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Abstract: The flow of a dry granular material composed of spherical particles along a 

rotating boundary has been studied by the discrete element method (DEM). This type of 

flow is used, among others, as a process to spread particles. The flow consists of several 

phases. A compression phase along the rotating wall is followed by an elongation of the 

flow along the same boundary. Eventually, the particles slide or roll independently along 

the boundary. We show that the main motion of the flow can be characterized by a 

complex deformation rate of traction/compression and shear. We define numerically an 

effective friction coefficient of the flow on the scale of the continuum and show a strong 

decrease of this effective friction beyond a certain critical friction coefficient μ*. We 

correlate this phenomenon with the apparition of a new transition from a sliding regime to 

a rolling without sliding regime that we called the rolling transition; this dynamic transition 

is controlled by the value of the friction coefficient between the particle and the wall. We 

show that the spherical shape for the particles may represent an optimum for the flow in 

terms of energetic. 
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1. Introduction 

Granular flows have received a lot of attention from physicists and mechanical engineers. Indeed, 

granular materials are ubiquitous in many industrial applications such as chemical engineering, mining 

and geosciences and unexpected behaviors can occur compared to classical fluids as jamming in silos 

(see for instance recently [1]). To date, we still have only a partial understanding of the basic principles 

the come to play such as the flow rules for such complex fluids: a unified description of their rheology 

from fundamental principles still poses great challenges [2,3]. 

Due to the various contact interactions between the constitutive particles of the flow (collisions and 

friction), several different length and time scales can be present which contribute to the complex 

behaviour of granular materials from a general point of view. Binary collisional interactions for dilute 

flows allow for a description in terms of a granular gas while, for denser flows involving frictional and 

multi-body contacts, additional transfers of elastic energy can occur through the network of the 

contacts between the beads. 

A viscoplastic rheology has been highlighted recently for the description of such regimes with 

notable success when applied to different configurations of granular flow under shear [4] and this kind 

of approach has been extended recently to a flow in a 3D geometry [5]. 

However, from a general view point, we can wonder if internal degrees of freedom of the particles 

are always captured in such a frame at the macroscopic scale. For instance, interactions between 

particles under shear may also induce rotation and spin on these particles and this may also influence 

the rheology at a certain stage.  

In different cases of practical significance, granular flows may indeed be driven by forces other than 

gravity in which case the corresponding physical features may have to be revisited. Granular flows in 

centrifugal spreading are such an example. 

The flow in the monoparticle case has been studied previously both experimentally and 

theoretically [6-8]. The complexity of the frictional interaction and the energy dissipated during the 

interaction process between the bead and the rotating boundary was clearly brought to the fore. We 

showed indeed the relevance of defining two distinct friction coefficients impact m and contact m 

related to an impact and an enduring contact for a particle in motion along a fixed boundary. These 

informations will be useful for an optimization of the motion of a granule along a boundary (see for 

instance [9] in a context of terrestrial locomotion). Here, we study the flow of an assembly of particles 

along a rotating boundary through numerical simulations (velocity W, vertical axis of rotation (Z), see 

Figure 1). This situation is directly inspired by the process of centrifugal spreading of particles which 

is currently used in agricultural engineering. 

Regarding the specific case of centrifugal spreading, previous studies were able to reproduce 

experimental trends qualitatively [10,11]. However, a quantitative agreement is still lacking partly 

because of the uncertainties regarding complex friction laws. The goal of the present paper here is 

different. As the energy in a granular flow is mainly dissipated through contacts between the particles 

by friction, a study of the flow on the scale of the contacts would be indeed of much value. In this 

letter, we present, from a physical viewpoint, some dynamical properties on the scale of the grains that 

appear numerically for these kinds of granular flows and that have an effect on the macroscopic scale. 

This information will be useful for an optimised control of the flow of the particles in terms of 
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energetics whereas granular physicists have been more concerned until now in a geometric optimization 

of packings [12]. 

Figure 1. Schematic view of the flow of an assembly of grains along a rotating plane. 

 

2. The Model 

The granular flow consists of an assembly of N = 1500 particles of density r = 1768 kg/m3, radius  

R = 3 mm, mass m = 0.2 g and spring coefficient Kn = 75 kN/m. The beads have no cohesion and no 

interstitial fluid is present between the grains so that the particles interact only via classical mechanical 

contact forces. In the initial configuration, the particles are set randomly in a rectangular box at the 

entrance of the vane (see Figure 1). The typical dimension of the box is equal to Lx = 33 R, Ly = 23 R 

and Lz = 26 R. The length of the vane is equal to Lp = 330 R. 

We considered the case of a very dissipative material in order to be close to the situation of real 

particles and therefore chose a very low restitution coefficient r = 0.2. The numerical code is based on 

the Discrete Element Method (D.E.M.). This numerical approach is now classical in the field of 

granular physics and has been found to be useful in order to explore the properties of granular matter 

on the grain scale. The force model is chosen as the classical spring-dashpot model, i.e., an elastic 

response with a viscous damping term in the force law. 

For the sake of simplicity, we have modelled the interaction following the widely used approach 

introduced by P.A. Cundall and O.D.L. Strack [13]. This corresponds to a linear viscoelastic interaction 

between the particle and the vane modelled by a linear spring in parallel with a dashpot for the normal 

component (N). The tangential component (T) is modelled by a spring with Coulomb friction limit  

as follows: 

min( , )
n n n n

t t t t t t t t t t

N K b

T T K N

δ δ
δ μ

•

+Δ → +Δ +Δ

= −
= − ℜ + Δ

 (1)

Kn, Kt and bn are respectively the contact stiffnesses and the damping parameter: 
2(1 )

(2 )t nK K
ν
ν

−=
−

 

(Vu-Quoc et al. 2000 [14]) with the Poisson ratio ν = 0.3 and 2 22 ln / lnn nb r mK rπ= +  (see [15]). 

δn is the normal contact displacement also referred to as the overlap of the contacting bodies. The 

increment of tangential contact displacement tt tδ δ
•

Δ = Δ  is found by integrating the projection on the 
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contact plane of the relative contact velocity. t t t→ +Δℜ  is the rotation matrix of the contact wall between 

time step t to t t+ Δ . 

3. Physical Parameters of the Problem 

The mechanical parameters which define this interaction law are: 

- The dynamic friction coefficient between particles m; 

- The dynamic friction coefficient between the particle and the wall μ’. 

The coefficient of normal restitution r between two beads; this coefficient is linked through the 

spring-dashpot model by two parameters: the spring constant n K and the visco-elastic constant bn. 

3.1. Collective Motion for the Particles 

The combined inertial forces on the flow (centrifugal and Coriolis) induce four different stages for 

the flow: (i) an impact of the granular material along the boundary; (ii) a radial stretching of the flow 

along the boundary subjected to the centrifugal force; (iii) an ortho-radial compression of the granular 

material along the boundary induced by the Coriolis force; (iv) finally, an independent motion of the 

particles sliding or rolling along the boundary. 

In order to study the collective motions of the beads, we numerically tracked the individual 

displacements of some of them in the bulk of the flow. A sketch of the evolution of the flow along the 

boundary at three different times is displayed in Figure 2. In that figure, we split the packing into 

several horizontal slices represented by different colors in grey scales for illustration purposes. The 

main phenomenon that can be observed on the picture is that the relative motion of the beads does not 

correspond to the classical shear motion between two adjacent layers of beads. On the contrary, we 

observe that two typical neighbouring beads move away from each other and let a bead from the above 

layer slip between them. We refer to this specific motion with the term traction-compression instead of 

shear. In the following paragraph, we quantify these different motions by introducing some non 

dimensional physical numbers which are characteristic of the physics of the flow. 

Figure 2. Schematic view of the flow at four angular displacements. 
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3.2. Typical Physical Non Dimensional Numbers of the Flow 

The inertial number I [4] is a non dimensional number which expresses the competition between the 

typical shear time scale (Tγ) and the confinement pressure time scale (Tc). This number is relevant to 

the classification of the different regimes of sheared flows [4]. Recently, a 3D visco-plastic 

formulation of this rheology was proposed. This is a Mohr-Coulomb like formulation with a friction 

coefficient dependent on the inertial number I [5]. Let us evaluate the local inertial number I defined in 

Equation 2: 

/ / / 3 ( )c x xI T T V yR V h yγ π= = ∂ ∂ Ω −  (2)

which is the ratio between the characteristic time of confinement c T by the Coriolis stress P, i.e., 

/ 2 2 / 6cT m RP R Pπρ= =  (3)

and the shear time scale: 

1/Tγ γ
•

=  (4)

where the shear rate is given /xV Vyγ
•

= ∂ ∂ , Vx being the radial velocity of the flow. The coriolis stress 

P depends on the height (h − y) in the pile with h is the maximal height of the flow in (Oy) direction 

for a given x (see Figure 2). P is given by: 

2 ( )xP V h yρ= Ω −  (5)

with /xV d x dt=  being the average radial velocity of the flow. 

The present flow is somewhat non-standard because the shear rate /xV y∂ ∂  is low compared to the 

traction rate /xV x∂ ∂ . For instance, for values of Ω over 600 rpm, the ratio of the two gradients is 

above 5. The inertial number I decreases as a function of time and converges towards a value around  

I ≈ 0.01 (see Figure 3). 

Furthermore, the classical inertial number I is not, in this case, the main characteristic parameter of 

the flow. 

We can propose the introduction of new inertial numbers J and J’ defined by Equations 6 below in a 

similar way as it has been done in [4]. The inertial number J is the ratio between the characteristic time 

scale of confinement and the time scale of traction arising from the centrifugal stress in the (Ox) 

direction. Likewise, J’ is the ratio between the characteristic time scale of traction of the centrifugal 

stress and the time scale linked to the compression in the (Oy) direction. 

2/ / 3 ( )

' / / 3 ( )

y

x x

J V yR x h y

J V xR V h y

π

π

= ∂ ∂ Ω −

= ∂ ∂ Ω −
 (6)

We display the inertial number J on Figure 4. The ratio between the two inertial numbers does not 

vary significatively along the direction (Oy) for the range of parameters considered.  
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Figure 3. Inertial number I as a function of angular displacement (x = 33 R, t = 0.015 s,  

t = 0.015 s, μ = 0.1, μ’ = 0.2; y = R – 3 R – 5 R – 7 R). 

 

Figure 4. Inertial number J as a function of angular displacement (x = 33 R, t = 0.015 s,  

μ = 0.1, μ’ = 0.2, y = R – 3 R – 5 R – 7 R). 

 

4. Chararacterization of the Friction of the Flowing Granular Material along the 

Rotating Boundary 

We probe the flow by introducing a rectangular box which is fixed with respect to the boundary and 

in which some physical properties on the scale of the continuum at the interface can be calculated. The 

basis of this box has a side length equal to 10 bead diameters. This has been found to be sufficient to 

describe the local properties for the flow and at the same time avoid any “grain scale” effect linked to 

the microstructuration in the flow. The height of the box is chosen to be 1/10 of a radius R in order to 

detect only the contacts between the beads and the boundary. This box is positioned in contact with the 

vane at a distance x = 50 R in our specific case. 

We define for this purpose an effective friction coefficient of the granular material flowing along 

the vane μeff in this box as the ratio between the sum of tangential shear forces at the contact ΣT to the 

sum of the normal forces ΣN, namely: 

μeff = ΣT/ΣN (7)
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The sum of both forces is made on all the contacts between the boundary and the particles inside the 

box. The evolution of μeff as a function of time for different values of the friction coefficient m is 

plotted in Figure 5. 

Figure 5. Effective friction at the boundary as a function of time for different friction 

coefficients particle/vane measured in the elementary volume for values of the 

microscopical parameters (μ’ = 0.2 and m = 0.1−0.2−0.3−0.4−0.5). 

 

We observe first positive fluctuations of the mean friction coefficient. These fluctuations are very 

weak for values of m which are smaller or equal to 0.2. For higher values of the friction coefficient, we 

observe that the fluctuations become much more important, as much as 30% in relative value.  

We can ask ourselves about the physical origin of these strong fluctuations on the value of the 

effective friction coefficient. For this purpose, we tracked the motion of individual particles along the 

boundary with respect to velocity and spin. 

We present in Figure 6 the evolution of the angular velocity of a particle Rθ
•

 in the flow for two 

extreme values of the friction coefficient at the boundary: μ = 0.1 and μ = 0.8. We also bserve that the 

particles changing layers with high friction coefficient have a spin in the opposite direction Rθ
•

 > 0 to 

the spin of the particle in the layer below or near the boundary Rθ
•

 < 0. Additionally the contact of the 

bead on the boundary is associated with a phenomenon of strong frustration of the rotations for the 

particles with high friction coefficient (see Figure 7). This phenomenon is localized in the first layers 

of the flow. This frustration of the rotations induces naturally an additional friction along the boundary 

during a certain transitory. This scenario represents a strongly plausible explanation for the presence of 

these fluctuations. 
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Figure 6. Evolution of the angular velocity of a particle in the flow for different friction 

coefficients at the boundary (μ = 0.1–0.8). 

 

Figure 7. Schematization of the frustration in the rotations of the particles in the first layers 

of the flow. 

 

Figure 8 displays furthermore the dependence of this effective friction coefficient with respect to 

the friction particle/wall. 

Figure 8. Mean effective friction at the boundary as a function of the friction coefficient 

particle/vane for particles with and without rotational degrees of freedom (μ’ = 0.2). 
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We observe a linear increase of the friction coefficient as a function of the microscopic basal 

friction. The slope of the curve is equal to 1. This shows that the effective friction corresponds to the 

microscopic friction particle/wall. Above a certain critical friction coefficient (around μ* ≈ 0.25 in this 

case), we observe a saturation of the effective friction coefficient towards a value here around 0.3. We 

observe in particular that this value of the critical friction coefficient at the transition μ* is different 

from the value of the critical friction coefficient for the apparition of the rolling without sliding regime 

in the case of a single particle flowing in the same rotating device [5]. 

For the same flow configuration, we present also in Figure 8, the effective friction when we blocked 

the rotations of the particles. We showed that the effective friction coefficient does not decrease 

anymore but remains equal to the microscopic friction coefficient particle/boundary. This shows that 

the transition observed is directly connected to the rotations of the particles in the flow. In order to gain 

more insight into these phenomena, we introduced the sliding ratio Rs and the rolling ratio Rt at the 

boundary where these two quantities are linked by the simple relation Rt = 1 − R. 

We define the sliding ratio s R for the i N particles in contact with the boundary in the elementary 

volume as: 

1

1/ | [ ] /
ii N

s u i i i
i

R N x R xθ
= • • •

=

= −  (8)

As the spin of the particles is created by the friction forces, the rolling ratio t R increases with the 

microscopic friction coefficient (particle/wall). The evolution of the effective friction with R is 

sketched on Figure 9. 

Figure 9. Effective friction at the boundary as a function of the sliding ratio Rs = 0.2. 

 

We see that as μeff increases, the value of the sliding ratio s R decreases. The effective friction 

coefficient is saturated at a value equal to 0.33 for a sliding ratio equal to 0 (i.e., a rolling without 

sliding state). This corresponds indeed to the value of the saturation observed on the previous curve 

(Figure 8). This saturated value of the effective friction coefficient depends essentially on certain 
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microscopic parameters of the contact force law such as the tangential contact stiffness Kt as displayed 

in Figure 10. 

Figure 10. Effective friction at the boundary as a function of the tangential contact 

stiffness Kt, μ = 0.4, μ’ = 0.2. 

 

5. Mobilization of the Sliding/Rolling Contacts in the Bulk of the Flow 

We can now illustrate, for one set of microscopical parameters, the influence of the sliding/rolling 

contacts between particles in the bulk of the flow. Figure 11 represents the proportion of sliding 

contacts as a function of the friction coefficient particle/wall. The figure demonstrates again the 

signature of the transition from a sliding regime towards a rolling without sliding regime; this 

transition is triggered by the value of the friction coefficient at the wall. We observe a strong decrease 

in the ratio of sliding contacts in the bulk of the flow above a certain critical friction coefficient. We 

see also that the transition curve is not invariant along the radial direction. 

Figure 11. Proportion of sliding contacts cumulated in time as a function of the friction 

coefficient (Ω = 500 rpm; μ’ = 0.4). 
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6. Energetical Considerations in the Granular Flow 

In this section we would like to characterize the flow from an energetic point of view. The energy 

communicated by the rotation of the vane is partitioned between translational and rotational kinetic 

energy, frictional energy and at finally collisional energy. 

The different quantities are defined below: 

- Kinetic energy of translation Et and rotation Er: 

2 2

1

1/ 2 ( ) ( )
i N

t r i i
i

E E m x I θ
= • •

=

+ = +  (9)

- Frictional energy Ef: 

1

( )
i c

t t
f i i

t i

E m T U
=

=

= Δ  (10)

where t
iT  is the friction force at the contact and at the considered time step and t

iUΔ  is the increment 

of tangential displacement during the considered time step. 

- Elastic energy of deformation Ed: 

2 2

1

1/ 2 / /
i c

d i n i t
i

E N K T K
=

=

= +  (11)

where c corresponds to the number of contacts between particles in the flow. This energy is found to 

be proportionally low compared to the kinetic and frictional energy [8]. 

The evolution of the sum of the energy dissipated by friction and the kinetic energy of rotation is 

represented on figure Figure 12 for one set of microscopical parameter and different rotating velocities 

of the vane. 

Figure 12. Comparison of the sum of the energy dissipated by friction Ef and the kinetic 

energy of rotation Er at a distance x = 166 R for particles with and without rotational 

degrees of freedom (variation of Ω, μ’= 0.4). 
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In this figure, we observe also the transition from a sliding regime towards a rolling without sliding 

regime. We note a saturation of the sum of the energy from a critical value of the friction coefficient, 

this satured value being independent of the rotational velocity of the vane. 

In the same way, we show the sum of the energy for particles with blocked rotations. In this case, 

the rotational energy is zero. Beyond the critical friction coefficient, the frictional energy increases 

because all the contacts are sliding. Furthermore, Figure 12 tends to show that the transition from a 

sliding regime towards a rolling without sliding regime reduces the dissipated energy in the bulk of  

the flow. 

7. Discussion 

The reduction of the effective friction coefficient along a boundary induced by the presence of 

rolling contacts between beads has been also observed in other different systems. For instance, the case 

of a confined bidimensional packing of cylinders under quasistatic shear [16]. This effect has also been 

identified previously in numerical simulations of rapid collisional granular flows in a couette geometry 

(see [17]). From a general point of view, the dependence of the effective friction coefficient with 

respect to the micromechanical properties of the spinning beads is still unclear notably in experiments 

where the dissipation of the energy at the scale of the contact is poorly known. This may have a crucial 

influence on the dynamics and represents also important issues for applications [18]. 

8. Conclusions 

The simulation results presented in this article bring to the fore some new properties for a granular 

material flowing along a rotating wall, on a qualitative stage. In this device, the material is stressed in 

traction in the radial direction and in compression in the ortho-radial direction from the vane as well as 

sheared because of the presence of the wall. 

We were specifically interested in the friction of the granular flow along the rotating boundary. 

Most interestingly, we find that the effective friction coefficient at the scale of the continuum is on 

average constant and equal to the microscopical friction coefficient for low friction coefficients 

particle/wall. 

Also, it decreases strongly when the friction particle/wall exceeds a certain microscopic critical 

friction coefficient μ*. This behavior is directly linked to the apparition of a transition towards a rolling 

without sliding regime for the flowing particles at the boundary. 

We stress the fact that this kind of transition from sliding to rolling without sliding is a new feature 

in the physics of dense frictional granular flows. The dependance of the critical friction coefficient μ* 

remains now to be clarified. A more precise analytical characterization of this rolling transition would 

be also highly relevant to carry out in the near future. 

We gave also some first numerical indications that this transition has a direct influence on the 

limitation of the dissipated energy in the flow for particles of spherical shape. If such a transition can 

be reached for real particles, it may present in fact a practical interest with regard to a reduction of the 

dissipated energy in the flow. 

  



Materials 2011, 4                            

 

 

2015

Acknowledgments 

The authors would like to thank Guillaume Ovarlez (Institut Navier), Jeremy Papadopoulos 

(University of Wisconsin-Stout) and the members of the Groupe De Recherche MeGe (CNRS 3176) 

and the Groupe de Recherche Mephy (CNRS 3166) for their interesting comments related to this work. 

References 

1. Zuriguel, I.; Pugnaloni, L.A.; Garcimartin A.; Maza D. Jamming during the discharge of grains 

from a silo described as a percolating transition. Phys. Rev. E 2003, 68, 030301:1-030301:4. 

2. Luding, S. Towards dense, realistic granular media in 2D. Nonlinearity 2009, 22, R101-R146. 

3. Andreotti B.; Forterre Y.; Pouliquen O. Entre Fluide et Solide, 3rd ed.; Savoirs Actuels: Les Ulis, 

France, 2011. 

4. Midi, G.D.R. On dense granular flows. Eur. Phys. J. E 2004, 14, 341-365. 

5. Pouliquen, O.; Cassar, C.; Jop, P.; Forterre, Y.; Nicolas, M. Flow of dense granular media: 

Toward simple constitutive laws. J. Stat. Mech. 2006, 2006, P07020. 

6. Le Quiniou, A.; Rioual, F. Flow of a particle along a rotating wall. Europhys. Lett. 2008, 82, 

34001. 

7. Le Quiniou, A.; Rioual, F.; Héritier, P.; Lapusta, Y. Experimental study of the bouncing trajectory 

of a particle along a rotating wall. Phys. Fluids 2009, 21, 123302:1-123302:8. 

8. Le Quiniou, A. Ecoulement Granulaire Sous L’action de la Force Centrifuge: Application en 

Environnement à la Problématique de L’épandage. Ph.D. Dissertation, Cemagref/Clermont-

Ferrand II University: Clermont-Ferrand, France, 2009. 

9. Ruina, A.; Bertram, J.E.A.; Srinivasan, M. A collisional model of the energetic cost of support 

work qualitatively explains leg sequencing in galloping, pseudo-elastic leg behaviour in running 

and walk-to-run transition. J. Theor. Biol. 2005, 237, 170-192. 

10. Dintwa, E.; van Liedekerke, P.; Tijskens, E.; Ramon, H. Model for simulation of particle flow on 

a centrifugal fertilizer spreader. Biosyst. Eng. 2004, 87, 407-415. 

11. Van Liedekerke, P. Study of the Granular Fertlizers and the Centrifugal Spreader Using Discrete 

Element Method (DEM) Simulations. Ph.D. Dissertation, University of Leuven: Leuven,  

Belgium, 2007. 

12. Aste, T.; Weaire, D. The Pursuit of Perfect Packing; Institute of Physics Publishing: London,  

UK, 2000. 

13. Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Geotechnique 

1979, 29, 47-69. 

14. Vu-Quoc, L.; Xhang, X.; Lesburg, L. A normal force-displacement model for contacting spheres, 

accounting for plastic deformation: Force-driven formulation. J. Appl. Mech. 2000, 67, 363-371. 

15. Ting, J.M.; Corkum, B.T.; Kauffman, C.R.; Greco, C. Discrete numerical model for soil 

mechanics. J. Geotech. Eng. 1989, 115, 379:1-379:20. 

16. Khidas, Y. Etude Expérimentale du Frottement et des Rotations Dans des Milieux granulaires 

Modèles. Ph.D. Dissertation, Université de Rennes: Rennes, France, 2001. 



Materials 2011, 4                            

 

 

2016

17. Louge, M.Y. Computer simulations of rapid granular flows of spheres interacting with a flat, 

frictional boundary. Phys. Fluids 1994, 6, 2253-2269. 

18. Bico, J.; Ashmore-Chakrabarty, J.; McKinley, G.H.; Stone, H.A. Rolling stones: The motion of a 

sphere down an inclined plane coated with a thin liquid film. Phys. Fluids 2009, 21,  

082103:1-082103:8. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


