Materials 2011, 4(10), 1705-1727; doi:10.3390/ma4101705

Polyacylurethanes as Novel Degradable Cell Carrier Materials for Tissue Engineering

1email, 1email, 2email, 3email, 3email, 4email, 4email, 4email and 1,* email
Received: 10 September 2011; Accepted: 21 September 2011 / Published: 6 October 2011
(This article belongs to the Special Issue Biodegradability of Materials in Biomedical Applications 2011)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Polycaprolactone (PCL) polyester and segmented aliphatic polyester urethanes based on PCL soft segment have been thoroughly investigated as biodegradable scaffolds for tissue engineering. Although proven beneficial as long term implants, these materials degrade very slowly and are therefore not suitable in applications in which scaffold support is needed for a shorter time. A recently developed class of polyacylurethanes (PAUs) is expected to fulfill such requirements. Our aim was to assess in vitro the degradation of PAUs and evaluate their suitability as temporary scaffold materials to support soft tissue repair. With both a mass loss of 2.5–3.0% and a decrease in molar mass of approx. 35% over a period of 80 days, PAUs were shown to degrade via both bulk and surface erosion mechanisms. Fourier Transform Infra Red (FTIR) spectroscopy was successfully applied to study the extent of PAUs microphase separation during in vitro degradation. The microphase separated morphology of PAU1000 (molar mass of the oligocaprolactone soft segment = 1000 g/mol) provided this polymer with mechano-physical characteristics that would render it a suitable material for constructs and devices. PAU1000 exhibited excellent haemocompatibility in vitro. In addition, PAU1000 supported both adhesion and proliferation of vascular endothelial cells and this could be further enhanced by pre-coating of PAU1000 with fibronectin (Fn). The contact angle of PAU1000 decreased both with in vitro degradation and by incubation in biological fluids. In endothelial cell culture medium the contact angle reached 60°, which is optimal for cell adhesion. Taken together, these results support the application of PAU1000 in the field of soft tissue repair as a temporary degradable scaffold.
Keywords: biodegradable polymers; tissue engineering; biomedical polyurethanes; hydrolytic degradation; acylurethanes; blood compatibility; endothelial cells
PDF Full-text Download PDF Full-Text [566 KB, Updated Version, uploaded 11 October 2011 16:28 CEST]
The original version is still available [1051 KB, uploaded 6 October 2011 11:44 CEST]

Export to BibTeX |

MDPI and ACS Style

Jovanovic, D.; Roukes, F.V.; Löber, A.; Engels, G.E.; Oeveren, W.; Seijen, X.J.G.; Luyn, M.J.; Harmsen, M.C.; Schouten, A.J. Polyacylurethanes as Novel Degradable Cell Carrier Materials for Tissue Engineering. Materials 2011, 4, 1705-1727.

AMA Style

Jovanovic D, Roukes FV, Löber A, Engels GE, Oeveren W, Seijen XJG, Luyn MJ, Harmsen MC, Schouten AJ. Polyacylurethanes as Novel Degradable Cell Carrier Materials for Tissue Engineering. Materials. 2011; 4(10):1705-1727.

Chicago/Turabian Style

Jovanovic, Danijela; Roukes, Frans V.; Löber, Andrea; Engels, Gerwin E.; Oeveren, Willem van; Seijen, Xavier J. Gallego van; Luyn, Marja J.A. van; Harmsen, Martin C.; Schouten, Arend Jan. 2011. "Polyacylurethanes as Novel Degradable Cell Carrier Materials for Tissue Engineering." Materials 4, no. 10: 1705-1727.

Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert