structure (EXAFS), they obtained the 3D structure of 

the samples from which they established the short range ordering. Likewise, Mattern et al. carried out 

an RMC study to resolve the partial radial distribution functions (pRDFs) and consequently the 

coordination number [30]. In addition to this, Jakse and Pasturel have reported an AIMD study for the 

Cu64Zr36 alloy [31,32]. They obtained a coordination number closer to the one found by Mattern and 

co-workers, i.e., 13.1. It is noteworthy that these computational works have in common the use of 

plane waves as basis sets and a thermal procedure which leads to obtaining the metallic glass cooling 

from the melt. Also, neither the AIMD studies (except for the work of Jakse and Pasturel) nor the values 

reported experimentally establish clearly the method they used to compute the coordination numbers. 

Another work on the g-CuZr system, worth mentioning although it is not ab initio, is the one done 

by Sun and coworkers where the Finnis-Sinclair potential was used [33]. A complete study of the 

temperature effects on the structural evolutions and diffusivity of this alloy was conducted. In 

particular, the pair distribution functions and common-neighbor analysis were used to investigate the 

structural variations. Also, the mean square displacement and the self part of the van Hove function 

were calculated to evaluate the relaxation and transport properties. Finally, the critical temperature Tc, a 

predicted glass transition temperature for Cu60Zr40 glass former, is calculated to be 1,008 K. An 

interesting challenge is to see what the results would be when using an ab initio approach to this problem. 

It should be clear that, before our incursion in the field, the ab initio amorphization of crystalline 

supercells was essentially based on the melt-and-quench procedure that had been in use in the 

literature since both classical and quantum computer simulations began to appear. It should also be 

clear, as mentioned before, that because the group IV semiconductors are metallic in the liquid state, 

melting them leads to the appearance of extra bonds in the atomic coordination of the liquid state so 

that when the supercells are quenched, some of this overcoordination is carried over into the 

disordered solid phase. The result is that the samples so generated are not fully representative of the 

experimental samples obtained by techniques other than melting and quenching. 
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Our contribution to the field of amorphous semiconductors is having devised a new method: the 

undermelt-quench approach, which does not melt the crystalline supercells but heats them to just 

below the melting temperature, avoiding the liquid state and consequently the overcoordination that 

occurs in this phase compared to the coordination of the crystalline or amorphous solid phases. 

Clearly, the code used was also a determining factor (FAST STRUCTURE SIMULATED ANNEALING by 

Molecular Simulations, Inc.) since it was devised for finding in a rapid manner the minimum energy 

structures of atomic aggregates after having disordered them stochastically. Because of this, our results 

are more representative of the experimental ones and agree better with them. In Section 3 we present 

this method, and its variants. Using our approach, in Section 4 we review results that we obtained, and 

already published, for the following amorphous systems: SiH, SiN, CN, new results are reported for 

silicon carbide, for the chalcogenide binary alloy a-GeSe2, for aluminum-based alloys, a-AlN, a-AlSi, 

and for a-CuZr. In Section 5 we present some physical properties calculated for some of these 

amorphous systems. In particular, we report: the electronic density of states of the hydrogenated 

amorphous silicon samples; the optical gaps of the amorphous silicon nitrogen alloys using an 

approach a la Tauc devised by us and the vDOS using a large, 216-atom amorphous silicon sample 

that lead to results in remarkable agreement with experiment. Section 6 contains general conclusions. 

It remains an issue as to how generally and how accurately an ab initio method that uses a relatively 

small supercell can describe the properties of amorphous materials both semiconducting and metallic. 

The present work addresses this issue and presents new alternative methods to computer generate 

disordered atomic topologies of alloys that agree very well with experiment, when available, as long as 

the defects present are not in the mesoscopic regime and as long as the properties studied are mainly 

dependent on the short and middle range order of the material. 

3. The Undermelt-Quench Approach [1], Its Variants, the Method and the Bonding Criterion 

The new amorphizing thermal procedure described here, was developed by one of the authors 

(AAV) while spending a sabbatical year (1997) at Molecular Simulations Inc, MSI, (now known as 

Accelrys, Inc.), in San Diego, CA, USA, since their code FAST STRUCTURE SIMULATED ANNEALING 

(FAST for short) [34] seemed appropriate to generate bulk amorphous structures. The code was 

developed by John Harris and collaborators to fast find the structure of atom aggregates, but the 

periodic boundary conditions incorporated, and the initial randomness in the atomic velocity 

distribution gave it a broader applicability [35]. 

The ab initio methods attempt to answer questions from first principles and are generally applicable 

without adjustment of parameters. Since these methods are very demanding on computer resources 

they are presently limited to handling a relatively small number of atoms; i.e., to relatively small 

supercells. There is also a notable amount of ‗approximations‘ that depend on the particular method 

used, or on the type of wave functions, or whether full core or pseudopotentials are incorporated in the 

calculations, or the ‗parameters‘ that appear when using approximations for the exchange-correlation 

interaction, to mention those that occur most commonly and that determine the quality of the 

approximation. Within the first principles methods one has the option of using a recursive  

self-consistent approach [36,37] like the one used in CPMD, or using a linear combination of atomic 

orbitals, LCAO, non self-consistent approach employing a functional like the one developed by  



Materials 2011, 4   724 

 

 

Harris [38] and implemented in the LHMD. In general the self-consistent method is more  

computer-demanding than the non self-consistent one. 

FAST, the code that we used at the beginning is, in short, a density functional code based on the 

Harris functional, which generates energies and forces faster than traditional Kohn-Sham functional 

methods, since the code is not self-consistent. However, it is not always possible to use the Harris 

functional since, until recently, it was unable to handle partially filled d-band materials. New 

developments that shall be mentioned later on seem to remedy this situation. In all our calculations we 

have used the LDA with the parameterization of Vosko, Wilk and Nusair (VWN) [39]. Some of our 

calculations are performed on an all electron basis, some use pseudopotentials, particularly when 

heavy atoms are considered. The valence orbitals are described either via minimal or standard basis 

sets of ‗finite-range‘ atomic orbitals with a cutoff radius chosen as a compromise between 

computational cost and accuracy, and in general are different for the various materials. FAST, and later 

developments of the Code, can handle three types of basis sets: (i) minimal, consisting of the atomic 

orbitals occupied in the neutral atom; sp-valence type; (ii) standard, broadly equivalent to a Double 

Numeric basis set, DN and (iii) enhanced, broadly equivalent to a Double Numeric set together with 

Polarization functions, DNP. The computation scales with a high power of the cutoff radius, because 

the time-limiting factor is the number of three-center integrals that have to be carried out [40,41]. The 

linear combination of atomic orbitals utilized makes the minimum energy atomic structures generated 

very close to experiment. The interatomic distances fall within 1% of the experimental values for a 

large variety of small molecules [34,35]. FAST uses optimization techniques through a force generator 

to allow simulated annealing/molecular-dynamics studies with quantum force calculations. The forces 

are calculated using rigorous formal derivatives of the expression for the energy in the Harris 

functional, as discussed by Lin and Harris [42]. Three-center integrals were performed using the 

weight-function method of Delley [40,41] with correction for the dependence of the mesh on the 

nuclear coordinates. This is the essence of FAST, the code developed by Harris et al. for MSI. 

FAST initially disrupts the atomic aggregates stochastically, then heats them using molecular 

dynamics to foster the rearrangement of their atomic constituents and finally cools them to what would 

be the structure of minimum energy, at least locally. Rather than using this code to find the  

minimum-energy atomic structure of a cell, we use it to generate random structures from an originally 

crystalline supercell with periodic boundary conditions. 

The difference between our approach and previous techniques resides in the heating procedure and 

in the code used. It is clear from previous work that quenching from a melt, or from partially melted 

samples, generates structures that only partially resemble the local arrangement of atoms in the 

amorphous material; therefore, we took a different route. A corresponding crystalline supercell with 

the chosen number of atoms and the same density as the amorphous phase is subjected to the following 

process. The supercell is heated from 300 K to just below the corresponding melting temperature (the 

liquidus temperature in binary systems) in 100 steps, with a time step three to four times the default 

value. It is then immediately cooled down to 0 K in the necessary number of steps required by the 

cooling rate which is the same in magnitude as the heating rate. This is the proper amorphizing stage. 

Physical masses of the atoms are used throughout and this allows realistic atomic diffusive processes 

to occur in the system, and lets them move within each periodic supercell. Once this first stage is 

complete, several variants have evolved. In the original process each supercell is subjected to six 
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annealing cycles at a temperature dictated by experiment, with intermediate quenching processes, in 

order to release the stresses generated. Finally, a geometry optimization is carried out. Other variants 

have been developed to describe specific systems. If the atoms are heavy, like in the chalcogenides or 

the BMG-like systems, the stress releasing cycles are reduced to one, or none, to minimize 

computational times but the structure optimization process stays. Finally, a plateau is sometimes 

introduced at constant temperature either below the melting point or above the melting point, 

depending on the material to be disordered and the process desired, i.e., this constant temperature is 

the value at which the system is maintained long enough to foster the amorphizing or the liquefying 

procedure. Then the system is cooled rapidly, usually in one step, or maintained at this temperature. 

The original, amorphizing process will generically be referred to as the undermelt-quench approach 

with its variants. The original process is shown schematically in Figure 1. 

Figure 1. Schematic representation of the original undermelt-quench approach. The first 

process (triangular) is the randomizing part; the rest are the stress-relieving cycles. At the 

end a geometry optimization is carried out. The temperatures considered are specific to 

each material. For variants of this process see text.  

 

 

Since FAST initially disrupts the atomic aggregates randomly, the probability of returning to a 

crystalline structure after the initial heating and cooling (amorphizing) cycle is nil for semiconductors. 

One might think that our approach may be dependent on the initial crystalline structures used, but we 

have demonstrated that the RDFs generated starting with diamond-like low density carbon structures 

are practically indistinguishable from those obtained from initial hexagonal or rhombohedral  

structures [43,44]. 

In the present work the amorphizing procedure was performed self-consistently for CuZr, since the 

Harris functional lacks the tools to deal with partially filled d-band metals. However, recent 

developments indicate the possibility of generalizing the Harris functional to deal with these  

metals [45]. Sometimes energy calculations were carried out using both FAST and the full Kohn-Sham 
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DFT approach [36,37] implemented in the ab initio DMOL3 commercial code [40,41,46] to obtain the 

eDOS curves of the final amorphous atomic structures. 

It should be clear from the outset that our computational processes do not pretend to mimic the 

production of such materials, but only to generate random networks, using ab initio techniques, that 

lead to RDFs that agree with experiment; this agreement allows us to study their topological, 

electronic, optical and vibrational properties. 

Also, since we use at least 108 atoms almost everywhere, we have Fourier-smoothed the RDFs to 

have adequate curves to allow comparison with experiment. The number of atoms used is low and this 

leads to statistical fluctuations that are not representative of the bulk. 

Finally, we would like to mention the criterion that we have used to determine the ‗extension of a 

bond‘. Bonds, being electrical in nature, have in principle an infinite range, but in practice they have a 

finite range, so how is one to define when two atoms are bonded? This is a difficult problem in 

amorphous materials and some authors have carried out extensive searches for possible molecular 

(cluster) structures of a given element, silicon for example, to infer a probable bond length [47]. Others 

opted for the use of localized wave functions, like the Wannier-type, to get an estimate of the bond 

lengths [16]. One can also look at the charge distribution between atoms and set a limit below which 

the bonding is declared nonexistent. We decided to use throughout this work a geometric approach to 

the bonding problem. We believe that the structure of radial distribution functions is a manifest way to 

determine the maximum bond length, especially when there is a clear zero minimum between the first 

and the second peaks which is the case for most elemental, monatomic, amorphous semiconductors. 

When amorphous alloys are considered, a way to determine the bond lengths among the diverse 

species is by looking at the minimum between the first and second peaks of the corresponding pRDFs; 

the maximum bond lengths are then set equal to the position of these minima. Using this approach we 

determine the extension of the bond, and by integrating the area under the corresponding peak of the 

adequate RDF we can also calculate the number of neighbors, although with this procedure it is 

difficult to determine the multiplicity of the bonds (single, double or triple) in a-semiconductors.  

4. Amorphous Alloys: Their Atomic Topologies 

In what follows we shall discuss the amorphization of several alloys, both semiconducting and 

metallic. We also present the atomic topology of some chalcogenide alloys. Some of these amorphous 

alloys have been studied before by means of the more conventional methods mentioned above and it is 

desirable to compare our results, obtained with FAST or with DMOL3 and using the undermelt-quench 

approaches, with previous ones. Both, total and partial RDFs are presented to illustrate the relative 

atomic organization. For some systems coordination numbers and neighbor analysis are reported. 

4.1. Amorphous Hydrogenated Silicon [1,48] 

The experimental hydrogenation of amorphous silicon played a decisive role in the development of 

amorphous semiconductors as useful materials for the electronic industry. However, the computer 

simulation of this ‗alloy‘ has been difficult and our success is doubtless due to the procedure that we 

followed and is described next. 
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4.1.1. Preamble 

Amorphous hydrogenated silicon, a-SiH, was a turning point in the technological applications of 

amorphous semiconductors. The passivation of dangling bonds of amorphous silicon with hydrogen 

opened the door to the doping of amorphous semiconductors. This in turn allowed the control of their 

electrical properties with a direct incidence in their use, analogous to the way in which the n- and  

p-doping of crystalline semiconducting materials revolutionized their use in technology. 

The two amorphous networks generated for pure silicon [1,48], one with the default time step of 

2.44 fs, and the other with approximately four times the default time step, 10 fs, were used as starting 

points for constructing cells of a-SiH. Although the short time step simulation gave an amorphous 

silicon structure in poor agreement with experiment, it was not necessarily a bad starting point for 

preparing a hydrogenated sample. Hydrogen atoms tend to decorate dangling bonds, and the shorter 

time simulation generated more dangling defects. Thus, both configurations of atoms were used in 

attempting to generate an acceptable hydrogenated structure. One simulation was performed with each 

a-Si sample, retaining consistency with the time interval between steps. Starting from the 2.44 fs 

sample, we used the physical hydrogen default time step of 0.46 fs for the subsequent evolution. We 

refer to the resulting structure as the 2.44/0.46 cell. With the second simulation, performed using the 

10 fs a-Si as starting point, we used a 2 fs time step for subsequent hydrogen evolution; this structure 

is referred to as the 10/2 cell. 

Table 1. Fractional initial positions of the 12 hydrogens placed symmetrically within the 

silicon supercells. 

Relative starting positions of the hydrogen 

atoms in the amorphous silicon cells 

H1 

H2 

H3 

H4 

H5 

H6 

H7 

H8 

H9 

H10 

H11 

H12 

(1/4, 1/4, 1/4) 

(3/4, 1/4, 1/4) 

(3/4, 3/4, 1/4) 

(1/4, 3/4, 1/4) 

(1/2, 1/4, 1/2) 

(3/4, 1/2, 1/2) 

(1/2, 3/4, 1/2) 

(1/4, 1/2, 1/2) 

(1/4, 1/4, 3/4) 

(3/4, 1/4, 3/4) 

(3/4, 3/4, 3/4) 

(1/4, 3/4, 3/4) 

 

For hydrogenated amorphous silicon two different procedures were implemented. First the 

amorphous pure silicon cell generated with a time step of t = 2.44 fs was used and then it was 

expanded to a volume of (11.0620 Å)
3
 to reproduce the experimental density, 2.2 g/cm

3
 of the 

hydrogenated structure with 12 hydrogens. Second, a previously expanded crystalline cell of 64 silicon 

atoms with the same volume of (11.0620 Å)
3
 was amorphized using a 10 fs time step. We then placed 

the 12 hydrogens evenly distributed throughout the amorphous cells. The starting locations of the 
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hydrogen atoms in the cell are given in Table 1. The hydrogenated samples were then subjected to 

annealing cycles using a time step of t = 0.46 fs for the first cell (the 2.44/0.46 cell), and t = 2 fs for the 

second cell (the 10/2 cell). The annealing cycles consisted of two cycles of 50 steps at 300 K for the 

large time step sample and one cycle of 200 steps for the small time step sample, with in between 

quenches down to 0 K, to allow the hydrogens to diffuse and move within the cells. This gave a 

concentration of hydrogen of practically 16%, adequate to compare with existing experimental results. 

Figure 2. Direct comparison of the simulated total radial distribution function (RDF) and 

H-H pRDF (Inset) for a-SiH (black lines) to the experimental results (green lines) for the 

2.44/0.46 fs cell. These simulations give a better overall description of the observed  

H–H pRDF. 

 

4.1.2. Results and Analysis  

One important difference between the two simulations was the formation of ‗molecular hydrogen‘ 

in the 10/2 case. The reason for this is the higher number of coordinated Si atoms in this sample, which 

leaves insufficient opportunities for the H-atoms to bond to silicons. In the 2.44/0.46 case, the 

defect/dangling bond density was sufficiently high for all hydrogens to find good bonding locations in 

the a-Si environment. Direct comparisons with experiment for the two cases are shown in Figures 2 

and 3, where in the latter case the peak due to di-hydrogen (molecular hydrogen) was not included. 

While both simulations represent the main features of the measured total RDF reasonably well, the 

H–H pRDF is much better represented in the 2.44/0.46 simulation than in the 10/2 simulation. The 

experimental data of Bellissent et al. [49] are better reproduced by the originally highly defective 

sample of a-Si with added hydrogen. The experimental features observed for r ≈ 0 are spurious [49].  
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Figure 3. Direct comparison of the simulated total RDF and H–H pRDF (Inset) for a-SiH 

(black lines) to the experimental results (green lines) for the 10/2 fs cell. The peak due to 

molecular hydrogen is not shown. 

 
 

The presence of di-hydrogen in the 10/2 simulation is illustrated in the total RDF in Figure 4. The 

molecular hydrogen peak appears at an interatomic distance of 0.875 Å, very close to the molecular 

radius of 0.86 Å found for molecular hydrogen in crystalline silicon [50]. 

Figure 4. Total RDF for the 10/2 fs cell of a-SiH (black line) that shows the presence of 

molecular hydrogen, compared to the experimental results (green line). 

 
 

Figures 5 and 6 represent pRDFs for Si-Si and Si-H for the hydrogenated 2.44/0.46 cell and for the 

10/2 cell. The overall agreement between the experimental and simulated Si–Si and Si–H pRDFs is 
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quite reasonable as the direct comparison indicates. In this case, there is no strong distinction between 

the two simulations. 

Figure 5. Partial Si-Si and Si-H RDFs for the hydrogenated 2.44/0.46 cell. The black lines 

are our simulation and the green lines are the experimental results. 

 

Figure 6. Partial Si–Si and Si–H RDFs for the hydrogenated 10/2 cell. The black lines are 

our simulation and the green lines are the experimental results. 

 
 

Thus the most sensitive probe of the structure of the hydrogenated sample is, as one expects, the  

H-H pRDF. In Figure 7 we pictorially show the locations within the cell where the hydrogen atoms 

were placed at the outset of the simulation. They correspond to the coordinates given in Table 1. 
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Figure 7. The initial location of the 12 hydrogen atoms (darker, larger balls) within the 

amorphous cell of pure silicon is shown. See Table 1 in Section 4.1.1. 

 

4.1.3. Summary  

Hydrogenated amorphous silicon was the first non-single, diatomic, semiconducting material that 

we amorphized with the undermelt-quench approach and the code FAST. This computational protocol 

generated amorphous samples with fewer dangling bonds and fewer overcoordinated defects than the 

standard, widely used, melt-and-quench protocol; it also generated structures having total and partial 

radial distribution functions whose main features lined up well with experimental measurements. In 

the hydrogenated samples, the hydrogen atoms were not placed in position as has sometimes been 

done, but were allowed to move throughout the cell and quench into low energy configurations. Where 

dangling bonds were available, the hydrogens tended to attach there. In the absence of a sufficient 

defect concentration, di-hydrogen formed. 

4.2. Amorphous Silicon-Nitrogen Alloys [1,51-55] 

Amorphous silicon nitrogen alloys, a-SiNx, have attracted a great deal of attention in the last 

decades since they have electrical, optical, and mechanical features useful from the application 

viewpoint and their accentuated covalency makes them very interesting from the fundamental point  

of view. 

4.2.1. Preamble 

The experimental and theoretical knowledge of the atomic, electronic, and optical properties of  

a-SiNx is not as ample as its importance merits. For example, experimentally their total RDFs are 

practically unknown, except for the stoichiometric composition, and the partial radial features are 

nonexistent. Theoretically, no ab initio attempt at simulating total and pRDFs had been performed 

before our work, although first-principles studies of the electronic properties of random structures 

classically generated with Tersoff-like interatomic potentials had been carried out [56]. Since no  
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first-principles generation of random networks simulating realistic total and pRDFs had been reported, 

an ab initio approach that could adequately describe and predict the atomic topology of a-SiNx would 

be useful to understand their electronic features and to explore its applicability to other covalent 

amorphous diatomic materials. This is what we did several years ago. 

Since experimental RDFs are scarce [57-60] and, to our knowledge, only a total RDF for the 

stoichiometric amorphous composition exists [61-63] it was not possible to obtain upper and lower 

experimental bounds to compare with our simulational results [1]. A Gaussian-based decomposition of 

the second peak of the total stoichiometric RDF into its partial contributions was carried out by 

Misawa et al. [62], and this will be the subject of comparison with our simulations. 

We applied our computational protocol to 13 samples each with 64 atoms total and with different 

nitrogen contents x where 0 ≤ x ≤ 1.29, or where 0 ≤ (number of N atoms) ≤ 36, and performed two 

runs for each sample. The content is defined as x = y/(64 − y) where y is the number of randomly 

substituted nitrogens. The core was taken as full which means that an all electron calculation was 

carried out, and a minimal basis set of atomic orbitals was chosen with a cutoff radius of 5 Å for the 

amorphization and 3 Å for the optimization. The physical masses of nitrogen and silicon were always 

used and this allowed us to see realistic randomizing processes of the nitrogen atoms during the 

amorphization of the supercell. The default time step is 1.73 fs; however, in order to better simulate 

the dynamical processes that occur in the amorphization and to optimize computer resources, a time 

step of approximately four times the default, 6 fs, was used for all samples. 

Table 2. Characteristics of 13 samples of amorphous silicon nitrogen alloys, each with  

64 atoms total and with different nitrogen contents where 0 ≤ (number of N atoms) ≤ 36. 

The content is x = y/(64 − y) where y is the number of randomly substituted nitrogens.  

Contents, amorphization temperatures, densities and gaps for 

a-SiNx 

Sample x 
Amorphous temp. 

(K) 

Density 

(g/cm3) 

Average Gap 

(eV) 

Si64N0 

Si59N5 

Si54N10 

Si49N15 

Si44N20 

Si39N25 

Si34N30 

Si33N31 

Si32N32 

Si31N33 

Si30N34 

Si29N35 

Si28N36 

0.000 

0.085 

0.185 

0.306 

0.455 

0.641 

0.882 

0.939 

1.000 

1.065 

1.133 

1.207 

1.286 

1680 

1747 

1814 

1881 

1948 

2015 

2082 

2095 

2108 

2122 

2136 

2149 

2162 

2.329 

2.435 

2.512 

2.600 

2.694 

2.803 

2.931 

2.957 

2.988 

3.017 

3.048 

3.081 

3.115 

1.09 

1.11 

1.05 

1.19 

1.69 

2.49 

3.41 

3.73 

4.10 

4.31 

4.28 

4.69 

4.95 

To avoid quenching from the melt we amorphized the crystalline diamond-like structures by 

linearly heating them from room temperature to just below the corresponding melting point for each x 

in 100 steps, and then cooling them down to 0 K using FAST. To determine the melting temperature for 
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each concentration we linearly interpolated between pure silicon and the stoichiometric compound,  

i.e., the sample with 56% nitrogen. We remained a few degrees below these values (see Table 2) and 

this process was then followed by cycles of annealing and quenching at temperatures suggested by 

experiment; finally the structures were energy optimized. Since the 6 fs time step was kept constant for 

all runs and the amorphization temperatures increased with x as indicated in Table 2, the 

heating/cooling rates varied from 2.30 × 10
15

 K/s for pure silicon to 3.11 × 10
15

 K/s for x = 1.29. The 

atoms were allowed to move within each cell, with periodic boundary conditions, whose volume was 

determined by the corresponding density and content. The densities were taken from the experimental 

results of Guraya et al. [59] (See Table 2). Once this first stage was completed, FAST was used to 

subject each cell to annealing cycles at 300 K with intermediate quenching down to 0 K. Finally, the 

samples were energy optimized to make sure that the final structures would have local energy minima. 

4.2.2. Results and Analysis  

Since the stoichiometric compound is the one that has been experimentally studied [61-63] we 

compared our averaged simulated results for this alloy to the experimental data. In Figure 8 it can be 

seen that the agreement is very good.  

Figure 8. RDFs for silicon nitride, the stoichiometric. The lighter line is the experimental 

curve. The darker line is our two averaged results (a-SiN1.29), properly weighted, with  

ρ = 3.115 g/cm
3
, a 6 fs time step, and a 5 Å cutoff [55]. 

 

In addition, Table 3 gives some parameters for a-SiN1.29. This Table shows the positions and 

maximum values of the first and second peaks, and the average number of nearest neighbors <nn>. 

The minimum between the first and the second peaks is 2.15 Å and this value was used to obtain <nn>. 
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Table 3. Topological parameters for the RDF of the stoichiometric SiN amorphous alloy. 

Height and position of the maxima of radial peaks and  

nearest neighbors <nn> for a-silicon nitride (x = 1.29) 

Material FIRST PEAK SECOND PEAK <nn> 

 Position Height Position Height  

SiN1.29 1.85 Å 3.04 2.95 Å 1.73 3.47 

This gave us confidence to be predictive with respect to other concentrations of nitrogen, and total 

and partial radial features are presented for a variety of nitrogen contents in Figure 9 where we  

report 12 total and partial RDFs for the corresponding non-zero contents of nitrogen that were used in 

the simulations. Hopefully such graphs will invite experimentalists to produce and study samples with 

nitrogen concentrations different from the stoichiometric material. The contents are: (a) x = 0.09,  

(b) x = 0.19, (c) x = 0.31, (d) x = 0.46, (e) x = 0.64, (f) x = 0.88, (g) x = 0.94, (h) x = 1.00, (i) x = 1.07, 

(j) x = 1.13, (k) x = 1.21 and (l) x = 1.29 (the stoichiometric).  

As the nitrogen content increases the first peak of the total RDF (1.85 Å) which is due to the Si–N 

average nearest-neighbor contributions <nn> increases systematically and the <nn> Si–Si peak (2.45 Å) 

decreases systematically. The third peak of the total RDFs moves toward lower r, 3.25 Å to 2.95 Å, as 

x increases since the N–N contribution becomes more predominant for higher content. In our structures 

there are no <nn> nitrogens since the content is below stoichiometry and nitrogens have a marked 

tendency to bind to silicons. No di-nitrogen is formed even though for x > 1 the starting diamond 

structure does contain nearest-neighbor nitrogens. For the nearly stoichiometric sample (x = 1.29), 

Figure 9(l), the Si–Si <nn> contribution to the total RDF has practically disappeared. This implies that 

there is a nitrogen atom between every pair of silicons indicating a tendency to form 6-atom closed 

rings, Si–N–Si–N–Si–N, typical of the Si3N4 structures. The growth of the Si–N peak as nitrogen 

increases bears out this behavior. 

The curves of Figure 9 are bare RDFs and represent the number of atoms at a certain radial distance 

from a given one. In order to compare with X-ray or neutron diffraction experiments the corresponding 

diffraction weights must be calculated, applied to the partial contributions, and then summed to give 

the total RDFs. This is what we did for the stoichiometric sample, Figure 8.  

In order to quantitatively compare our predictions, presented in Figure 9, with experiments one 

needs to use the expression quoted by Aiyama et al. [61]: 

g(r) = [c1
2
 f1

2
∕<f>

2
] g11(r) + 2[c1c2 f1 f2∕<f>

2
] g12(r) + [c2

2
 f2

2
∕<f>

2
] g22(r) 

where c1 is the ratio of the number of silicon atoms to the total number of atoms and c2 the ratio of the 

number of nitrogen atoms to the total number of atoms. f1 is the silicon structure factor for X-ray 

scattering, or the scattering amplitude for neutron scattering, and f2 is the factor, or the scattering 

amplitude, for nitrogen. gij(r) are the partial pair distribution functions, g11 = gSiSi, etc. Finally,  

<f>
2
 = (c1 f1 + c2 f2)

2
. 
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Figure 9. Total and partial RDFs for a-SiNx. The contents are: (a) x = 0.09; (b) x = 0.19; 

(c) x = 0.31; (d) x = 0.46; (e) x = 0.64; (f) x = 0.88; (g) x = 0.94; (h) x = 1.00; (i) x = 1.07; 

(j) x = 1.13; (k) x = 1.21 and (l) x = 1.29 (the stoichiometric). 
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Figure 9. Cont. 

 

It is understandable that silicons are more prominent for X-rays than for neutrons, and the opposite 

occurs for nitrogens. That is why [(cSi
2
 fSi

2
)/<f>

2
] gSiSi (r) is more prominent for the X-ray simulation 

and [(cN
2
 fN

2
)/<f>

2
] gNN (r) is more prominent for the neutron simulation. This observation is 

responsible for the displacement of the position of the maximum of the second peak of the 

stoichiometric total radial distribution function, as shall be seen later on in this section. 
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In Figure 10 a study of the average coordination numbers <cn> in the (12 + 1) random networks is 

depicted. Based on the bonding assumption discussed at the end of Section 3, the following cutoff radii 

were used: Si–Si, 2.55 Å; N–N, 3.35 Å and Si–N, 2.15 Å, which are the positions of the minima after 

the first peaks of the corresponding pRDFs. Figure 10(a) shows the results of our simulations and it 

can be seen that the N–N plot has a plateau for x ≥ 1.1, the percolation threshold of Si–Si bonds. The 

number of Si-Si <nn> goes from 4 to practically 0. The Si–N graph refers to the <nn> nitrogens 

around the silicon atoms and varies from zero to four, whereas the N–Si refers to the <nn> silicons 

around nitrogens and indicates that nitrogens immediately surround themselves with practically three 

Si, saturating its valence. There is a crossing of the Si–Si, N–Si, and N–N plots at x ≈ 0.3 and a 

crossing of N–Si and Si–N at x ≈ 1.0 which have been observed experimentally for hydrogenated 

alloys by Guraya et al. [59], Figure 10(b). 

Figure 10. Average coordination numbers <cn> as a function of x. (a) Our results;  

(b) Experimental results for hydrogenated alloys from Guraya et al. [59]; (c) Comparison 

of the integrated results (see text). Lines are drawn as guides to the eye. 

 

 

However, due to the presence of hydrogen a curvature appears in the <cn> for Si–Si, Si–N, and  

N–Si, so in order to compare our results with this experiment, we did the following. We calculated the 

sum of N–H and N–Si from the experiment, the average total number of atoms that surround a N:N–*, 

and plotted it along with our N–Si. We also did the sum of the experimental Si–N, Si–Si, and Si–H, the 

average total number of atoms that surround a Si:Si–*, and plotted that along with our sum of Si–N 
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plus Si–Si. This is presented in Figure 10(c). It is clear that our predictions closely agree with the 

integrated experimental results and show that our structures are realistic. The discrepancies are most 

likely due to existing dangling and floating bonds. See Reference [55] for a more ample and  

complete discussion. 

The composition of the second peak of the total RDF for the stoichiometric sample is given in 

Figure 9(l) and it agrees qualitatively with experiment by Misawa et al. [62], since it is formed by the 

average second neighbor (<2n>) contributions of mainly the N–N and Si–Si partials and to a lesser 

extent the Si–N partial [54]. In order to quantitatively compare our predictions with the few 

experiments available we calculated the structure of the second peak of the nearly stoichiometric cell 

considering whether the radial features were determined using X-rays or neutron diffraction 

experiments. Figure 11 shows the experimental and simulated results and the quantitative agreement is 

excellent even though the experimentalists only used Gaussian fits to simulate the structure of the 

second peak. For this peak X-rays show a shift of the total RDF toward higher values of r, with respect 

to the neutron results, which is reproduced in our simulations [54,55]. 

Figure 11. Comparison of the simulated (a) and (c), and experimental (b) and (d), 

structures of the second peak of the nearly stoichiometric sample when neutrons and  

X-rays are used, respectively. For this peak X-rays show a shift toward higher values of r 

with respect to neutrons, which is reproduced in our simulations. 

 
Simulation                                           Experiment 

Finally, Figure 12 is the comparison of our ab initio results with the classical Monte Carlo 

simulations of De Brito Mota et al. [64-67] who used empirical potentials developed a la Tersoff for 

the interactions between Si and N. It is clear that although the positions of some peaks are reproduced 
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in both simulations, the total RDFs do not agree. Comparison of the two simulations with experiment 

for the stoichiometric samples is also presented in this figure, where the discrepancies of the classical 

approach with experiment clearly show the difficulties involved in constructing parameterized 

classical potentials to describe binary systems that are basically quantum mechanical. 

Figure 12. Comparison of our results and those obtained by De Brito Mota et al. [64-67] 

for the total RDF. The agreement is at best qualitative; the position of some of the peaks 

coincide for the samples (a)–(c). The experimental total RDF (green curve) is compared to 

our simulations, (d) and to de Brito Mota‘s simulations (e) (black curves). 

 

4.2.3. Summary  

Evidently our ab initio simulations of a-SiNx (0 ≤ x ≤ 1.29) are very successful. To our knowledge 

there are no other simulations, classical or quantum-mechanical, that lead to atomic topologies in 

agreement with existing experimental data to this extent. The atomic structures have total RDFs and 

average coordination numbers that agree with the experimental results available. The simulated pRDFs 

show that the Si–Si <nn> peak disappears as nitrogen increases indicating a tendency to form 6-atom 

arrangements as the content x approaches the stoichiometric value. Experiment shows that for a–Si3N4 

Si and N form 6-atom closed rings, Si–N–Si–N–Si–N, typical of the crystalline Si3N4 structures. The 

growth of the Si–N peak as nitrogen increases bears this out. For x ≥ 1.1 the effects of the percolation 

threshold of the Si-Si bonds is observed in the N-N <2n> and in the optical gaps as we shall see later 

(Section 5). For x ≈ 0.7 the Si–Si and Si–N neighbors are practically the same, as found 

experimentally. Also, Si–Si, N–Si, and N–N are practically the same for x ≈ 0.3 as are Si–N and N–Si 
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for x ≈ 1.0. The integrated experimental results for <cn> and our simulations agree. An analysis of the 

second peak in the total RDF of the nearly stoichiometric sample indicates that N–N, Si–Si, and Si–N 

contribute to it, in qualitative agreement with experiment. However, when the partials are weighted, 

the agreement becomes quantitative. We report all the bare pRDFs and total RDFs for the contents 

studied; these curves have to be weighted accordingly to be compared with experiment. 

4.3. Amorphous Carbon-Nitrogen Alloys [1,68] 

It is well known that carbon is a versatile element due to the variety of hybridization states that it 

assumes which lead to a multiplicity of bond arrangements fostering the formation of compounds with 

varied structures. This versatility is reflected in its amorphous phase which, depending on its density, 

may have atomic arrangements that go from polymeric-like to diamond-like, including graphitic 

structures; that is, the study of amorphous carbon is a density dependent issue [69-71]. Nitrogen also 

manifests several possible bonding arrangements, and when it is incorporated into amorphous carbon 

the variety of structures that can be formed is evidently much larger [72], exhibiting up to 9 different 

competing forms. It is then clear that the description of the bonding nature of the amorphous  

carbon-nitrogen system can be highly complex, and the unambiguous identification of the bonding 

types is difficult. In addition, the experimental density of the CN system depends drastically on the 

specific process used to generate the material, and not just on the nitrogen concentration, to the point 

that the dispersion in the experimental correlation between density and concentration is large and 

trying to find a systematic behavior becomes difficult [73]. 

4.3.1. Preamble  

There is a need to understand amorphous CN since it is potentially useful in diverse applications. 

With nitrogen incorporation, amorphous carbon changes its electrical and optical properties [74-77]. It 

is also important to study the effect that the incorporation of nitrogen into an amorphous carbon matrix 

has on the bonding structure. This knowledge would allow one to tailor these structures to display 

specific properties. It is experimentally known that resistivities and optical band gaps decrease, 

compared to the pure tetrahedral a-C films, ta-C, when nitrogen concentration increases [74-77]. 

Despite the difficulties encountered with bonding characterization, two other experimental 

observations make this system attractive: one has to do with the existence of a real upper limit found 

for the amount of nitrogen that can be dissolved within a carbon matrix; the other is related to the 

behavior of nitrogen as a possible dopant at low concentrations. It has been established that it is 

impossible to generate amorphous CN systems with concentrations above 20%–30% nitrogen since 

this element simply escapes from the material at atmospheric pressure [78-80]. Also, it has been 

reported experimentally that for concentrations less than 5%, nitrogen increases the conductivity of 

amorphous carbon in a manner similar to the conventional n-type doping of crystalline silicon; that is, 

nitrogen becomes a donor [81,82]. 

As mentioned in Section 2, ab initio CPMD studies of this system are scarce. In recent work by 

Merchant et al. random networks were generated by melting a crystalline 64-atom supercell and 

quenching it afterwards [16]. They used Wannier function techniques contained in the CPMD 

approach to describe the types of bonding, and also studied the eDOS to investigate the doping 
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mechanism of carbon by nitrogen. Only two concentrations were considered, each for three different 

densities. The two concentrations were C62N2 and C56N8, and the three densities were 2.45 g/cm
3
,  

2.95 g/cm
3
, and 3.20 g/cm

3
. An additional simulation was carried out for a density of 2.7 g/cm

3
 and a 

concentration of C60N4. Because of the small number of atoms in the supercell (64) and the few 

concentrations considered, it is difficult to see tendencies and the systematics of their results. In 

previous studies by this group [17] they found that when nitrogen was substituted for an sp
2
-bonded 

carbon atom, the site remained as three-fold coordinated, and a lone-pair orbital developed. When 

nitrogen was substituted for an sp
3
-bonded carbon atom, a bond was broken and the coordination of 

the site was reduced to 3. The fourth bond was lengthened to accommodate the lone-pair orbital on the 

nitrogen atom. They claimed that, contrary to the substitutional doping experimentally found, their 

results did not indicate the presence of tetrahedral nitrogen. With respect to the other experimental fact 

mentioned above, it is clear that due to the low concentrations of N used in both papers, the detection 

of some signal concerning the limit of doping with nitrogen would have been difficult. 

We have applied our computational protocol, based on the undermelt-quench approach and the code 

FAST, to the carbon-nitrogen system [68]. We report the ab initio generation of amorphous networks 

up to concentrations of nearly 45% nitrogen. We start with crystalline supercells with 216 atoms of 

carbon and nitrogen and to avoid unnecessary parameters, the densities used are the experimental 

values fitted to a straight line; we generate the amorphization by heating them to a value below the 

melting temperature (undermelt). After this undermelting process we quench the samples.  

Our aim, in what follows, is to show that our results can reproduce the two experimental facts 

mentioned above. We also find that the variation of n-fold coordinated nitrogen as a function of 

concentration agrees with several experiments. These results are based on what could be an 

assumption applicable to other covalent systems, i.e., the assumption established at the end of  

Section 3: the geometrical fact that the bond length in these amorphous systems can be taken as the 

value of the first minimum of the corresponding pRDF, especially when this minimum is zero. We 

have been consistently using this assumption in our studies of binary covalent systems and the results 

obtained support the approximation.  

In the cubic diamond-like supercells of 216 atoms, (216 − y) are carbons, y are randomly substituted 

nitrogens and the concentration is c = (y/216) × 100. The supercells are linearly heated, using FAST, 

from 300 K to a value below the melting temperature, in 100 steps of 4 fs and immediately cooled 

down to 0 K in 108 steps. A process like this has been applied to carbon [83] where a high temperature 

of 3,700 K was used obtaining RDFs very close to experiment. Due to the lack of information 

concerning the melting temperatures of the CN system we decided to use the value of 3,700 K for all 

samples [83], which is below the melting temperature of pure carbon. Since the time step (4 fs) and the 

melting temperature (3,700 K) were kept constant, the heating/cooling rate was also constant,  

8.50 × 10
15

 K/s. The atoms were allowed to move within each cell with periodic boundary conditions, 

and the cell volumes were determined by the corresponding experimental densities and concentrations. 

We next subjected them to annealing cycles at 300 K, with intermediate quenching steps down to 0 K. 

At the end of the process a geometry optimization was carried out to find the amorphous structures in a 

local energy minimum. The densities considered were obtained from a linear fit adjusted to the 

experimental data: ρ = (2.897 − 1.784c) g/cm
3
, where c is the nitrogen concentration; the density 

values for each of the 9 nitrogenated samples, plus the pure carbon sample, are listed in Table 4. 
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Table 4. Supercells of the amorphous alloy CN with the nitrogen concentrations and  

their densities.  

Concentrations and densities for a-CN 

Sample N concentration c 

(%) 

Density  

ρ = [2.897−1.784c] 

(g/cm3) 

C216N0

0 

C205N1

1 

C194N2

2 

C184N3

2 

C173N4

3 

C162N5

4 

C151N6

5 

C140N7

6 

C130N8

6 

C119N9

7 

0.0 

5.1 

10.2 

14.8 

19.9 

25.0 

30.1 

35.2 

39.8 

44.9 

2.90 

2.81 

2.72 

2.63 

2.54 

2.45 

2.36 

2.27 

2.19 

2.10 

Because carbon and nitrogen have such a small number of electrons, an all electron calculation was 

carried out. We used a minimal basis set, consisting of the atomic orbitals occupied in the neutral 

atom, with a cutoff radius of 3.5 Å for the amorphization and for the optimization. For each atom, one 

function is used to represent the core part of the electron density and one to represent the valence part 

of the electron density. The physical masses of carbon and nitrogen are always used and this allows the 

visualization of realistic randomizing processes of all the atoms during the amorphization of  

the supercell. 

4.3.2. Results and Analysis 

Based on the bonding assumption discussed at the end of Section 3, we proceeded to obtain the 

number of nearest neighbors to any carbon or any nitrogen as a function of nitrogen concentration 

using the fact that the first minima of the corresponding pRDFs are the same for all concentrations and 

are given by 2.0 Å for C–C, 1.9 Å for C–N, and 1.8 Å for N–N. 

We focused mainly on the nearest neighbors to nitrogens, in order to investigate the two 

experimental results mentioned above; namely, the fact that nitrogen becomes tetrahedrally 

coordinated at low concentrations and the fact that there is an experimental upper limit to the nitrogen 

concentration in an amorphous carbon matrix. Once the maxima of the bond lengths are set, then the 
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number of nitrogen atoms that are single-fold, two-fold, three-fold, and four-fold coordinated can be 

determined; no five-fold or higher bonding arrangements were found. 

In Figure 13 the dependence of the bonding nature of carbon with nitrogen concentration is 

presented. Evidently, the total number of carbon atoms diminishes linearly as the number of nitrogens 

increases, and there is an almost linear variation of tetrahedral and graphitic carbon. Tetrahedral  

(four-fold) carbons show a plateau between 10% and 15% and another between 35% and 40%, 

although this may be the result of statistical fluctuations and larger cells should be studied. Linear  

(two-fold) carbons begin appearing at 30% and graphitic (three-fold) carbons behave in a  

complementary manner. 

Figure 13. The bonding nature of carbon is shown as a function of nitrogen concentration. 

The tetrahedral carbons (squares) decrease whereas the graphitic carbons (circles) increase 

as the nitrogen concentration increases. 

 

Figure 14. Tetrahedral (dopant) nitrogens are prominent at low concentrations, 0–10%. 

This behavior is masked by other types of bonding for higher concentrations. Bonding to 4 

carbons is represented by squares; to 3 carbons and one nitrogen by circles. 

 

No five-fold coordinated carbons were found. At about 15% nitrogen, graphitic carbons diminish 

and, correspondingly, tetrahedral carbons increase; at 35% the number of graphitic and tetrahedral 



Materials 2011, 4   744 

 

 

carbons is practically the same, whereas linear carbons become nonzero. For concentrations larger than 

40%, graphitic carbons outnumber tetrahedral carbons and linear carbons are distinctively finite. This 

behavior indicates a slight departure from linearity at about 10% and 35%; this departure could be 

related to the behavior of nitrogen as a dopant below 10% and to the saturation limit around 35%; 

clearly more information is needed to support this point. 

In order to further investigate the bonding structure of these alloys we looked at the possibility of 

finding four-fold (overcoordinated) nitrogens for certain concentrations. In fact, at 5% (the lowest 

concentration of nitrogen we investigated) the first sign of overcoordination appears and this is due to 

the coordination of one nitrogen atom with four carbons, Figure 14. Such overcoordination should 

manifest itself at concentrations lower than 5% if continuity in the behavior occurs. This four-fold 

coordination leads to the appearance of an electronic state within the energy gap [84].  

It is interesting to note that four-fold coordination due to three carbons and one nitrogen atom is 

also important up to 35% nitrogen concentration. As the number of nitrogen atoms increases the 

preponderance of these four-fold-coordinated atoms becomes less relevant since they remain constant 

while other types of bonding become more prominent. See total curves in Figures 15 and 16. 

Figure 15 shows how a three-fold coordination of nitrogen with three carbons appears at 5% and 

increases up to 30%. Thereafter it decreases while an important rise of the coordination with two 

carbons and one nitrogen begins. Coordination with one carbon and two nitrogens starts growing at 

25%, while three-fold coordination with three nitrogens never appears in the range studied. 

Figure 15. Nitrogens triple bonded. The total number is practically constant between 5% 

and 10%. The squares are nitrogens bonded to three carbons; the circles are nitrogens 

bonded to two carbons and one nitrogen. 

 

It is clear that something drastic happens at 30% since the three-fold coordination with three 

carbons starts diminishing abruptly, Figure 15. We believe this is another indication of the existence of 

an upper limit to the nitrogen incorporation into an amorphous carbon matrix. Double bonded nitrogen 

appears at larger concentrations (10%) and continuously increases up to 45%, Figure 16. A plateau is 

observed between 10% and 15% for the total two-fold coordination and for nitrogen bonded to two 

carbons. Double bonded nitrogen to one carbon and one nitrogen increases slowly but is always 
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smaller than the previous case. Two-fold coordination to two nitrogens is nonexistent except at the 

highest concentration, which incidentally may not exist as a stable solid amorphous system.  

Figure 16. Nitrogen double bonded. The total number is practically zero at 5%, shows a 

plateau between 10% and 15% and increases systematically afterwards. Squares represent 

nitrogens bonded to two carbons and circles to one carbon and one nitrogen. 

 

Figure 17. Single bonded nitrogens appear only at concentrations larger than 25%. There 

are nitrogens bonded to one carbon (squares) and to another nitrogen, molecular  

nitrogen (circles). 

 

Figure 17 shows that single bonded (single-fold) nitrogen coordinated to one carbon exists starting 

at 25%; it has a maximum at about 35%–40% and then begins to decrease. Something similar occurs 

with the appearance of N–N coordination since it begins at 30%, two single-fold nitrogen atoms 

appear at 35%, reach a maximum of four at 40%, and then diminish. This behavior indicates the 

possible formation of nitrogen molecules N2 in the system. But why should we have molecular 

nitrogen in these amorphous alloys for large concentrations? We believe that since our approach does 

not allow nitrogens to abandon the cubic supercell when a saturation concentration is reached, the 
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nitrogen cannot leave the material and therefore remains in the gaseous state within the CN system; 

eventually it forms molecules that appear in the voids of the supercell. 

This explanation is explicitly corroborated in Figures 18–20, where the molecules are shown: one 

molecule (two nitrogen atoms) for 35% (1.26 Å interatomic distance); two molecules (four nitrogen 

atoms) for 40% (1.25 Å and 1.26 Å), and one molecule (two nitrogen atoms) for 45% (1.25 Å). It is 

clear then that this phenomenon signals the presence of a saturation limit in the CN system. 

Figure 18. For concentrations above 25% single bonded nitrogen exists. At 35% a nitrogen 

molecule (green dumbbell) appears signaling the saturation limit to nitrogen incorporation. 

Carbon: light gray sticks; nitrogen: blue sticks. 

 

4.3.3. Summary  

Carbon bonding is versatile; conventionally, three different types of hybridizations are attributed to 

carbon, four-fold sp
3
, three-fold sp

2
, and two-fold sp

1
 with precise orientations. In amorphous 

materials with carbon content it is difficult to talk about the orientation of bonds since the resulting 

structure is not geometrically well defined; nevertheless these three hybridizations are invoked as a 

basis for the analysis of the atomic topology. Nitrogen bonding is also versatile since nitrogen has five 

valence electrons and it also manifests three different types of hybridizations. However, the electronic 

arrangement is somewhat different since electron lone pairs appear. A thorough analysis of the 

possible bonds in the crystalline or molecular CN system leads to nine different structures. Since the 

orientation of bonds in an amorphous system is not well defined it is difficult to talk precisely about 

well defined hybridized bonds, and this complicates even more the description of the bonding structure 

in the amorphous CN system.  
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Figure 19. At a concentration of 39.8% two nitrogen molecules (green dumbbells) appear, 

indicating that we are already within the saturation region. Carbon: light gray sticks; 

nitrogen: blue sticks. 

 

Figure 20. At a concentration of 44.9% of nitrogen, N2 molecules still exist (green 

dumbbell), well within the saturation region. Light gray sticks correspond to carbon, blue 

sticks correspond to nitrogens. 

 

 

In the present work we opted for the geometric approach (Section 3) to determine the bond length 

and looked at the first minima of the pRDFs as a criterion for the maximum extension of the bonds 

between pairs of elements. This cutoff allowed us to unambiguously talk about nearest neighbors to a 

given atom. Based on this approach we conclude that: 
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(i) Tetrahedral nitrogen (ta-N) appears in our ab initio generated CN samples. The amount of ta-N is 

essentially constant and small (Figure 14) for all concentrations studied and therefore becomes 

more relevant for concentrations below 5% where the number of other n-fold coordinated 

nitrogens, with n ≤ 3, is also small. At higher concentrations ta-N exists but its presence is masked 

by all the other bonding arrangements of nitrogen (Figures 15–17). These results are in agreement 

with the EELS experiments reported in the literature. 

(ii) For concentrations higher that 30%, single-fold nitrogen appears bonded to nitrogen, giving rise to 

N2 molecules (Figures 18–20). We take this as signaling the onset of an upper limit for the 

incorporation of N in an amorphous carbon matrix, in agreement with experiment and supporting 

the surmise that the experimental saturation of the nitrogen content within the films is due to the 

formation of molecular nitrogen either at or below the film surface. Another indication that 

something drastic happens at 30% is that the three-fold coordination of nitrogen with three carbons 

starts diminishing abruptly, Figure 15. 

Our results also show the essentially linear decrease of the sp
3
 carbon fraction with increasing 

nitrogen concentration reported experimentally, and the corresponding increase of the sp
2
 carbon 

fraction, Figure 13. This behavior suggests that for the densities used, carbon atoms bonded to nitrogen 

revert to sp
2 

bonding. It is then clear that unlike what happens in the SiN system, where nitrogens 

immediately surround themselves with practically three silicons, saturating their valence [55], in CN 

the situation is more versatile. We hope our results may stimulate further experimental and theoretical 

studies in the area. 

4.4. Amorphous Binary Alloys Based on Group IV Elements: The Case of a-Si0.5C0.5 [85,86] 

Much has been mentioned about the chemical order that may appear in these alloys, caused by 

heteronuclear bonds. No conclusive evidence has been reached so far, since there seems to be as many 

structures and atomic topologies as papers published. Pure carbon has an atomic structure in which 

single, double and triple bonds are important whereas in the silicon samples this multiplicity does not 

occur since the silicon bond is not as versatile as the carbon bond. When half the atoms are C and the 

other half are Si one expects that, for complete chemical order, a given Si may be surrounded by  

four C, and vice versa. Simulational results lead to a variety of reported structures that makes these 

alloys very interesting.  

4.4.1. Preamble  

As mentioned in Section 2, Finocchi et al. [19], in 1992, performed CPMD on two different 

samples, one with 27 C and 27 Si atoms randomly distributed in the diamond crystalline positions and 

the other with 32 C and 32 Si atoms in the rock-salt crystalline structure positions. Both samples had a 

density of 3.1 g/cm
3
 and using the melt-and-quench procedure the authors heated the samples up to a 

temperature of approximately 4,000 K. After equilibration during 1 ps the samples were cooled down 

to approximately 500 K. They used a simulation time step of 4.0 a.u. for both runs and a fictitious 

mass parameter entering the CP equations of 300.0 a.u. They found that the two samples had very 

similar structural properties, and concluded that the simulations were not dependent on the initial 
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structures. The total and partial radial distribution functions and the eDOS were reported. The RDFs 

had a peak around 1.5 Å due to C–C bonds and 1.9 Å due to Si-C bonds, and 40–45% of the bonds 

present in the sample were C–C homonuclear bonds. 

In the second paper Finocchi et al. [20] studied the local atomic environment of a-Si0.5C0.5. They 

generated the amorphous structure of SiC using a technique very similar to their previous work [19]. In 

this paper, they could not establish either a chemically ordered or a completely random sample 

structure. They remarked that a detailed analysis of each atomic species is of vital importance in order 

to understand the physical and chemical properties of a-Si0.5C0.5.  

4.4.2. Results and Analysis 

We used two types of Si0.5C0.5 crystalline supercells at the start, both with a density of 2.75 g/cm
3
, 

the experimental value. One was a diamond-like periodic supercell of 64 atoms, containing 32 carbons 

and 32 silicons, chemically ordered to begin with, amorphized using FAST. The other was an fcc 

crystalline periodic supercell with 108 atoms, 54 carbons and 54 silicons, also chemically ordered, 

amorphized using DMOL3 from the suite in Materials Studio 3.2. The amorphization was done by 

heating the periodic samples from 300 K to 2,800 K for the diamond-like and to 3,053 K for the fcc, 

just below their melting points [87] (the undermelt-quench approach) and then cooling them down to  

0 K. Then the structures were relaxed by annealing and quenching, and finally a geometry relaxation 

was carried out.  

The simulational results for the atomic structures are presented in Figure 21; the left column refers 

to a supercell of 64 atoms, 32 carbons and 32 silicons, amorphized with FAST, and there are short 

chain-like structures of carbon. The right column corresponds to an amorphous structure with a total of 

108 atoms, 54 carbons and 54 silicons, amorphized with DMOL3. The carbon structure also shows 

short chain-like configurations, suggesting that there cannot be a complete chemical order. 

The maximum bond length in Figure 21 was determined as the distance at which the first minimum 

occurs in the corresponding pRDF in the graphs of Figure 3 of Ref. 86, as follows. For the 64-atom 

sample, generated with FAST, we have the maximum length of the carbon-carbon bonding as C–C: 

1.55 Å (tetrahedral carbon); the maximum bond length for silicon-silicon is Si–Si: 2.55 Å and the  

silicon-carbon maximum bond length is Si–C: 2.25 Å. For the 108-atom sample, generated by DMOL3, 

we have the same values for the maximum lengths of the interatomic bonding: the carbon-carbon 

bonding, C–C, is 1.55 Å; the Si–Si is 2.55 Å and the Si–C is 2.25 Å.  

Even though the maximum lengths of the bonds are the same for both structures the chemical 

ordering may be different. The chemical order can be estimated with a formula used by Tersoff [88]: 

χ = nA–A/nA–B 

where nA–A is the number of homonuclear bonds and nA–B is the number of heteronuclear bonds. 

Therefore when χ = 0 complete chemical order is implied whereas χ = 1 implies complete chemical 

disorder. For the 108-atom sample χ = 0.05, which implies an almost complete chemical order; for the 

64-atom sample χ = 0.065, similar to the larger supercell.  
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Figure 21. Structures of the amorphous silicon carbide generated by FAST (left, 64 atoms) 

and DMOL3 (right, 108 atoms). (a) Carbon structure; (b) Silicon structure; (c) Silicon 

carbide structure. 

  

In Figure 22 we present a comparison of the two simulational, total, bare, RDFs with the crystalline 

structure of β-SiC. The second crystalline peak seems to appear in the amorphous structure of the 
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RDFs, but it may be a coincidence since no other crystalline peak agrees with sharp structures of the 

amorphous material. 

Figure 22. Comparison of the two simulated total RDFs with the crystalline structure of  

β-SiC. The second crystalline peak seems to appear in the amorphous RDFs.  

 

Figure 23. Comparison of the total RDF for the 108-atom sample, weighted for electrons, 

with the two experimental results [89,90]. 

 

 

Figure 23 is a comparison of two experimental results [89,90] with the total RDF for the 108-atom 

sample, weighted for electrons. The agreement is good since the positions of the peaks coincide and so 

do the positions of the shoulders. One point of discrepancy is the fact that for the simulated RDF there 

is a ‗zero‘ minimum between the first and the second peaks, feature that does not appear in the 
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experimental results. This discrepancy may be due to the way the amorphous samples are prepared 

experimentally, since they are disordered by irradiating a crystalline sample. 

4.4.3. Summary 

The amorphous binary alloys of group IV elements, like SiC and SiGe, are extremely interesting 

since there are chemical characteristics that are notably different, as in Si and C, and very similar, as in 

Si and Ge. This is one of the reasons for our interest in these alloys. The other reason is to study the 

chemical ordering in these two systems since C and Si are very different and Si and Ge are very 

similar in their atomic electronic structures. More extensive results are reported in [85].  

4.5. Amorphous Chalcogenide Alloys: The Case of a-GeSe2 [91,92] 

Chalcogenides are materials that have proven to be technologically very useful, and their 

amorphous phases have been studied systematically. The role that selenium played in the development 

of xerography is well known. When alloyed with germanium and indium and made into an amorphous 

phase it displays interesting properties. For example the character of the interatomic forces in an alloy 

of Ge-Se can be modified by altering the composition. As Salmon comments, just as pure Ge 

undergoes a semiconductor to metal transition on melting, the nature of the interatomic bonding 

changes from metallic to covalent by varying the selenium concentration [93]. There are some other 

properties that are modified upon alloying germanium with selenium (see [93] and references 

contained therein).  

4.5.1. Preamble 

The Ge-Se system has a large glass forming region that extends over the germanium concentration 

from 0.0 to 0.43 [94]. The amorphous phases are covalently bonded and the connectivity and 

properties of these networks can be altered by modifying the Ge-Se ratio. In this work, we only report 

the amorphous GeSe2 alloy. 

There are a few ab initio CPMD studies on amorphous GeSe2 (See Section 2). Recently Massobrio 

and Pasquarello generated amorphous networks by cooling a liquid 120-atom supercell [22,23]. They 

used 40 Ge and 80 Se at constant temperature. They also used a cubic periodic supercell of size  

15.16 Å with density 4.38 g/cm
3
. There is another ab initio work based on the local density-functional 

method of Sankey and coworkers [24-26]. Cappelletti et al. [25] studied vibrations in glassy GeSe2 

with a 63-atom supercell. They used the melt-and-quench process on their model. There were 20 Ge 

and 43 Se in this model placed randomly on sites of a diamond lattice; after the thermal process they 

removed one Se that was connected with other two Se forming a trimer. They then again applied a 

thermal process and put a Ge-atom in to get the exact stoichiometry for GeSe2. The resulting density 

was 4.20 g/cm
3
. They compared their vibrational results with experiment. In their second work on  

a-GeSe2, Cobb et al. reported a 216-atom supercell, with a density close to experiment [26]. As 

mentioned, in this ab initio study they obtained topological, vibrational and electronic properties. 
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4.5.2. Results and Analysis 

In order to study amorphous GeSe2 we applied our computational simulation protocol and in this 

case we used the DMOL3 code. We obtained an ab initio generated amorphous network with a 

concentration of 66% selenium and 33% germanium. We started with a cubic crystalline supercell of 

edge length 16.66 Å with 50 atoms of germanium and 100 atoms of selenium. In the supercell all Ge 

atoms were connected to four Se atoms and no Ge-Ge bonding was allowed. The supercell was 

linearly heated using DMOL3 from 300 K to 970 K, a value below the melting temperature, in 100 

steps of 15 fs and immediately cooled down to 0 K in 145 steps. The heating/cooling rate was  

6.70  10
15

 K/s. The atoms were allowed to move within the cell with periodic boundary conditions, 

and its volume was determined by the corresponding experimental density and concentration. We next 

subjected it to an annealing process at 300 K, with a quenching step down to 0 K, a variant of the 

undermelt-quench approach. At the end a geometry optimization was carried out to find the amorphous 

structure at the local energy minimum. The density considered was 4.13 g/cm
3
, 3 % less that the 

crystalline one [26]. The amorphization process was performed with a pseudopotencial dspp for the 

electron treatment, and for the geometry optimization an all electron approach was used. We used 

double numerical orbitals with polarization basis set, two atomic orbitals for each occupied state and 

functions with angular momentum higher than that of the highest occupied state in the free atom; the 

cutoff radius used was 5 Å both for the amorphization and for the optimization. 

As before, we used the minimum of the RDF obtained in this work, Figures 24 and 25, to determine 

the maximum bond length. We considered that two atoms were connected if the distance between them 

was less than or equal to 2.84 Å, the first minimum in Figure 24(a). With this bond length the average 

coordination number is 2.71, which is in good agreement with experiment 2.67 [95]. In our resulting 

amorphous supercell there was no homopolar Ge–Ge bond. This fact can be seen in the Ge–Ge pRDF 

(Figure 24(b) and Table 5) which shows no atoms before 2.80 Å. In Table 5 the nearest neighbor peaks 

from the pRDFs obtained in our simulations are given. The short-range order for our model predicts 

that 68% of the Ge atoms form Ge(Se1/2)4 tetrahedra, 30% are three-fold coordinated and 2% are  

one-fold coordinated. No five-fold coordinated Ge and no ethane-like structures were found. The 

bonding defects for selenium are as follows: 1% of four-fold coordinated atoms; 21 % with three-fold 

coordination and 5% with one-fold coordination. We also calculated the tetrahedral distribution for our 

structure and found that 94% were corner-sharing and only 6% were edge-sharing.  

Table 5. Nearest neighbor peaks from the pRDFs obtained in our simulations compared to 

experiment, Salmon and Petri [95], and to other ab initio work [22,26]. 

Partial 
This 

work 

Massobrio et 

al. 
Cobb et al. 

Salmon 

and 

Petri 

gGeGe 2.91 Å 2.50 Å 2.46 Å 2.42 Å 

gGeSe 2.34 Å 2.37 Å 2.37 Å 2.36 Å 

gSeSe 2.36 Å 2.37 Å 2.40 Å 2.37 Å 
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Figure 24. (a) Total RDF for the system a-GeSe2; (b) Partial Ge–Ge RDF for the same 

system. Insets show the corresponding average coordination numbers. 

  

(a)                                                              (b) 

Figure 25. (a) Partial Ge–Se RDF for the system a-GeSe2; (b) Partial Se–Se RDF for the 

same system. Insets show the corresponding average coordination numbers.  

  

(a)                                                                (b) 

4.5.3. Summary 

We have simulated the amorphous alloy GeSe2 by using a variant of the undermelt-quench 

approach. The results show good agreement with the topological properties obtained from other ab 

initio works and from experiment. We conclude that there are no Ge–Ge nearest neighbors (with 

homopolar bonds). We found that 68% of the germaniums formed Ge(Se1/2)4 tetrahedra; 94% were 

corner-sharing and 6% were edge-sharing tetrahedra. For completeness we mentioned that we have 

also simulated a-InSe alloys for several concentrations (over 20) to be able to calculate their 

topological properties, their eDOS, the corresponding vDOS and their optical gaps to contribute to the 

engineering of the gap, but the results are the subject of work in progress [91].  
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4.6. Aluminum-based Amorphous Alloys: AlN [96] and Al12at%Si [97-100] 

Liquid and amorphous metallic systems have proven difficult to model. Some efforts have relied on 

the use of parameterized classical potentials of the Lennard-Jones type or geometric hard sphere 

simulations, but first principles methods have been rarely used. With the experimental development of 

many and more complicated BMGs a potential dilemma appears. It is necessary to calculate larger 

samples of materials that better resemble the bulk properties, but it is also necessary to do it as reliably 

as possible. This implies that in our ab initio approach we need to be able to calculate larger supercells 

of bulk metallic glasses to, in principle, make the results relevant. Of course the computational demand 

is enormous but perhaps some of the properties of these metallic systems can be representatively 

obtained with tractable supercells, and this is what we are studying. For that reason we have applied 

our methods to pure amorphous aluminum [101], a-AlN and a-AlSi alloys. Here we report only some 

results for the aluminum silicon system. For the aluminum nitrogen system we refer the reader to 

Reference 96. In Section 4.7 we analyze the applicability of our approach to amorphous CuZr; 

similarities with the corresponding BMG appear.  

4.6.1. Preamble  

Metallic glasses and amorphous metallic alloys are presently in the forefront of metallurgical 

research. Their technological applications make it necessary to understand them as closely as possible, 

and for this, computer simulations are in order. Some computer simulation efforts have relied on the 

so-called embedded atom method [102,103] or tight binding methods [104] to overcome the existing 

limitations of using pair potentials for describing the metallic bond. Some efforts have relied on the 

use of parameterized classical potentials of the Lennard-Jones type or geometric hard spheres. Some of 

the first principles methods used in the field are due to work developed by our group [96-101]. 

We have studied the structural properties of amorphous aluminum [101] and its alloys [96-100] with 

LHMD; the results obtained are promising to describe some of the properties of these materials. The 

aluminum-silicon system is an important technological alloy. From the point of view of its phase 

diagram, this system is relatively simple; it is a eutectic at 12 atomic % Si with no ordered phases. 

There is some solubility of Si in fcc Al, but almost no solubility of Al in diamond-structured Si [105]. 

The solidification process is much different, due to the formation of faceted interfaces between 

crystalline Si and the liquid Al–Si. This leads to very interesting solidification microstructures [106]. 

Small additions of a third element can also affect the microstructure [107], but are not discussed here.  

To perform LHMD we used the same computational tools applied to previous systems. The Harris 

functional is used and therefore no selfconsistency is employed. The core is taken as full since all 

electrons are considered, and for the amorphizing/liquefying process a double-numeric standard basis 

set was chosen with a cutoff radius of 5 Å. The physical default time step is 2.4 fs but a time step 

approximately 4 times the default was finally utilized: 9 fs. To study Al12at%Si we built a supercell 

with 125 atoms from simple cubic structures and randomly changed 15 aluminums for silicons to 

generate the eutectic concentration. The volume was adjusted to (12.8379 Å)
3
 to obtain the crystalline 

density 2.66 g/cm
3
. To generate the amorphous supercell, a-Al12at%Si, we applied the  

undermelt-quench approach with a variant: starting at room temperature the sample was heated in 100 

computational steps to just below the melting temperature. The sample was maintained at this 
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temperature during 100 steps (plateau); afterwards it was cooled down to 0 K at the same thermal rate. 

The structure was optimized to find the final atomic topology in local equilibrium. To generate the 

liquid-amorphous sample [96], la-Al12at% Si, we heated the supercell to just above the melting 

temperature, maintained it at this temperature during 100 steps (plateau), and then cooled it down to  

0 K at the same thermal rate. 

4.6.2. Results and Analysis 

Figures 26 are the atomic topologies found (a) for the amorphous sample and (b) for the  

liquid-amorphous sample (see Reference 96). At first sight the two structures seem different but it is 

necessary to quantify the features of each one, and this is accomplished by calculating and analyzing 

the RDFs, and that is why we obtained total and partial RDFs for the two supercells. Nevertheless it is 

worth noting that the silicons in the amorphous structure (Figure 26(a)) seem to be more clustered than 

the corresponding ones in the liquid-amorphous structure (Figure 26(b)). 

Figure 26. (a) Amorphous atomic structure of the 12 at %Si supercell, a-Al12at%Si. The 

plateau temperature is 840 K, just below the melt; (b) Liquid-amorphous (see Refenrence 96) 

atomic structure of the 12 at %Si supercell, la-Al12at%Si. The plateau temperature is  

920 K, above the melt. Silicon atoms are in yellow. 

  

(a) (b) 

  

Figure 27 shows the total and partial RDFs for the amorphous sample (Figure 26(a)). It is clear that 

the first prominent peak of the total RDF, Figure 27(a), corresponds to the Al–Al bonds (2.75–2.85 Å) 

and this can be corroborated by looking at the partial RDF for Al–Al, Figure 27(d). The Si-Si partial, 

Figure 27(b), indicates that, as mentioned above, there seems to be some degree of clustering of the 

silicon atoms since three highly localized peaks appear in the corresponding partial RDF (2.45, 3.65 

and 3.95 Å). The total RDF (Figure 27(a)) reflects the bimodal structure of the Al–Al partial RDF  

(Figure 27(d)). For the Al-Si partial RDF (Figure 27(c)) there is a prominent peak at 2.55–2.65 Å. 

Figure 28 shows the total and partial RDFs for the liquid-amorphous structure of Figure 26(b). Again, 

the first prominent peak of the total RDF, Figure 28(a), corresponds to the Al–Al bonds (2.75–2.85 Å) 

and this can be corroborated by looking at the partial RDF for Al–Al, Figure 28(d). The Si-Si partial,  
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Figure 28(b), is more evenly distributed as a function of r as can be seen from the position of the first 

four peaks (2.55, 3.15, 3.55 and 3.85 Å). The total RDF (Figure 28(a)) shows a bimodal structure but 

the Al-Al partial RDF (Figure 28(d)) does not. As in the amorphous case the Al–Si partial RDF  

(Figure 28(c)) presents a prominent peak at 2.55–2.65 Å. 

Figure 27. The system a-Al12at%Si relaxed. (a) Total RDF; the pRDFs are (b) Si–Si;  

(c) Al–Si and (d) Al–Al for the 15 Si and 110 Al cell. The red peaks in (a) are the atomic 

positions of the fcc structure. 
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Figure 28. The system la-Al12at%Si relaxed. (a) Total RDF; the pRDFs are (b) Si–Si;  

(c) Al–Si and (d) Al–Al for the 15 Si and 110 Al. The red peaks in (a) are the atomic 

positions of the fcc structure. 
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Experimentally some RDFs have been determined for amorphous Al–Si and Al–Si–Sb alloys [107], 

but the authors report only the position of the Si–Si second peak, 3.7 Å, which should be compared to 

3.65 Å for our amorphous sample and to 3.15 Å for our liquid-amorphous sample.  

As mentioned before a difficult problem in amorphous materials is finding a criterion to determine 

when two atoms are considered bonded. However, in this work we use a novel deconvolution method 

reported in Reference [99] to carry out the estimation of the coordination numbers. Using this method, 

illustrated in Figure 29, the coordination number for the amorphous eutectic alloy is 11.48, whereas 

each aluminum atom is surrounded by 11.96 atoms on the average and each silicon atom is surrounded 

by 7.96 atoms on the average. This suggests that the aluminum structure in the short range is that of an 

icosahedral cluster and that the silicon short range structure is closer to a metal. The coordination 

number for the liquid-amorphous eutectic alloy is 10.56, whereas each aluminum atom is surrounded 

by 10.92 atoms on the average and each silicon atom is surrounded by 7.92 atoms on the average. This 

suggests to us that the aluminum structure in the short range is, as expected, that of a liquid. More 

studies are under way to fully analyze the consequences of this deconvolution method and its 

relevance for calculating coordination numbers.  

Figure 29. Deconvolution of the total RDF (black curve) for the la-Al12at%Si eutectic 

alloy. We obtain the smallest number of Gaussians (green curves) whose sum (red curve) 

reproduces the corresponding RDF. For the first neighbors we sum the areas that contribute 

to the first peak of the pertinent RDF.  

 

4.6.3. Summary  

The differences between the amorphous and the liquid-amorphous structures are notable and the 

distribution of silicon is more uniform in the liquid-amorphous sample than in the amorphous sample. 

A bimodal behavior is present in the total RDFs. This bimodal feature has appeared in metallic liquids 

results [108] and in some geometrical results [109] and is characteristic of metallic systems [110]; this 

feature has been associated to the appearance of dominant icosahedral clusters [28]. 
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Generating simulated amorphous structures of metallic materials is a difficult task, especially when 

there are not enough experiments to compare with and to guide the selection of the thermal process. 

Since this is the case, our results may be considered predictive and indicative of possible structures 

based on which properties can be calculated. The deconvolution method gives us more information 

about the atomic average position and the atomic environment around each atom; this leads to 

coordination numbers that may be more adequate to describe amorphous and liquid materials.  

4.7. Amorphous Copper Zirconium Alloys. A Simple BMG-like Material: Cu64 Zr36 [111] 

Bulk Metallic Glasses have become fashionable because of their possible applications in industry. 

These metallic materials obtained from the melt have many unique applications from structural 

components to microcomponents [3]. Their properties, like good hardness and high corrosion 

resistance, are highly desirable since they may be used as pressure sensors, gears for micromotors, 

magnetic cores, etc. Producing glassy metals is a very difficult experimental endeavor since the atomic 

constituents are highly mobile and unless the cooling rates are superior to 10
6
 K/s the systems in 

general crystallize. This fact usually restricts the size and stability of the products. Recently however 

several laboratories in the world have made important progress and BMGs have been produced by 

increasing the number of components that are incorporated into the matrix, thus needing lower cooling 

rates. For example, some 17 years ago Peker and Johnson developed a pentary metallic glass with a 

cooling rate of 1 K/s: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 [112]. In the last 40 years BMGs have increased 

considerably in number and in size and it is assessed that, at present, more than a thousand different 

bulk metallic glasses are known, some of them in sizes of several kilograms [3]. In this section we 

analyze the applicability of our approach to amorphous CuZr and similarities with the corresponding 

BMG will appear. 

4.7.1. Preamble  

During the 1980s much progress was made in the experimental study of amorphous metallic 

multicomponent alloys—ternary, quaternary, etc. However, the main goal was the development of 

alloys whose properties could be studied due to the simplicity of their composition, i.e., binary alloys. 

A simple copper–based alloy which has gained relevance in the last decade is the CuZr system because 

it is relatively easy to produce in its glassy phase [113]. 

Some experimental work on the topology of the g-Cu64Zr36 alloy has been reported (Section 2). 

Wang and co-workers performed an analysis of the structure in g-Cu64.5Zr35.5 by means of XRD [29], 

finding an icosahedron-like clustering preference among other short range order polyhedra. Mattern et al. 

performed an experimental study which involved XRD and neutron scattering for three different 

compositions: Cu100−xZrx (x = 35, 50, 65) [30]. They found an average coordination number of 13.2, 

but they did not assert any particular short-range order structure present in their samples. 

As mentioned in Section 2, Wang et al. also performed AIMD and RMC studies on a sample with 

the same concentration they used for the XRD analysis [29]. By comparing AIMD with XRD results, 

and RMC with EXAFS, they obtained the 3D structures of the samples so the short range ordering 

could be established. Likewise, Mattern et al. carried out an RMC study [30]. They used the 

simulational part to resolve the pRDFs and consequently to obtain their coordination number. In 
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addition to this, Jakse and Pasturel reported an AIMD study of the g-Cu64Zr36 alloy [31,32]. They 

obtained a coordination number closer to the one found by Mattern and co-workers, i.e., 13.1. 

It is noteworthy that these computational works have in common the use of plane waves as basis 

sets and a thermal procedure which leads to a metallic glass obtained by cooling from the melt. 

Therefore we decided to use a variant of the undermelt-quench protocol that excludes the stress 

relieving cycles since for this system they are very time consuming in the computational procedure; we 

also used the quantum mechanical tools mentioned before to generate the structure of an amorphous 

alloy to compare with the corresponding metallic glass. The working code was DMOL3 and since the 

Harris functional cannot handle d-band elements appropriately we decided to use a self-consistent 

approach and pseudopotentials. Also, since we have not found any previous work reporting the 

application of linear combination of atomic orbitals (LCAO) as basis sets for this alloy, we decided to 

undertake an LCAO study to find out the possible influence of our approach on the final structures. 

The LDA and the exchange-correlation functional due to Perdew and Wang with corrections by 

Ceperley (PWC) were used [114]. The calculations were spin-restricted with double numerical basis 

sets, which include d polarization functions (dnd). Given that ab initio calculations need an intensive 

computational effort, we used two different pseudopotentials (pp): (a) dspp (DFT semilocal 

pseudopotential) which replaces the core electrons with a simple potential, thus speeding the process, 

and (b) vpsr, which takes into account core and valence electrons performing scalar relativistic 

corrections on them, a more demanding pseudopotential. In order to obtain better dynamical results, 

and since we have a system made up of heavy elements, we used two different time steps based on the 

default time step (DTS) value of 3.57 fs: 10.71 fs (3DTS) and 14.28 fs (4DTS), so that the system has 

enough time to evolve. We used periodic boundary conditions and a cut-off distance of 4.4 Å for Cu 

and 5.3 Å for Zr. 

Starting with an fcc supercell of 108 atoms of copper, 39 atoms were randomly substituted by Zr 

atoms, reaching a density value of 8.06 g/cm
3
. From room temperature, we linearly heated the sample 

in 100 steps to 1223 K, 10 K below the melting point [115]. Afterwards the samples were quenched to 

0 K in 133 steps, the undermelt-quench approach. Thereupon we had two heating (cooling) rates:  

0.86 × 10
15

 K/s for 3DTS and 0.65 × 10
15

 K/s for 4DTS. At the end of this thermal process some 

stresses emerged within the samples, hence, we geometry optimized them to relax the structures so that 

they could reach a local energy minimum.  

4.7.2. Results and Analysis 

We obtained the radial distribution functions (RDFs) of the four samples (3DTS vpsr, 3DTS dspp, 

4DTS vpsr and 4DTS dspp), weighted them correspondingly and compared them with the 

experimental curves for the glassy alloy reported by Wang et al. [29] and Mattern et al. [30]. In 

Figures 30 to 32 we see a remarkable resemblance with the experimental RDFs (two for X-rays and 

one for neutrons). Our results reproduced the shape of the first peak very well, and the presence of the 

right shoulder. However we observe that there are slight differences between our RDFs and the 

experimental glassy ones regarding the position of the first peak, the first valley and the shape of the 

second peak. Our RDFs exhibit the so-called splitting of the second peak or bimodal second peak, 

which is a feature present in amorphous and liquid metallic alloys as mentioned before.  
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Figure 30. Comparison of our RDFs and the experimental glassy RDF of Wang et al. [29]. 

Our results were weighted for X-ray scattering in order to compare them with experiment. 

 

Figure 31. Comparison of our RDFs and the experimental glassy RDF of Mattern et al. [30]. 

Our results were weighted for neutron scattering in order to compare them with experiment. 

 

From Table 6 we can see that there are some discrepancies in the partial coordination numbers with 

respect to the experimental values. We computed the coordination numbers by integrating 4r20 g(r) 

up to the first minimum present in each RDF. Here 0 is the number density and g(r) is the RDF. We 

have undercoordination in the Cu–Cu and Zr–Zr partial numbers, and an overcoordination in Cu–Zr 

and Zr–Cu with respect to the glassy results. Notwithstanding, our values do not show a significant 

difference among them. In addition, it is also interesting to notice that our total coordination number 

agree well with the value reported by Mattern et al. We think that these differences may arise from the 

fact that we never melted the alloy in order to obtain the amorphous metal, i.e., we are not simulating a 

metallic glass but an amorphous metallic system. However, it is of paramount importance to mention 
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that our results clearly expose a resemblance between the non-glassy amorphous alloy and the metallic 

glass, that is, they have topological properties that are very similar. 

Table 6. Comparison of our total and partial coordination numbers with the experimental 

values of Mattern et al. [30]. 

 NCu-Cu NCu-Zr NZr-Zr NZr-Cu NT 

Mattern et al.
a
 6.7 3.9 5.9 7.6 13.2 

3DTS vpsr
b
 4.3 5.3 2.3 9.4 14.0 

3DTS dspp
b
 4.1 5.4 2.0 9.6 13.6 

4DTS vpsr
b
 3.9 5.4 2.2 9.5 13.7 

4DTS dspp
b
 3.7 5.1 2.0 9.1 13.4 

a Refrence [30] (The partials Nij were obtained via Reverse Monte Carlo simulations); b This work (Our NT 

results were weighted for XRD). 

Figure 32. Comparison of our RDFs and the experimental RDF of Mattern et al. Our 

results were weighted for X-ray scattering in order to compare them with experiment. 

 

As for the use of different pps, we can say that there are no big disparities between the dspp 

approximation and the vpsr results. Regarding the energies of our samples, we noticed that both the 

dspp and vpsr runs for a time step 3DTS exhibit an energy minimum which does not exist in the 4DTS 

runs. Therefore, we consider the time step 3DTS (10.71 fs) as the optimal time for the amorphization 

procedure; also, since the dspp pp leads to reliable results without compromising the quality, the 

adequate parameters for this alloy are: dspp pp and 3DTS.  

4.7.3. Summary  

Theoretical studies via simulational modeling of amorphous metals have been shown to be in 

agreement with the topological properties of the experimental data. By applying a variant of the 

undermelt-quench approach we obtained amorphous samples which resemble exceedingly well the 
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experimental results for the metallic glass, not only qualitatively, but also quantitatively. From this 

work we come to the following conclusions: 

(a) The disparities in the partial coordination numbers with respect to those experimentally 

reported, are related to the thermal process chosen, i.e., we always stayed under the melting 

point and therefore the metallic glass was never obtained. Moreover, from the AIMD studies 

and the reported experimental values, only Jakse and Pasturel [32] establish with precision the 

method they used to compute the coordination numbers.  

(b) The energies of the samples let us know that a time step of 10.71 fs, along with the vpsr pp, lead 

to a more metastable amorphous structure. Therefore the use of the dspp pp is indicated.  

(c) The amorphous alloy shares structural characteristics with the metallic glass, namely, the RDFs 

are very similar and the total coordination values are also very similar. Nevertheless differences 

are to be noted. 

These points suggest that our approach for the generation of amorphous metals is on the right track. 

However, we must fine-tune the process in order to handle a larger number of atoms, to calculate 

electronic and vibrational properties of such materials, and to deal with BMG. 

5. Amorphous Alloys: Their Properties [1] 

The agreement with experiment of the topological properties of the amorphous structures that we 

have generated using our simulational protocol: undermelt-quench + FAST, or some of its variants, 

gives us some degree of confidence in our method. Nevertheless, agreement between experiment and 

atomic topology through RDFs, measured and simulated, is only one aspect of the problem since it is 

well known that a given RDF can represent many atomic structures. Initially we have no way of 

knowing if the specific atomic structure that we have generated has the correct physical properties. For 

this reason it is necessary to calculate some physical properties of these structures and to compare 

them with experiment. We therefore report the calculations of some physical properties: the eDOS and 

the electron energy gaps of a-SiH, the eDOS and the optical gaps of a-SiN and because of its relevance 

for the equilibrium properties of the generated supercells, we report results of a calculation of the 

vDOS for pure a-Si that is presently been applied to some of the materials mentioned above. For the 

calculation of these properties all the amorphous atomic structures used were generated by means of 

our simulational protocol, and the agreement with experiment is very good. 

5.1. Electronic Energy Gaps of Amorphous Hydrogenated Silicon [48] 

As mentioned in Section 4.1 two structures of hydrogenated silicon were generated: one identified 

as the sample 2.44/0.46, the other as 10/2 because of the time steps used in the simulations. Once these 

atomic structures were constructed and their respective RDFs obtained (See Section 4.1) we analyzed 

their eDOS at the Γ-point of the artificial periodic Brillouin Zone, a widespread practice in the field. 

We carried out energy calculations using both FAST and the full Kohn-Sham DFT approach 

implemented in the ab initio commercial code DMOL3 to obtain the energy levels and eDOS curves of 

the final amorphous atomic structures, using LDA. In DMOL3 a double numerical basis set that 

includes d-polarization of the atoms (DNP) and the frozen-inner-core orbital approximation along with 
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a medium grid for the calculation of integrals were used. The SCF density parameter that specifies the 

degree of convergence for the LDA density was set at 10
−6

. We then obtained eDOS curves by 

broadening the discrete eigenvalues spectra generated with FAST and DMOL3 for the final  

amorphous structures. 

Figure 33. eDOS curves for the 2.44 fs cell of a-Si calculated using FAST, curve (a), and 

DMOL3, curve (b). HOMOs, LUMOs and gaps are indicated. 

 
 

Using the two cells constructed for amorphous silicon, the 2.44 fs and the 10 fs, we calculated the 

eDOS curves, the HOMOs (highest occupied molecular orbitals) and LUMOs (lowest unoccupied 

molecular orbitals) with both FAST and DMOL3. The eDOS are shown in Figures 33 and 34. For the 

eDOS curves obtained with FAST the discrete spectra was broadened with 0.02 eV half-width 

Gaussians, and for those obtained with DMOL3 the broadening used was 0.05 eV. 

In a first simple approach the gaps were obtained as the difference LUMO-HOMO with no attempt 

made to sort out the states within or near the gap due to dangling bonds and/or floating bonds. The 

2.44 fs cell displayed a smaller gap than the 10 fs cell, consistent with an inhibition of the gap size 

with increasing defect density. This is to be expected since the larger the defect density the more ‗gap 

states‘ which in turn reduces the overall LUMO-HOMO splitting. The numbers were potential 

dependent: 0.414 eV vs. 0.744 eV using FAST and 0.173 eV vs. 0.385 eV using DMOL3 and although 

the interpretation of the electron gap as the difference of LUMOs and HOMOs may give rise to some 

conceptual questions, the behavior was consistent with the appearance of a narrower gap in the sample 

with the higher defect density. 
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Figure 34. eDOS curves for the 10 fs cell of a-Si calculated using FAST, curve (a), and 

DMOL3, curve (b). HOMOs, LUMOs and gaps are indicated. 

 

 

The two a-SiH cells gave rise to the eDOS shown in Figures 35 (2.44/0.46 fs cell) and 36 (10/2 fs 

cell). Again, results are shown for the overlapped atom potential of FAST and the fully self-consistent 

potential of DMOL3. Hydrogenation reduces the size of the gap for the 2.44/0.46 cell from 0.41 eV to 

0.32 eV (overlapped atom potential) and from 0.17 eV to 0.14 eV for the self-consistent potential. For the 

10/2 fs cell the gap goes from 0.74 eV to 0.79 eV with FAST and from 0.39 eV to 0.48 eV with DMOL3. 

Figure 35. eDOS curves for the 2.44/0.46 fs cell of a-SiH calculated using FAST, curve (a), 

and DMOL3, curve (b). HOMOs, LUMOs and gaps are indicated.  
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Figure 36. eDOS curves for the 10/2 fs cell of a-SiH calculated using FAST, curve (a), and 

DMOL3, curve (b). HOMOs, LUMOs and gaps are indicated.  

 

 

The 2.44/0.46 cell has 3 dangling bonds (dbs) and 11 floating bonds (fbs) (6 hydrogen related and  

5 silicon related) indicating the important role of the fbs in reducing the gap, Figure 37. The 10/2 cell 

has 2 dbs and 3 fbs, Figure 38, and the gap increases due to hydrogenation. An increase of the gap is 

also observed experimentally. Here the geometric approach to the bond length mentioned in Section 3 

was used. 

Figure 37. Hydrogen addition to the 2.44/0.46 cell passivates 3 dangling bonds and 2 other 

are passivated by silicons but 3 new ones appear; 11 new floating bonds are formed.  
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Figure 38. Hydrogen addition to the 10/2 fs cell passivates all dangling bonds (2) and  

2 new ones appear plus 3 floating bonds. The molecular and atomic hydrogens  

are indicated. 

 

To conclude, the eDOS, and consequently the energy gap, showed the expected behavior with 

respect to the influence of defects. Upon hydrogenation of a low defect density sample, the gap was 

found to increase, as experimentally determined. For the high defect density on the other hand, the gap 

decreased; we believe due to the high number of existing fbs. In the next section (5.2.1) we present a 

different way to calculate the energy gap of amorphous materials after the development of Tauc several 

decades ago; this approach is closer to what experimentalists do when determining the optical gap. 

5.2. Optical Gaps of Amorphous Materials a la Tauc. A Case Study: Amorphous Silicon-Nitrogen 

Alloys [1,52-55] 

When dealing with amorphous silicon-nitrogen alloys we focused on the description of the atomic 

topology emphasizing the agreement between our simulations and the experimental RDFs reported in 

the literature. Even geometric aspects that we calculated, like the coordination numbers for the alloys, 

were in agreement with experiment. Now we present our approach to obtain values for the optical gaps 

of amorphous materials, based on a development by Tauc that experimentalists use commonly. Our 

approach was reported several years ago in References 52–55 and the gaps of our amorphous samples 

calculated in this manner agree well with experiment. 

Experimental studies have shown that the optical gaps of amorphous silicon-nitrogen alloys depend 

strongly on the nitrogen content x for 0 ≤ x ≤ 1.33. It has now been established that the optical gaps of 

hydrogenated a-SiNx increase as x increases, slowly at first, and then close to the stoichiometric 

compound, x = 4/3 = 1.33, it attains its largest value. There are also some experimental results for the 

optical gap of nonhydrogenated a-SiNx reported by Sasaki et al. and Davis et al. [55] and the 

conclusions are similar. 
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5.2.1. Optical Gaps of Amorphous Materials a la Tauc  

The optical absorption coefficient α, the fraction of energy lost by the wave on passing through a 

unit thickness of the material, for interband transitions is given by: 

α = (4π/n0c) (2πe
2
ħ

3
Ω/m

2
) ∫[N(E)N(E + ħω)|D|

2
dE]/ħω 

as described by Mott and Davis [116]. In this equation D is the matrix element for transitions between 

states in different bands, ∂/∂x, which will be taken to be the same as that for transitions between 

extended states in the same band, (without the factor m/m*); i.e., 

D = π (a/Ω)
1/2

 

where a is the average lattice spacing and Ω is the volume of the specimen. 

One characteristic feature of optical absorption in amorphous semiconductors is that certain 

selection rules, which exist for optically induced transitions in crystalline materials (particularly the 

conservation of k), are relaxed. 

In Mott and Davis, for interband absorption in amorphous semiconductors, the following 

assumptions are commonly made: 

(a) The matrix elements for the electronic transitions are constant over the range of photon 

energies of interest and given by D = π (a/Ω)
½
. 

(b) The k-conservation selection rule is relaxed. As in Mott and Davis we take the matrix element 

to be the same whether or not either the initial or final states, or both, are localized. 

Under these conditions the optical absorption coefficient α, for interband transitions, is given by 

α = (8π
4
e

2
ħ

2
a/n0cm

2
ω) ∫NV(E)NC(E + ħω)dE, 

where the integration is over all pairs of states in the valence and conduction bands separated by an 

energy ħω. The refractive index n0 is assumed to be independent of energy. 

For amorphous tetravalent semiconductors this leads to the well-known relationship 

(α(ω) ħω)
1/2

 = const (ħω − E0) 

obtained by Tauc [117] under the assumption of parabolic bands. If the bands are not parabolic the 

dependence may have to be written more generally as (α(ω) ħω)
p/q

 = const (ħω − E0). The parabolic 

bands formula has been used extensively by experimentalists to obtain the optical gap E0 by fitting a 

straight line to the low-energy end of the data, plotted as (α(ω) ħω)
1/2

 vs. (ħω − E0), and looking at the 

intersection of this line with the horizontal axis (ħω − E0). 

Since α is proportional to the fraction of energy lost by the wave on passing through the material, 

this implies that it is proportional to the number of electronic transitions that go from the valence to the 

conduction band, Nt (ħω). Therefore plotting (Nt (ħω)ħω)
1/2

, instead of (α(ω) ħω)
1/2

, should give the 

same type of behavior as experimentally observed although with a different slope; however, the 

intersection with the horizontal ħω axis, the optical gap E0, remains unaltered. 
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5.2.2. A Case Study: Amorphous Silicon-Nitrogen Alloys  

This is precisely what we do for silicon-nitrogen amorphous alloys. To find the optical gaps we 

look at the intersections of the linear fits to the low-energy end of the absorption curves, the  

(Nt (ħω)ħω)
1/2

 data. The linear fits are carried out as follows: we look at the low-energy region of the 

absorption spectrum, 0 ≤ ħω ≤ 10 eV, and fit it with a straight line, choosing the line that gives the best 

linear fit for the largest number of points. The errors estimated for the slopes of these linear fits are 

smaller for the purer samples and increase due to the presence of states within the gap for high nitrogen 

contents. For example, for pure silicon the slope is 7.496 ± 0.25 and for the nearly stoichiometric sample 

7.102 ± 1.11. For more detailed information we refer the reader to References 52 and 55 where results 

are reported that lead to the conclusion that the combination that best describes the experimental 

results is using a minimal basis set with a cutoff radius of 3 Å for the computational simulations. Based 

on this approach we calculated the absorption slopes and the optical gaps and these are shown in 

Figures 39 and 40, respectively. 

Figure 39 shows the behavior of the Tauc slope as a function of the gap energy. The right vertical 

axis, square symbols, is related to the experimental results due to Hasegawa et al. for glow discharged 

a-(SiNx)H [57]. The left vertical axis, triangle symbols, refers to our results for a-SiNx using the  

Tauc-like approach. It can be observed that the slope of our Tauc fit diminishes first and increases 

afterwards, as a function of the energy gap, as experimentally reported by Hasegawa et al. In order to 

compare the experiment and our simulation we have plotted the average slope (which is the average of 

the values of each of our two runs), as a function of the energy gap, using a vertical coordinate given 

by (Nt (ħω)ħω)
1/2

/ħω. The experimental results that Hasegawa and co-workers report are given in units 

of 10
5
 eV

−1
 cm

−1
, so the most we can hope for is the qualitative comparison of both results given in 

Figure 39. The similarity is quite impressive, even though the experimental results are for 

hydrogenated a-SiNx samples, indicating that our approach seems to be along the correct lines. 

Figure 39. Behavior of the Tauc slope as a function of the gap energy. The right vertical 

axis, square symbols, corresponds to the experimental results due to Hasegawa et al. for  

a-(SiNx)H [57]. The left vertical axis, triangle symbols, corresponds to our results for  

a-SiNx using the Tauc-like approach. 
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In Figure 40 we plot the optical gaps of several experimental and theoretical results reported in the 

literature. The experimental hydrogenated results are due to Hasegawa et al. and Guraya et al. The 

experimental nonhydrogenated gaps are due to Sasaki et al. and Davis et al. The optical gaps, 

calculated using our approach, are of the correct order of magnitude and behave very similar to 

experiment. The simulations of Ordejón et al. for samples without hydrogen, an atomistic calculation 

with adjusted parameters, are also included. The optical gaps, calculated using our approach, are of the 

correct order of magnitude and behave very similar to experiment. Our gaps are below all results for  

x < 0.5 and above all results for x > 0.6. For x ≈ 1.3 experiments and simulation become 

indistinguishable; the behavior clearly changes for x ≈ 1.1, the percolation threshold of Si-Si  

bonds [52,55]. 

Figure 40. Experimental and calculated optical gaps for amorphous alloys of  

silicon-nitrogen for various contents x (see text). Lines are drawn as guides to the eye (See 

References [52] and [55]). 

 
 

To conclude, our Tauc-like approach gives good results when calculating the slope of the optical 

absorption curve, Figure 39. It also gives good results when finding the optical gaps, Figure 40. We 

believe that the good agreement is directly related to the realistic representation of amorphous 

materials by the random networks generated according to our computational protocol.  

5.3. Vibrational Properties in the Harmonic Approximation [118] 

The study of the frequency spectrum of a condensed system, and its corresponding vDOS, is an 

important and direct manner to analyze whether a given structure is in fact a minimum energy 

structure, since it is known that the presence of ‗negative‘ frequencies signals instabilities in the 

system considered. In fact, what is negative is the square of the frequency, which leads to an imaginary 

value for ω. Clearly, an amorphous material is not the minimum energy structure of the solid since 

their crystalline counterparts have the lowest energy arrangement. Therefore, at best we hope to find 

our amorphous sample in a local energy minimum and some negative frequencies are expected. Also, 



Materials 2011, 4   772 

 

 

when calculating the frequency spectrum care has to be exercised to consider very small displacements 

around the equilibrium position of the atoms, so that the harmonic approximation is applicable; 

otherwise anharmonic considerations have to be included.  

When experimental results exist then it becomes an important benchmarking exercise to simulate 

the corresponding amorphous material and calculate its vDOS. If the RDFs, the electronic structure 

(eDOS), the optical gap and the vDOS agree with experiment then we can say, with some certainty 

that the computationally generated atomic structure is close to the experimental one. For pure silicon 

we generated a 216-atom amorphous supercell using the undermelt-quench approach and calculated its 

vDOS. The results that our group has obtained for the vibrational spectrum of pure amorphous silicon 

show the best agreement with experiment found so far in the literature [118]. Work is in progress to 

calculate the vDOS, and any other property that may be relevant, for all the networks that we have 

generated in order to see how good the topologies of our amorphous samples are. For a more detailed 

discussion of these results we refer the reader to Reference 118. 

Figure 41. Classical vDOS, based on the Tersoff potential [119], for our 216-atom a-Si 

network (orange curve), compared to the experimental results of Kamitakahara et al. 

(green curve and dots) [120,121]. 

 

Figure 42. Quantum vDOS for our 216-atom a-Si network (black curve), compared to the 

experimental results of Kamitakahara et al. (green curve and dots) [120,121]. 
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Our results, the comparison with each other and with experiment, are shown in Figures 41–43. 

Figure 41 is the comparison between our calculation, based on the classical Tersoff potential [119] and 

done with the help of the OXON package [122], and experiment [120,121]. Figure 42 is the 

comparison of experiment with our ab initio result. Figure 43 is the comparison of our two theoretical 

results, one obtained with the OXON package (Tersoff potential) and the other with the Materials Studio 

Modeling package (ab initio approach). It is clear then that our results, both classical and quantum, agree 

quite well with experiment; they are the closest to the experimental data found in the literature. 

Figure 43. Comparison between the quantum (Harris, black curve) and the classical 

(Tersoff, orange curve) vDOS for the 216-atom ab initio generated a-Si network [118]. 

 
 

To conclude: 

• Our frequency calculations are based on the 216-atom random structure that we ab initio 

generated using the undermelt-quench approach + the code FAST. 

• The relative heights of the two prominent peaks of the vDOS from both experiment and 

simulations essentially coincide and so do the overall shapes. 

• The positions of the two prominent peaks are essentially the same for the simulations and 

experiment. The first peak of the Harris calculation is somewhat displaced towards  

lower energies. 

• In the region 30–50 meV the Harris simulation agrees better with experiment than Tersoff‘s. 

The agreement of our classical and quantum results with experiment is better than any reported in 

the literature, classical or ab initio. This agreement indicates that our 216-atom amorphous structure 

adequately describes the material used in References 120 and 121; it also indicates that the agreement 

we have found using our amorphous supercell for both methods of calculation manifests the 

‗correctness‘ of the amorphous structure of our supercell. For the crystalline materials it is common to 

refer to the four major peaks of the vDOS as the transverse acoustical (TA), longitudinal acoustical 

(LA), longitudinal optical (LO) and transverse optical (TO) peaks. Clearly, for an amorphous material 

this classification is not as evident as it is for the crystalline counterpart. Nevertheless it is argued that 

these four major peaks in the vDOS of the crystal also appear in the vDOS for a-Si and that there is, 
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overall, a substantial similarity between the two distributions. To us there are important differences 

between the vDOS of the two phases, like the position of the peaks and their relative intensities, and 

also the presence of an abundant number of low frequency modes that do not exist in the crystalline 

counterpart, to mention but a few. 

6. Conclusions 

Simulations generate well defined amorphous atomic networks which may or may not be close to 

the real structure of the amorphous material. Experiments start from real structures, but with no 

knowledge of the detailed atomic arrangement. The RDF is one bridge between the two. Other bridges 

are the physical properties that, when calculated based on the detailed atomic structures of the 

simulated materials, may shed light on the adequacy of the generated atomic topology to describe the 

real amorphous material.  

The fact that our calculations agree with experiment, as has been clearly shown throughout this 

work, makes us reasonably optimistic that our protocol, the undermelt-quench approach (and its 

variants) + FAST, may be adequate for the generation of ―true‖ atomic topologies of amorphous 

material. Also, the Tauc-like approximation that we have devised to obtain the optical gaps of 

amorphous semiconductors seems to be adequate to describe these properties and perhaps can be 

generalized to describe other materials with non-parabolic bands. Multicomponent amorphous alloys 

of semiconductors and metals, and BMGs are amenable to our approaches; some of them are presently 

being studied and will be reported in the future.  

Acknowledgments 

Initial discussions of A.A. Valladares with M.A. Mc Nelis, and later with J. Harris and J. Sticht, while 

spending a sabbatical year at Molecular Simulations Inc. (MSI) in San Diego, CA. USA, have been 

decisive for the puesta a punto of the procedure. We also thank M.A. Mc Nelis for her willingness to 

read and correct this manuscript. F. Álvarez-Ramírez, J.A. Díaz-Celaya, J. Galván-Colín, L.M.  

Mejía-Mendoza and J.A. Reyes-Retana thank CONACYT for supporting their PhD studies. 

A.A.Valladares, R.M.Valladares and A.Valladares, thank DGAPA-UNAM for continued financial 

support to carry out research projects IN101798, IN100500, IN119105 and IN119908. Dongdong Qu 

and Jun Shen acknowledge support by the National Natural Science Foundation of China (NSFC) 

under Grants Nos. 50771040 and 10732010, and by the Heilongjiang Provincial Natural Science 

Foundation (Contract No. JC200806). Parts of the simulations were performed in the Computing 

Center of DGSCA-UNAM. M.T. Vázquez revised the list of references and together with O. Jimenez 

provided the information requested. 

References 

1. Valladares, A.A. A new approach to the ab initio generation of amorphous semiconducting 

structures. Electronic and vibrational studies. In Glass Materials Research Progress; Wolf, J.C., 

Lange, L., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2008; Chapter 3,  

pp. 61-123. 



Materials 2011, 4   775 

 

 

2. Romero, C.; Noyola, J.C.; Santiago, U.; Valladares, R.M.; Valladares, A.; Valladares, A.A.  

A new approach to the computer modeling of amorphous nanoporous structures of 

semiconducting and metallic materials: A review. Materials 2010, 3, 467-502. 

3. Bulk Metallic Glasses—An Overview; Miller, M., Liaw, P., Eds.; Springer Science & Business 

Media, LLC: New York, NY, USA, 2008; pp. xi-xii. 

4. Aga, R.S.; Morris, J.R. Modeling: The Role of Atomistic Simulations. In Bulk Metallic Glasses. 

An Overview; Miller, M., Liaw, P., Eds.; Springer Science & Business Media, LLC: New York, 

NY, USA, 2008; Chapter 3, pp. 57-85.  

5. Hui, L. Shoulder-peak formation in the process of quenching. Phys. Rev. B 2003, 68,  

024210:1-024210:5. 

6. Car, R.; Parrinello, M. Structural, dynamical, and electronic properties of amorphous silicon: An 

ab initio molecular-dynamics study. Phys. Rev. Lett. 1988, 60, 204-207. 

7. Stich, I.; Car, R.; Parrinello, M. Bonding and disorder in liquid silicon. Phys. Rev. Lett. 1989, 63, 

2240-2243.  

8. Stich, I.; Car, R.; Parrinello, M. Structural, bonding, dynamical, and electronic properties of 

liquid silicon: An ab initio molecular-dynamics study. Phys. Rev. B 1991, 44, 4262-4274.  

9. Stich, I.; Car, R.; Parrinello, M. Amorphous silicon studied by ab initio molecular dynamics: 

Preparation, structure, and properties. Phys. Rev. B 1991, 44, 11092-11104. 

10. Drabold, D.A.; Fedders, P.A.; Sankey, O.F.; Dow, J.D. Molecular-dynamics simulations of 

amorphous Si. Phys. Rev. B 1990, 42, 5135-5141. 

11. Fedders, P.A.; Drabold, D.A.; Klemm, S. Defects, tight binding, and first-principles  

molecular-dynamics simulations on a-Si. Phys. Rev. B 1992, 45, 4048-4055. 

12. Lee, I.; Chang, K.J. Atomic and electronic structure of amorphous Si from first-principles 

molecular-dynamics simulations. Phys. Rev. B 1994, 50, 18083-18089. 

13. Buda, F.; Chiarotti, G.L.; Car, R.; Parrinello, M. Structure of hydrogenated amorphous silicon 

from ab initio molecular dynamics. Phys. Rev. B 1991, 44, 5908-5911. 

14. Fedders, P.A.; Drabold, D.A. Hydrogen and defects in first-principles molecular-dynamics-modeled 

a-Si:H. Phys. Rev. B 1993, 47, 13277-13282. 

15. Tuttle, B.; Adams, J.B. Structure of a-Si:H from Harris-functional molecular dynamics. Phys. 

Rev. B 1996, 53, 16265-16271. 

16. Merchant, A.R.; McKenzie, D.R.; McCulloch, D.G. Ab initio simulations of amorphous carbon 

nitrides. Phys. Rev. B 2001, 65, 24208:1-24208:9. 

17. McKenzie, D.R.; Gerstner, E.G.; Merchant, A.R.; McCulloch, D.G.; Goa, P.E.; Cooper, N.C.; 

Goringe, C.M. The electronic structure and memory device applications of tetrahedral 

amorphous carbon. Int. J. Mod. Phys. B 2000, 14, 230-241. 

18. Walters, J.K.; Kuhn, M.; Spaeth, C.; Fischer, H.; Richter, F.; Newport, R.J. Neutron-diffraction 

studies of amorphous CNx materials. Phys. Rev. B 1997, 56, 14315-14321. 

19. Finocchi, F.; Galli, G.; Parrinello, M.; Bertoni, C.M. Microscopic structure of amorphous 

covalent alloys probed by ab initio molecular dynamics: SiC. Phys. Rev. Lett. 1992, 68,  

3044-3047. 

20. Finocchi, F.; Galli, G.; Parrinello, M.; Bertoni, C.M. Chemical order in amorphous covalent 

alloys: A theoretical study of a-SiC. Physica B 1993, 185, 379-383. 



Materials 2011, 4   776 

 

 

21. Finocchi, F.; Galli, G. Ab initio study of the hydrogenation effects in amorphous silicon carbide. 

Phys. Rev. B 1994, 50, 7393-7397. 

22. Massobrio, C.; Pasquarello, A. Short and intermediate range order in amorphous GeSe2. Phys. 

Rev. B 2008, 77, 144207:1-144207:10. 

23. Massobrio, C.; Pasquarello, A. Structural properties of amorphous GeSe2. J. Phys. Condens. Mat. 

2007, 19, 415111:1-415111:9. 

24. Sankey, O.F.; Niklewsky, D.J. Ab initio multicenter tight-binding model for molecular-dynamics 

simulations and other applications in covalent systems. Phys. Rev. B 1989, 40, 3979-3995. 

25. Cappelletti, R.L.; Cobb, M.; Drabold, D.A.; Kamitakahara, W.A. Neutron-scattering and ab 

initio molecular-dynamics study of vibrations in glassy GeSe2. Phys. Rev. B 1995, 52,  

9133-9136.  

26. Cobb, M.; Drabold, D.A.; Cappelletti, R.L. Ab initio molecular-dynamics study of the structural, 

vibrational, and electronic properties of glassy GeSe2. Phys Rev. B 1996, 54, 12162-12171.  

27. Kohary, K.; Burlakov, V.M.; Pettifor, D.G.; Nguyen-Manh, D. Modeling In-Se amorphous 

alloys. Phys. Rev. B 2005, 71, 184203:1-184203:7. 

28. Alemany, M.M.G.; Gallego, L.J.; González, D.J. Kohn-Sham ab initio molecular dynamics study 

of liquid Al near melting. Phys. Rev. B 2004, 70, 134206:1-134206:6. 

29. Wang, X.D.; Yin, S.; Cao, Q.P.; Jiang, J.Z.; Franz, H.; Jin, Z.H. Atomic structure of binary 

Cu64.5Zr35.5 bulk metallic glass. App. Phys. Lett. 2008, 92, 011902:1-011902:3. 

30. Mattern, N.; Jóvari, P.; Kaban, I.; Gruner, S.; Elsner, A.; Kokotin, V.; Franz, H.; Beuneu, B.; 

Eckert, J. Short-range order of Cu–Zr metallic glass. J. Alloy Compd. 2009, 485, 163-169. 

31. Jakse, N.; Pasturel, A. Glass forming ability and short-range order in a binary bulk metallic glass 

by ab initio molecular dynamics. App. Phys. Lett. 2008, 93, 113104:1-113104:3. 

32. Jakse, N.; Pasturel, A. Local order and dynamic properties of liquid and undercooled CuxZr1−x 

alloys by ab initio molecular dynamics. Phys. Rev. B 2008, 78, 214204:1-214204:9. 

33. Sun, Y.L.; Shen, J.; Valladares, A.A. Atomic structure and diffusion in Cu60Zr40 metallic liquid 

and glass: Molecular dynamics simulations. J. Appl. Phys. 2009, 106, 073520:1-073520:8. 

34. Fast Structure Simulated Annealing—User Guide. Release 4.0.0.; Molecular Simulations Inc.: 

San Diego, CA, USA, 1996.  

35. Li, X.; Andzelm, J.; Harris, J.; Chaka, A.M. A fast density-functional method for chemistry.  

In Chemical Applications of Density-Functional Theory; Laird, B.B.; Ross, R.B.; Ziegler, T., Eds.; 

American Chemical Society: Washington, DC, USA, 1996; Chapter 26. 

36. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864-B871.  

37. Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. 

Rev. 1965, 140, A1133-A1138. 

38. Harris, J. Simplified method for calculating the energy of weakly interacting fragments. Phys. 

Rev. B 1985, 31, 1770-1779. 

39. Vosko, S.H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies 

for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200-1211.  

40. Delley, B. An all-electron numerical method for solving the local density functional for 

polyatomic molecules. J. Chem. Phys. 1990, 92, 508-517.  



Materials 2011, 4   777 

 

 

41. Delley, B. Analytic energy derivatives in the numerical local-density-functional approach.  

J. Chem. Phys. 1991, 94, 7245-7250. 

42. Lin, Z.J.; Harris, J. A localized-basis scheme for molecular dynamics. J. Phys. Condens. Mat. 

1993, 5, 1055-1080. 

43. Romero, C.; Mata, Z.; Lozano, M.; Barrón, H.; Valladares, R.M.; Álvarez, F.; Valladares, A.A. 

Amorphizing non-cubic structures of carbon. The case of rhombohedral and hexagonal 

crystalline supercells. J. Non-Cryst. Solids 2004, 338-340, 513-516.  

44. Barrón-Escobar, H. Amorfización de estructuras cúbicas de carbón. M.Sc. Thesis, PCeIM, 

UNAM, Mexico, 2009. 

45. Yang, S.H. Ab initio local-orbital density-functional method for transition metals and 

semiconductors. Phys. Rev. B 1998, 58, 1832-1838. 

46. Quantum Chemistry, DMOL3 User Guide, Cerius2-3.5; Molecular Simulations, Inc.: San Diego, 

CA, USA, 1996. 

47. Kugler, S.; Kohary, K.; Kadas, K.; Pusztai, L. Unusual atomic arrangements in amorphous 

silicon. Solid State Commun. 2003, 127, 305-309. 

48. Valladares, A.A.; Alvarez, F.; Liu, Z.; Sticht, J.; Harris, J. Ab initio studies of the atomic and 

electronic structure of pure and hydrogenated a-Si. Eur. Phys. J. B 2001, 22, 443-453. 

49. Bellissent, R.; Chenevas-Paule, A.; Chieux, P.; Menelle, A. a-Si:H short range order by neutron 

scattering. J. Non-Cryst. Solids 1985, 77-78, 213-216. 

50. Nakamura, K.G.; Ishioka, K.; Kitajima, M.; Murakami, K. Ab initio calculation of the hydrogen 

molecule in silicon. Solid State Comm. 1997, 101, 735-738. 

51. Álvarez, F.; Díaz, C.C.; Valladares, A.A.; Valladares, R.M. Radial distribution functions of ab 

initio generated amorphous covalent networks. Phys. Rev. B 2002, 65, 113108:1-113108:4. 

52. Álvarez, F.; Valladares, A.A. Optical gaps of ab initio generated random networks for a-SiNx 

alloys. Appl. Phys. Lett. 2002, 80, 58-60. 

53. Álvarez, F.; Valladares, A.A. The atomic and electronic structure of amorphous silicon nitride. 

Rev. Mex. Fís. 2002, 48, 528-533. 

54. Álvarez, F.; Valladares, A.A. Atomic topology and radial distribution functions of a-SiNx alloys: 

Ab initio simulations. Solid State Commun. 2003, 127, 483-487. 

55. Álvarez, F.; Valladares, A.A. First-principles simulations of atomic networks and optical 

properties of amorphous SiNx alloys. Phys. Rev. B 2003, 68, 205203:1-205203:10. 

56. Justo, J.F.; de Brito Mota, F.; Fazzio, A. First-principles investigation of a-SiNx:H. Phys. Rev. B 

2002, 65, 073202:1-073202:4. 

57. Hasegawa, S.; Matuura, M.; Kurata, Y. Amorphous SiNx:H dielectrics with low density of 

defects. Appl. Phys. Lett. 1986, 49, 1272-1274.  

58. Davis, E.A.; Piggins, N.; Bayliss, S.C. Optical properties of amorphous SiNx(:H) films. J. Phys. 

Condens. Mat. 1987, 20, 4415-4427.  

59. Guraya, M.M.; Ascolani, H.; Zampieri, G.; Cisneros, J.I.; Dias da Silva, J.H.; Cantaõ, M.P. Bond 

densities and electronic structure of amorphous SiNx:H. Phys. Rev. B 1990, 42, 5677-5684.  

60. Santana, G.; Morales-Acevedo, A. Optimization of PECVD SiN:H films for silicon solar cells. 

Sol. Energy Mater. Sol. Cells 2000, 60, 135-142. 



Materials 2011, 4   778 

 

 

61. Aiyama, T.; Fukunaga, T.; Niihara, K.; Hirai, T.; Suzuki, K. X-ray diffraction study of the 

amorphous structure of chemically vapor-deposited silicon nitride. J. Non-Cryst. Solids 1979, 33, 

131-139. 

62. Misawa, M.; Fukunaga, T.; Niihara, K.; Hirai, T.; Suzuki, K. Structure characterization of CVD 

amorphous Si3N4 by pulsed neutron total scattering. J. Non-Cryst. Solids 1979, 34, 313-321.  

63. Fukunaga, T.; Goto, T.; Misawa, M.; Hirai, T.; Suzuki, K. Atomic-scale structure of CVD 

amorphous Si3N4-BN composite. J. Non-Cryst. Solids 1987, 95–96, 1119-1126. 

64. De Brito Mota, F.; Justo, J.F.; Fazzio, A. Structural properties of amorphous silicon nitride. Phys. 

Rev. B 1998, 58, 8323-8328.  

65. De Brito Mota, F.; Justo, J.F.; Fazzio, A. Structural and electronic properties of silicon nitride 

materials. Int. J. Quantum Chem. 1998, 70, 973-980.  

66. De Brito Mota, F.; Justo, J.F.; Fazzio, A. Hydrogen role on the properties of amorphous silicon 

nitride. J. Appl. Phys. 1999, 86, 1843-1847. 

67. Justo, J.F.; de Brito Mota, F.; Fazzio, A. Hydrogenated amorphous silicon nitride: structural and 

electronic properties. Mater. Res. Soc. Symp. Proc. 1999, 538, 555-560. 

68. Valladares, A.A.; Álvarez-Ramírez, F. Bonding in amorphous carbon-nitrogen alloys: A first 

principles study. Phys. Rev. B 2006, 73, 024206:1-024206:7. 

69. McKenzie, D.R. Tetrahedral bonding in amorphous carbon. Rep. Prog. Phys. 1996, 59,  

1611-1664. 

70. Robertson, J. Hard amorphous (diamond-like) carbons. Prog. Solid State Chem. 1991, 21,  

199-333.  

71. Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R. 2002, 37, 129-281. 

72. Kroke, E.; Schwarz, M. Novel group 14 nitrides. Coord. Chem. Rev. 2004, 248, 493-532. 

73. Rodil, S. Preparation and characterization of carbon nitride thin films, Ph.D. Thesis, University 

of Cambridge, Cambridge, UK, November 2000. 

74. Davis, C.A.; McKenzie, D.R.; Yin, Y.; Kravtchinskaia, E.; Amaratunga, G.A.J.; Veerasamy, V.S. 

Substitutional nitrogen doping of tetrahedral amorphous carbon. Philos. Mag. B 1994, 69,  

1133-1140.  

75. Shi, X.; Fu, H.; Shi, J.R.; Cheah, L.X.; Tay, B.K.; Hui, P. Electronic transport properties of 

nitrogen doped amorphous carbon films deposited by the filtered cathodic vacuum arc technique. 

J. Phys. Condens. Mat. 1998, 10, 9293-9302.  

76. Stanishevsky, A.; Khriachtchev, L.; Akula, I. Deposition of carbon films containing nitrogen by 

filtered pulsed cathodic arc discharge method. Diamond Relat. Mater. 1998, 7, 1190-1195.  

77. Chhowalla, M.; Alexandrou, I.; Kiely, C.; Amaratunga, G.A.J.; Aharonov, R.; Fontana, R.F. 

Investigation of carbon nitride films by cathodic arc evaporation. Thin Solid Films 1996, 290–291, 

103-106. 

78. Marton, D.; Boyd, K.J.; Al-Bayati, A.H.; Todorov, S.S.; Rabalais, J.W. Carbon nitride deposited 

using energetic species: A two-phase system. Phys. Rev. Lett. 1994, 73, 118-121.  

79. Marton, D.; Boyd, K.J.; Rabalais, J.W. Synthesis of carbon nitride. Int. J. Mod. Phys. B 1995, 9, 

3527-3558. 

80. Aarao Reis, F.D.A.; Franceschini, D.F. Two species model for deposition and erosion of  

carbon-nitrogen films. Appl. Phys. Lett. 1999, 74, 209-211. 



Materials 2011, 4   779 

 

 

81. Silva, S.R.P.; Robertson, J.; Amaratunga, G.A.J.; Rafferty, B.; Brown, L.M.; Schwan, J.; 

Franceschini, D.F.; Mariotto, G. Nitrogen modification of hydrogenated amorphous carbon films. 

J. Appl. Phys. 1997, 81, 2626-2634. 

82. Veerasamy, V.S.; Amaratunga, G.A.J.; Davis, C.A.; Timbs, A.E.; Milne, W.I.; McKenzie, D.R. 

N-type doping of highly tetrahedral diamond-like amorphous carbon. J. Phys. Condens. Mat. 

1993, 5, L169-L174. 

83. Álvarez, F.; Díaz, C.C.; Valladares, R.M.; Valladares, A.A. Ab initio generation of amorphous 

carbon structures. Diam. Relat. Mater. 2002, 11, 1015-1018. 

84. Valladares, A.A.; Valladares, A.; Valladares, R.M.; Mc Nelis, M.A. Ab initio cluster simulation 

of N doped tetrahedral amorphous carbon. J. Non-Cryst. Solids 1998, 231, 209-221. 

85. Mejía-Mendoza, L.M. Estudio computacional de aleaciones amorfas basadas en silicio-carbono y 

silicio-germanio. Ph.D. Thesis, PCeIM, UNAM, Mexico, 2011. 

86. Mejía Mendoza, L.M.; Valladares, R.M.; Valladares, A.A. Simulating the structure of amorphous 

Si0.5C0.5 using Lin-Harris molecular dynamics. Mol. Simulat. 2008, 34, 989-995. 

87. The goodfellow web site information about Nicalon (Si0.5C0.5) physical properties. Available 

online: http://www.goodfellow.com/E/Silicon-Carbide'.html (accessed on 7 April 2011).  

88. Tersoff, J. Chemical order in amorphous silicon carbide. Phys. Rev. B 1994, 49, 16349-16352. 

89. Ishimaru, M.; Bae, I.T.; Hirotsu, Y.; Matsumura, S.; Sickafus, K.E. Structural relaxation of 

amorphous silicon carbide. Phys. Rev. Lett. 2002, 89, 055502:1-055502:4. 

90. Ishimaru, M. Electron-beam radial distribution analysis of irradiation-induced amorphous SiC. 

Nucl. Instr. Meth. B 2006, 250, 309-314. 

91. Reyes-Retana, J.A. Simulaciones computacionales de los calcogenuros amorfos. Ph.D. Thesis, 

PCeIM, UNAM, Mexico, 2011. 

92. Reyes-Retana, J.A.; Valladares, A.A. Structural properties of amorphous selenium: An ab initio 

molecular-dynamics simulation. Comput. Mater. Sci. 2010, 47, 934-939. 

93. Salmon, P.S. Structure of liquids and glasses in the Ge–Se binary system. J. Non-Cryst. Solids 

2007, 353, 2959-2974. 

94. Azoulay, R.; Thibierge, H.; Brenac, A. Devitrification characteristics of GexSe1−x glasses.  

J. Non-Cryst. Solids 1975, 18, 33-53. 

95. Salmon, P.S.; Petri, I. Structure of glassy and liquid GeSe2. J. Phys. Condens. Mat. 2003, 15, 

S1509-S1528. 

96. Valladares, A.A.; Valladares, A.; Valladares, R.M.; Calles, A. Structural properties of 

amorphous aluminum and aluminum-nitrogen alloys. Computer simulations. Mater. Res. Soc. 

Symp. Proc. 2005, 848, 463-477. 

97. Díaz-Celaya, J.A.; Valladares, R.M.; Valladares, A.A. Computational generation of disordered 

structures of Al-12%Si. An ab initio approach. Mater. Res. Soc. Symp. Proc. 2007, 1048,  

Z08-20:1-Z08-20:6. 

98. Díaz-Celaya, J.A.; Valladares, A.A.; Valladares, R.M. An ab initio molecular dynamics 

calculation of the density of the liquid metallic alloy Al–Si 12 at% as a function of temperature. 

Intermetallics 2010, 18, 1818-1820. 



Materials 2011, 4   780 

 

 

99. Díaz-Celaya, J.A.; Valladares, A.A.; Valladares, R.M. Atomic Coordination Number in Eutectic 

Aluminum-Silicon as a function of temperature in the liquid phase: An ab initio study. In 

Proceedings of Liquid and Amorphous Metals XIV, Rome, Italy, 11–15 July 2010. 

100. Díaz-Celaya, J.A. Estudio del sistema aluminio-silicio líquido y amorfo. Ph.D. Thesis, PCeIM, 

UNAM, Mexico, 2011. 

101. Valladares, A.A. Generating amorphous and liquid aluminum: A new approach. J. Non-Cryst. 

Solids 2007, 353, 3540-3544. 

102. Daw, M.S.; Baskes, M.I. Embedded-atom method-Derivation and application to impurities, 

surfaces, and other defects in metals. Phys. Rev. B 1984, 29, 6443-6453. 

103. Sutton, A.P.; Chen, J. Long-range Finnis Sinclair potentials. Philos. Mag. Lett. 1990, 61,  

139-146. 

104. Ducastelle, F. Mudules élastiques des métaux de transition. J. Phys. France 1970, 31,  

1055-1062. 

105. Murray, J.L.; McAlister, A.J. The Aluminum-Silicon system. Bull. Alloy Phase Dia. 1984, 5,  

74-84. 

106. Napolitano, R.E.; Meco, H.; Jung, C. Faceted solidification morphologies in low-growth-rate  

Al-Si eutectics. JOM 2004, 56, 16-21.  

107. Bian, X.F.; Wang, W.M.; Qin, J.Y. Liquid structure Al-12.5%Si alloy modified by antimony. 

Mater. Charact. 2001, 46, 25-29. 

108. Stepanyuk, V.S.; Katsnelson, A.A.; Szasz, A.; Trushin, O.S.; Müller, H.; Watson, L.M.; 

Kirchmayr, H. The microstructure of liquid and amorphous aluminum. J. Non-Cryst. Solids 

1992, 151, 169-174. 

109. Finney, J.L. Modeling of liquids and amorphous solids. In Amorphous Solids and the Liquid 

State; March, N.H., Street, R.A., Tosi, M., Eds.; Plenum: New York, NY, USA, 1985; pp. 31-51. 

110. Waseda, Y. The Structure of Non-Crystalline Materials, Liquids and Amorphous Solids, 1st ed.; 

McGraw-Hill Inc: Columbus, OH, USA, 1980; p. 90. 

111. Galván-Colín, J. Método computational ab initio para la amorfización de una aleación Cu-Zr 

(Cu64Zr36). M.Sc. Thesis, PCeIM, UNAM, Mexico, 2011. 

112. Peker, A.; Johnson, W.L. A highly processable metallic-glass Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. 

Phys. Lett. 1993, 63, 2342-2344. 

113. Xu, D.; Lohwongwatana, B.; Duan, G.; Johnson, W.L.; Garland, C. Bulk metallic glass formation 

in binary Cu-rich alloy series—Cu100−xZrx (x = 34, 36, 38.2, 40 at%) and mechanical properties 

of bulk Cu64Zr36 glass. Acta Mater. 2004, 52, 2621-2624. 

114. Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas 

correlation energy. Phys. Rev. B 1992, 45, 13244-13249. 

115. Subramanian, P.R.; Chakrabarti, D.J.; Laughlin, D.E. Phase Diagrams of Binary Copper Alloys; 

Materials Information Society: Novelty, Ohio, USA, 1994. 

116. Mott, N.F.; Davis, E.A. Electronic Processes in Non-crystalline Materials; Oxford University 

Press: Oxford, UK, 1971; p. 238. 

117. Tauc, J. Optical Properties of Solids; Abelès F., Ed.; North Holland: Amsterdam, The 

Netherlands, 1970; p. 277. 



Materials 2011, 4   781 

 

 

118. Valladares, A.; Valladares, R.M.; Alvarez-Ramírez, F.; Valladares, A.A. Studies of the phonon 

density of states in ab initio generated amorphous structures of pure silicon. J. Non-Cryst. Solids 

2006, 352, 1032-1036. 

119. Tersoff, J. Modeling solid-state chemistry—interatomic potentials for multicomponent systems. 

Phys. Rev. B 1989, 39, 5566-5568. 

120. Kamitakahara, W.A.; Shanks, H.R.; McClelland, J.F.; Buchenau, U.; Gompf, F.; Pintschovius, L. 

Measurement of phonon densities of states for pure and hydrogenated amorphous-silicon. Phys. 

Rev. Lett. 1984, 52, 644-647. 

121. Kamitakahara, W.A.; Soukoulis, C.M.; Shanks, H.R.; Buchenau, U.; Grest, G.S. Vibrational 

spectrum of amorphous silicon: Experiment and computer simulation. Phys. Rev. B 1987, 36, 

6539-6542. 

122. Oxford Order N Package (OXON). Developed at the Materials Modeling Laboratory; 

Department of Materials, the University of Oxford: Oxford, UK, December 2000. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


