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Abstract: In liquid crystals (LCs), molecules are confined in peculiar environments, where 

ordered alignment and certain mobility are realized at the same time. Considering these 

characteristics, the idea of “controlling molecular events within LC media” seems 

reasonable. As a suitable system for investigating this challenge, we have recently 

developed a new class of ionic LCs; the salts of amphiphilic carboxylic acids with 2-amino 

alcohols, or those of carboxylic acids with amphiphilic 2-amino alcohols, have a strong 

tendency to exhibit thermotropic LC phases. Because of the noncovalent nature of the 

interaction between molecules, one of the two components can easily be exchanged with, 

or transformed into, another molecule, without distorting the original LC architecture. In 

addition, both components are common organic molecules, and a variety of compounds are 

easily available. Taking advantage of these characteristics, we have succeeded in applying 

two-component LCs as chiral media for molecular recognition and reactions. This review 

presents an overview of our recent studies, together with notable reports related to this field. 

Keywords: liquid crystals; supramolecular chemistry; cross-linking; template reactions; 

host-guest chemistry; chiral recognition 
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1. Introduction 

To mimic natural systems, chemists have long sought tailored micro-environments, which are 

capable of incorporating, sensing, and/or transforming organic molecules with high selectivity and 

efficiency. For this aim, a number of constrained micro-environments have been explored to date, 

including crystals [1-3], coordination polymers [4-6], zeolites [7-9], clays [10,11], graphite [12] and 

discrete hosts in homogeneous solutions [13-15]. Among them, crystals are regarded as one of the 

most successful classes. Because of their highly ordered structures, molecular events in crystalline 

matrices often proceed in an extremely controlled manner. In fact, solid-state hosts based on crystals, 

such as inclusion complexes and metal-organic frameworks, occasionally incorporate guest molecules 

with high selectivity [2]. In addition, such solid-state hosts potentially switch their chemical/physical 

properties depending on the amount and shape of incorporated guests, which is induced by the 

transformation of their frameworks in response to the adsorption and desorption of guests [5]. 

Moreover, when the components of a crystalline structure possess chemically reactive moieties, their 

in situ reactions may proceed in an ultimately selective manner, due to the pre-organized arrangement 

of crystalline matrices [1,3]. Owing to these unique properties, solid-state hosts based on crystalline 

systems would find widespread application as selectors, sensors, actuators, and reaction media, etc. 

In spite of their prominent advantages, however, crystal-based micro-environments have not taken a 

leading role in current materials chemistry. Most likely, one of the most serious obstacles is the 

difficulty of in situ reactions within crystalline matrices. In general, molecular motions in crystalline 

systems are highly restricted to reduce the probability of reactions, and therefore, crystalline-phase 

reactions can proceed only when crystal packing meets topochemically stipulated demands [3]. In fact, 

most of the crystalline-phase reactions reported to date were found accidentally or as a result of 

tedious trial-and-error processes. For the same reason, in situ polymerization of components within 

crystalline matrices hardly proceeds efficiently; although this approach would solve the intrinsic 

drawbacks of crystalline materials, such as low mechanical strength and intolerance to solvents, etc. 

To overcome such limitations, one of the most promising approaches is to employ liquid crystals 

(LCs) in place of crystals. Compared with the other mesophase aggregates, such as micelles, physical 

gels, and bilayers, etc., the structural order of LCs is generally considered to be much higher, which 

ranks next to that of crystals. And yet, certain mobility of molecules is ensured in LC matrix, which 

allows for a high probability that the in situ chemical reaction will proceed. Therefore, in situ reactions 

in LCs would lead to a new type of tailored micro-environment, which may realize highly 

efficient/selective molecular recognitions and chemical reactions. This review summarizes our recent 

effort to develop a new class of micro-environment based on the in situ reactions in LCs [16-20]. In 

relation to our studies, we also provide an overview of notable works related to LC-template reactions, 

from historically important reports to recent trends. 

2. Classification of In Situ Reactions in Liquid Crystals 

Many kinds of in situ reactions in LCs have been reported to date, of which potential application 

ranges over various fields in material science, which are not limited to the fabrication of 

micro-environments for molecular recognition and chemical reactions [21-24], as mentioned in 
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Section 1. To clarify the scope of this review, this section presents the classification of in situ 

reactions, according to the number of components and the location of reactive moiety. 

Traditional thermotropic LCs are composed of a single mesogen, or a mixture of a few mesogens 

with a similar structure. When a reactive functionality is introduced to the mesogen unit, the in situ 

reactions, both of the intra- and intermolecular reactions, would become possible. These reactions have 

proven to be powerful tools for scientific studies and practical applications of LCs. For example, the 

dimerization/polymerization of mesogen units enhance mechanical strength, stabilize LC phases, and 

memorize structural information [21,22]. On the other hand, intramolecular reactions, such as 

isomerizations, cyclizations, and rearrangements, would lead to stimuli-responsive systems [23], or serve 

as probes to investigate the structure/properties of LCs [24]. Although the resultant materials would 

find various applications, such as photo-optical/electronic devices, their self-completed structures are 

not suitable to accommodate exterior guest molecules. 

Compared with single-component LCs, multi-component LCs seem to provide more promising 

platforms for molecular recognition and chemical reactions [25,26]. Depending on the structure and 

compositions, multi-component LCs can be roughly classified into two categories, lyotropic LCs and 

supra-molecular thermotropic LCs. Here, as the simplest model of both classes of multi-component 

LCs, we deal with a two-component LC composed of a lipophilic exterior unit and a lipophobic core 

unit (Figure 1). Such an assembly might be regarded as one kind of host–guest system, because  

(i) these two units interact with each other via non-covalent interactions and (ii) the exterior units 

(hosts) take surrounding positions of the core units (guests). For the in situ reaction of the  

two-component LC, reactive functionalities can be introduced to either of the exterior and template 

units. As described in the following part, this choice is a determinant factor for the applicable areas of  

these systems. 

Figure 1. In situ reactions of two-component LCs at (a) exterior and (b) core units. 

 

Intermolecular reactions of the exterior parts, such as the dimerization, polymerization, and 

cross-linking, would “freeze-in” the whole structure of LC (Figure 1a). The most unique characteristic 

of the resultant material is that the core unit should be easily removed without inducing a serious loss 

of the LC ordered structure, owing to the noncovalent nature of the interactions between the exterior 

and template units, together with the covalently linked network at the exterior region. After the 

removal of core units, the functional groups in the exterior units lose their counterparts, which might 
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be available as interaction sites for the next guest incorporation. As a result, the in situ reactions at the 

exterior part would provide robust, reusable porous materials, which are capable of capturing the original 

template units and related guests. Application of such materials is discussed in Sections 3 and 4. 

On the other hand, reactions in the core parts proceed in a quite peculiar environment, where 

substrates are confined in a small, constrained space (Figure 1b). Compared with the exterior part, 

composed of flexible units, the core part usually takes on a highly ordered structure, which seems to be 

an attractive micro-environment for the control of chemical reactions. Especially, the stereocontrol of 

intermolecular photoreactions still remains as a challenging target, generally difficult within the 

framework of traditional synthetic methods. Section 5 focuses our recent efforts on this aim. 

3. Guest-Selective Molecular Sieves 

By cross-linking the exterior part of multi-component LCs, new type of porous materials would be 

afforded, of which cavities should possess the size, shape, and electron density distributions 

complementary to those of the template core unit. This method is reminiscent of well-known molecular 

imprintings, but the pre-organized alignment of the components in LCs is expected to solve the 

long-standing problem in the field of traditional molecular imprinting, i.e., the polyclonality of 

cavities [27-29]. Thus, the resultant materials are expected to serve as molecular sieves with guest 

selectivity superior to conventional molecularly imprinted polymers. 

As very rare successful examples of template polymerization within organic crystals, 

Matsumoto et al. have reported on the topochemical polymerization of the salts of 1,3-diene  

mono- and dicarboxylic acids with primary amines [30]. The topochemical polymerization of these 

salts provides organic intercalation hosts with extremely high structural order, which have found 

unique applications [31]. Although this is one of the most ideal approaches to access rationally 

designed zeolite analogues, the scope of this methodology is quite narrow due to the low probability of 

topochemical polymerization. 

3.1. Size recognition by cross-linked LCs 

Lyotropic LCs inherently localize the ionic head-groups of the constituent amphiphiles into the 

interior of their aqueous channels [32]. When the head-groups are composed of functional groups with 

catalytic activity, the aqueous channels are expected to offer a unique environment for organic 

transformations. The special arrangement of the functional groups, closely packed within a small 

channel, would enhance their acidity/basicity, due to the changes in the dielectric constant and/or 

surface potential. In addition, the well-regulated size of the aqueous channels is expected to serve as 

size-selective catalysis. 

As a pioneering work in this field, Gin and co-workers have extensively studied the development of 

functional materials based on the cross-linking of lyotropic LCs with inverted hexagonal and 

bicontinuous cubic structures [33]. They developed a polymerizable amphiphile, a styryl derivative of 

sodium 9-octadecanoate (1). By mixing 1, water, and divinylbenzene in an appropriate ratio, an 

inverted hexagonal lyotropic LC phase was formed, which can be cross-linked by the 

photopolymerization (Figure 2a). Through the cross-linking process, the original hexagonal structure 

was retained. The cross-linked polymer acted as an effective heterogeneous catalyst for the 
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Knoevenagel condensation of ethyl cyanoacetate with benzaldehyde (Figure 2b). Catalytic efficiency 

of the cross-linked polymer was superior to that of the sodium- exchanged versions of zeolite-Y and 

MCM-41, which might be attributable to the enhanced basicity of the sodium carboxylate groups 

(pKa = ca. 9) due to the confinement within the narrow aqueous channels. Although the size-selective 

catalysis was not explored in this report, preliminary experiments proved that the cross-linked polymer 

showed size exclusion ability; upon soaking the cross-linked polymer in a solution of a cationic dye, 

efficient incorporation took place only when the dye was smaller than the diameter of the channel 

(15–20 Å). 

Figure 2. Heterogeneous catalyst based on the cross-linking of a lyotropic LC: 

(a) preparation; and (b) application, as a heterogeneous catalyst of the Knoevenagel 

condensation. 

 

Based on the same approach, Gin and co-workers have developed various heterogeneous catalysts, 

by using analogous polymerizable amphiphiles bearing a head-group of, for example, sulfonic acid [34], 

scandium (III) sulfonate [35], and chiral imidazolidinone derivative [36], etc. 

3.2. Functional group recognition by cross-linked LCs 

Compared with lyotropic LC systems, one of the most prominent advantages of thermotropic LCs is 

their simple structure and composition. In the case of lyotropic LC systems with an inverted micelle 

structure, the inner space of the aqueous channel is occupied by an uncertain number of water 

molecules, of which precise positions are not defined and are virtually unpredictable. On the other 

hand, relative orientation of the components in thermotropic LCs is easy to estimate, especially when 

relatively strong interactions work between the components. By careful design of the components, 

channels complementary to the template unit would be created, which might enable us to rationally 

control the structure and properties of the resultant channels. 

As a representative example, Kim and co-workers have reported a nanoporous cross-linked polymer 

with hexagonal columnar channel, based on a 3:1 supramolecular complex of a polymerizable 

amphiphilic carboxylic acid 2 with a benzotris(imidazole) core 3a (Figure 3a) [37]. The complex 

spontaneously formed a hexagonal columnar LC phase. Upon irradiation of the LC with UV light, the 

polymerization of the acryloyl moieties readily proceeded to give the cross-linked polymer. By the 

treatment of the resultant polymer with acidified methanol, ca. 90% of the template was extracted. 

Through the cross-linking and template-removal processes, the polymer maintained the same 
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hexagonal columnar structure. Worth noting is that nitrogen gas permeability constant of the de-cored 

cross-linked polymer was four orders of magnitude higher than that of low-density polyethylene, 

which confirms the porous nature of the cross-linked polymer. 

Figure 3. Solid-state host based on the cross-linking of a thermotropic LC: Preparation and 

functionality selective incorporation of guests. 

 

Another unique feature of the cross-linked polymer is the capability of recognizing the structural 

difference of guest molecules (Figure 3b). The de-cored polymer readily incorporated the original 

template 3a, while other guest molecules with the right size to fit into the channel were hardly 

captured, such as the tri-N-methylated derivative of 3a (3b) and 1,3,5-benzenetricarboxylic acid (3c). 

Although experimental details of the host-guest chemistry were not given, this report might be the first 

demonstration proving one can access shape-selective porous material through the template 

polymerization of LCs. 

3.3. Chirality recognition by cross-linked LCs 

The above works clearly demonstrate the potential utility of the solid-state hosts based on the in situ 

cross-linking of LCs. However, the molecular recognitions performed in these works are at the 

preliminary stage, where the discrimination of guest molecules with large differences in their size or 

polarity was achieved. A more attractive challenge is the recognition of a very subtle difference in the 

shape of guest molecules, such as the differentiation of diastereomers and enantiomers. 

As suitable platforms to create cross-linked LCs with chirality recognition ability, we have recently 

developed a new class of ionic LCs; the salts of amphiphilic carboxylic acids with 2-amino alcohols 

have a strong tendency to exhibit thermotropic LC phases [16,18]. Considering the characteristic 

properties of the core unit (= 2-amino alcohol), our system would have special meaning from the 

following viewpoints: (i) 2-amino alcohols are one of the most easily available classes of enantiopure 

materials, which allow us to prepare various chiral architectures just by changing the core unit.  

(ii) The separation of the regio-/stereo-isomers of amino alcohols is of significant importance, because 

they are indispensable materials in most of the scenes of chiral technology. 
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Table 1. Phase transition behavior of the salts of a polymerizable carboxylic acid (2) with 

various 2-amino alcohols (4a–4g). 

 

In order to probe the scope of this LC system, the salts of the polymerizable amphiphilic carboxylic 

acid 2 with various 2-amino alcohols (4a–4g) were prepared. As summarized in Table 1, four of the 

six salts exhibited a LC or mesophase within a wide thermal region. According to the lattice 

parameters and the molecular models, the number of acid–base pairs included in the layer of a cylinder 

was estimated; four pairs for the hexagonal columnar structure and three or four pairs for the 

rectangular columnar structure, respectively. When the amino and/or hydroxy group of these 2-amino 

alcohols were methylated, the LC phases were no longer formed or became unstable, indicating that 

hydrogen-bonding interactions between the carboxyl groups with the amino and hydroxy groups play 

an essential role for stable LC phase formation [38,39]. 

Among these LC salts, 2·(S)-4a (hexagonal) and 2·(1R,2S)-4d (rectangular) were applied to the 

in situ polymerization. Regardless of the packing mode of the LC structure, the LC-based template 

polymerization proceeded successfully; upon irradiating 
60

Co -ray to the LC salts, the polymerization 

of the acryloyl groups quantitatively took place to afford cross-linked polymers, which were insoluble 

to most of solvents and did not melt at high temperatures. Through the cross-linking process, the 

original ordered structures in LCs were essentially retained (Figure 4). 

In the next stage, molecular recognition ability of the resultant cross-linked materials was 

estimated. For this aim, the cross-linked polymer from 2·(1R,2S)-4d was used, because the aromatic 

group in the core unit enables UV detection in HPLC analysis. Through the guest-exchanging reaction, 

the cross-linked polymer was found to work as a size- and shape-selective molecular sieve for amine 

guests. As summarized in Table 2, the topological shape of the guests was one of the most crucial 

factors for the efficiency of guest exchange. In the case of guests of which the C2 position was 

unsubstituted ((R)-4a and (R)-4c) or substituted with a relatively small group such as methyl and ethyl 

group ((S)-4b, (S)-4h, and (1R,2S)-4k), the guest exchange proceeded smoothly to achieve an 

incorporation of about 30%. Contrary to this, another family of guests, bearing a bulky group at the 

C2-position, showed much lower affinity toward the polymer (22 and 10% for 4i and 4e, respectively). 
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Even in competitive guest exchanging reactions, the same tendency in guest preference was again 

observed, which clearly demonstrates the potential for the practical utility of the polymer as a selector 

for the separation of amines. For example, when an equimolar mixture of two regio-isomers ((R)-4c 

and (S)-4e) was applied to the guest exchanging reaction, the amount of (R)-4c incorporated in the 

polymer was about three times higher than that of (S)-4e. 

Figure 4. In situ cross-linking of two-component LCs with (a) hexagonal and 

(b) rectangular columnar structures. 

 

Table 2. The guest exchanging reaction of (1R,2S)-4d (schematic shown above Table) in 

the cross-linked polymer with various amines.
[a]

 

 

As a more intriguing application, performance of the cross-linked polymer as chiral selector was 

investigated. By using several racemic guests, the guest-exchanging reaction was conducted under 
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competitive conditions. As a result, the cross-linked polymer proved to work as a chiral molecular 

sieve (Table 3). After 30–60% conversion of guest exchanging, the guest amines remaining in the 

exterior solution became non-racemic, indicative of the enantioselective incorporation into the 

cross-linked polymer. Relatively high selectivity was observed in the case of substrates possessing a 

bulky substituent at the C1 position (entries 2 and 3). Worth noting is that the enantiomer 

preferentially adsorbed was of the absolute configuration at the C1 position identical to that of the 

original core (1R,2S)-4d, when the guests have a substituent only at the C1 position. This observation 

strongly suggests that a „template effect‟ certainly works in this system. Although the enantiomeric 

excesses observed here were apparently too small for practical application, worth noting is that these 

values were the result of only a one-batch process; the differences in the adsorption energy (G) 

between the pairs of the enantiomers were calculated to be no less than 0.14–0.48 kcal mol
–1

. This 

result implies the potential utility of the present polymer as a selector for multistage separations, such 

as a stationary phase for chiral chromatography, where the G ≥ 0.1 kcal mol
–1

 is a criterion for 

practical use [40]. 

Table 3. The guest-exchanging reaction of (1R,2S)-4d in the cross-linked polymer with 

various racemic amines.
[a]
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4. Guest-Responsive Frameworks 

As described in Section 3, porous materials obtained by the cross-linking of LCs serve as selectors 

to incorporate guest molecules in size-, shape-, and enantio-selective manners. Considering the 

structures of such porous cross-linked polymers, they are expected to work as guest-responsive 

frameworks as well. In most of host–guest complexes in the solid state, removal of guests generates 

vacant spaces, which are thermodynamically unstable in general. As a result, frameworks with a 

flexible nature tend to change their structures in response to the guest desorption. Such a structural 

switching often triggers dramatic changes in the structures/properties of the whole system, which leads 

to the development of sensors, logical gates, and stimuli-responsive actuators. In fact, guest-responsive 

dynamic natures of solid-state, such as graphites [12], clays [10], and coordination polymers [5], have 

been extensively studied. Despite their potential application, however, these traditional solid-state 

hosts generally lack physical robustness, kinetic stability and processablity, because components in 

these systems are mainly connected by noncovalent interactions. On the other hand, cross-linking of 

LC components by covalent bonds would provide a new type of guest-responsive framework. 

4.1. Relationship between LC packing mode and structural flexibility 

In the case of conventional solid-state hosts, the packing mode of molecules has a large influence 

on the structural flexibility of the assemblies. Considering the structural homology, the same tendency 

is considered to exist in the case of the cross-linked LCs. Unfortunately, however, reported examples 

of the cross-linked LCs based on the present approach have been very limited to date, and therefore, 

systematic studies are still missing. In a recent report by Kishikawa et al., a notable prediction is 

provided [41]. According to their expectancy, cross-linked LCs with hexagonal columnar structures 

will retain the size/shape of the pore after the removal of the core, owing to the rigidity of the 

honeycomb structure (Figure 5a). Contrary to this, in the cases of lamellar systems, the removal of 

cores is likely to induce the squashing of the original structures; in these systems, the cross-linking 

network is likely to be made only in an intra-layer manner, while the space between the cross-linked 

layers is considered to be occupied only by the core units (Figure 5b). 

In the report of cross-linked lyotropic LCs by Gin and co-workers, structural rigidity of hexagonal 

columnar and lamellar structures is briefly described [33]. They used mixtures of polymerizable 

amphiphile 1 and divinylbenzene, which could pack into a lamellar or hexagonal columnar structure 

depending on the amount of water added. For both of the assemblies, the in situ cross-linking was 

successfully conducted by the photopolymerization, where the original structures were essentially 

retained. To assess the stability, the resultant cross-linked polymers are extracted with dry 

tetrahydrofuran at reflux, retrieved by filtration, and analyzed by XRD. The cross-linked polymer with 

hexagonal columnar structure showed a slight decrease in overall order, while the lamellar system 

showed greater disorder, which was confirmed by XRD measurement. These observations are in good 

agreement with the above prediction by Kishikawa, et al. 
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Figure 5. Schematic representation of the fabrication of organic zeolite analogues by the 

cross-linking of multi-component LCs and the following core removal: (a) hexagonal 

columnar phase and (b) lamellar phase. 

 

Another supportive example is found in a system based on thermotropic LC, i.e., the report by  

Kim et al. as described in Section 3.2 [37]. The cross-linked polymer with a hexagonal columnar 

structure, prepared from a thermotropic LC, composed of a polymerizable amiphiphilic carboxylic acid 

2 with a benzotris(imidazole) core 3a, retained its original structure even after the removal of the core 

units. In principal, columnar thermotropic LCs can take several packing modes of columns, such as 

lamellar, oblique, rectangular, tetragonal, and hexagonal structures. By using the in situ polymerization 

of these thermotropic LCs, a systematic study would be possible to correlate a molecular packing 

mode with structural flexibility. 

4.2. Tuning the structural rigidity of cross-linked LCs 

According to the assumption of Kishikawa et al., solid-state hosts based on the cross-linking of 

lamellar LCs are intrinsically intolerant to the core removal. In the same report, they proposed an 

intriguing new methodology for controlling the rigidity of such architectures with lamellar 

structures [41]. Their approach involves the introduction of “nanopillars” between the layers, which 

was expected to support the lamellar structure after the removal of the core units (Figure 6). 

Figure 6. Schematic representation of the supramolecular monomer (5-6-5), the pillar 

molecule (7), and the processes of constructing ordered polymers from 5-6-5 and 7. 
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As a fundamental skeleton, they newly developed a two-component thermotropic LC with a 

lamellar structure (smectic A), based on the 2:1 supramolecular complex of a carboxylic acid bearing 

two acryloyl groups (5) with a dipyridyl core (6). A pillar molecule was also designed as a rodlike 

molecule possessing polymerizable units (7). When 5 and 10 mol% of the pillar unit 7 was doped in 

the two-component LC composed of 5 and 6, the resultant mixtures again showed the same lamellar 

phases. The three LC systems, containing the pillar unit 7 at the molar ratio of 0, 5, and 10%, 

respectively, were successfully cross-linked by the photopolymerization, where the original lamellar 

structures were maintained. 

By treating of the three cross-linked polymers with diluted HCl, the core unit 6 was gradually 

extracted into the supernatant. Worth noting is that the efficiency of the extraction changed 

dramatically depending on the amount of doped 7. In the case of the cross-linked polymer composed of 

only 5 and 6, no more than 50% of 6 could be removed. In sharp contrast, the cross-linked polymers 

doped with 5 and 10 mol% of 7 could release 77 and 100% of 6, respectively. Such a large difference 

in the efficiency of the core removal might be attributable to the structural changes during the core 

removal process. In the absence of the pillar unit, partial removal of the cores from the whole structure 

of the cross-linked polymer would give a squashed layer structure, preventing the removal of the 

remaining core units from the inner spaces. On the other hand, the cross-linked polymer doped with 

the pillar 7 was likely to maintain the layered structure during core removal, so that the channels for 

the efficient mass transfer would be kept throughout the process. A preliminary XRD analysis of the 

pillared polymer suggested that the lamellar structure was retained after core removal. 

4.3. Reversible structural switching of cross-linked LCs 

As described in Section 3.3, we developed a cross-linked polymer with rectangular columnar 

structure (space group; P2m), which was prepared from the LC salt of an polymerizable amphiphilic 

carboxylic acid 2 with an enantiopure 2-amino alcohol (1R,2S)-4d [16,18]. Through the studies on 

host–guest chemistry of the cross-linked polymer, we unexpectedly found that our cross-linked 

polymer expressed a dynamic behavior in response to the desorption and adsorption of guest molecules 

(Figure 7a) [17]. 

The cross-linked polymers as prepared were used as the starting material, of which binding sites 

were fully occupied with the original core (1R,2S)-4d. Upon soaking the cross-linked polymer in a 

methanolic HCl solution, (1R,2S)-4d in the cross-linked polymer was leached out to the supernatant, 

and an equilibrium was attained when 69% of (1R,2S)-4d was desorbed from the cross-linked polymer 

(Figure 7b). Through the removal of the template, a dramatic structural alteration was induced 

diminishing the intensities of the XRD reflections characteristic of the rectangular columnar structure. 

At the final equilibrium stage, the three diffractions became undetectable (Figure 7c). 
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Figure 7. Desorption/adsorption of the template (1R,2S)-4d from/to the cross-linked 

polymer: (a) Schematic representation of the structural switching; (b) Time course of the 

desorption/adsorption monitored by HPLC; and (c) XRD profiles of the cross-linked polymer. 

 

Re-adsorption of the template to the de-cored polymer was then performed, by soaking the de-cored 

polymer in a methanol solution of the original core (1R,2S)-4d. At an equilibrium state, total amount 

of (1R,2S)-4d in the cross-linked polymer became 79% with respect to the carboxylic acid units in the 

cross-linked polymer (Figure 7b). To our surprise, the re-adsorption of (1R,2S)-4d to the cross-linked 

polymer undoubtedly triggered the reconstitution of the ordered rectangular columnar structure, of 

which the lattice parameters were essentially identical to those of the original polymer before the 

desorption of (1R,2S)-4d; three characteristic diffractions emerged even when only 49% of the 

carboxylic acid units in the cross-linked polymer participated in the salt-pair formation with 

(1R,2S)-4d, and their intensities became stronger as the re-adsorption proceeded (Figure 7c). Any other 

diffraction was not observed through the re-adsorption process, which strongly suggests that there is 

little possibility of the transformation of the cross-linked polymer into another ordered structure. 

4.4. Guest-selective structural switching of cross-linked LCs 

Our cross-linked polymer, prepared from the LC salt of 2 with (1R,2S)-4d, is capable of 

incorporating amines other than the original core (1R,2S)-4d, as described in Section 3.3. In the 

guest-binding process, guest molecules with a more similar structure to the original core showed 

higher binding affinity to the cross-linked polymer. This observation clearly indicates that some 

structural information of the original core was certainly “imprinted” in the cross-linked polymer. Such 

a template effect would also have a large influence on the guest-responsive transformation behavior of 

the cross-linked polymer (Figure 8a) [17]. 

To prove this concept, several 2-amino alcohols with similar structures to that of the original 

template, (S)-4b, (1S,2R)-4d), (1S,2S)-4m, and (1R,2R)-4m, were employed as triggers to induce the 

structural change of the de-cored polymer. In every case of these 2-amino alcohols, the polymer 

exhibited XRD profiles characteristic of the original rectangular columnar structure (Figure 8b). Worth 

noting is that there was significant difference in reconstitution ability between the original core 

(1R,2S)-4d and its enantio/diastereo isomers (1S,2R)-4d, (1S,2S)-4m, and (1R,2R)-4m; although the 

amounts of the re-adsorbed guests at an equilibrium state were almost identical in all of the four cases 

(51–65%), the intensities of the diffractions of the polymers, reconstituted with these three new guests, 
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were about half that of the corresponding diffractions observed in the reconstitution with (1R,2S)-4d 

(Figure 8b). 

Figure 8. Guest-selective structural switching of the cross-linked polymer: (a) Schematic 

representation; and (b) XRD profiles of the cross-linked polymers obtained by the 

reconstitution of the apo-polymer with various amino alcohols. 

 

These observations suggest that the three-dimensional cross-linking might cause considerable 

structural constraint on the resultant polymer, which remained even after the removal of the original 

template. As a result, the de-cored polymer had a strong tendency to take the rectangular columnar 

structure regardless of the structure of an incorporated guest, and yet the polymer host possessed an 

ability to sense the subtle structural difference between the diastereo/enantio isomers so that the “best 

fitting” was achieved only when the original core was used as the guest. 

5. Tailored Reaction Media 

Constrained reaction environments have attracted continuous attention as one of the simplest 

models of biological reaction systems. In addition, media-controlled reactions might establish a 

practically useful methodology, which play a complementary role to traditional organic synthesis in 

homogeneous media. Particularly, enantiocontrol of intermolecular photochemical reactions has 

remained as an unexplored issue in the framework of homogeneous reaction systems. Despite such 

significance, however, the idea of media-controlled reactions has an inherent limitation, a “trade-off” 

between selectivity and reactivity. As described in the introduction, extremely ordered media as 

represented by crystalline reaction systems occasionally realize almost perfect reaction control, but in 

most of the cases, the severe restriction on molecular motions fatally reduce the probability of 

reactions [1,3]. Whereas, mesophase aggregates, such as micelles [42,43], physical  

gels [44-46], and bilayers [47,48], etc. are generally unable to realize ideal selectivity, although their 

relatively loose structures are promising for the promotion of the in situ reaction. In attempts to 

overcome these problems, several groups have employed LCs as media to control chemical reactions 

[24,49,50]; among mesophase aggregates, thermotropic LCs are regarded as one of the most 

structurally ordered classes, which should be advantageous for the control of organic transformations. 
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5.1. Asymmetric synthesis in cholesteric LCs 

Cholesteric LCs have been extensively studied in the 1970s as media for asymmetric reactions. 

Apparently, their helical structure seems to be quite promising for the chirality induction in organic 

transformations. Saeva et al. reported that the Claisen rearrangement of methylallyl p-tolyl ether (9) 

proceeded in an enantiocontrolled manner in a cholesteric LC mesophase formed by cholesteryl 

p-nitrobenzoate (8a) to afford the optically active 2-(-methylallyl)-4-methylphenol (10) [51]. When 

the reaction was conducted at an isotropic phase, the optical activity of the rearrangement product 10 

was not observed, which suggests that the chirality induction was mainly due to the formation of the 

chiral mesophase rather than the diastereomeric interaction between 8a and 9. Unfortunately, 

enantiomeric excess of the rearrangement product was not clearly given in this report. 

Figure 9. Asymmetric synthesis in cholesteric LCs. 

 

Another earlier example is the report by Verbit et al.; they found that the decarboxylation of 

ethylphenylmalonic acid (11) within the cholesteric LC mesophase composed of cholesteryl benzoate 

(8b) gave phenylbutyric acid (12) in an R-enriched form (18% ee) [52]. As in the case of the report by 

Saeva et al., they also suggested that the helical macrostructure of the cholesteric mesophase rather 

than the local asymmetry of the steroid system was the determinant factor for the asymmetric 

transformation. They further postulated that the same reaction conducted in another cholesteric LC of 

the opposite macrostructural handedness afforded S-enriched 12. 

After these works, reaction media based on cholesteric LCs have been applied to other reactions, 

such as the deracemization of sulfoxyde (13), the photocyclization of -(N-methylanilino)styrene (14) 

to an indoline (15), the photocyclization of a nitrone (16) to an oxazolidine (17), and the formation of 

trans-cyclooctene (18) via the Hofmann elimination of an ammonium derivative (19) [53-55]. 

Overall, most of these attempts have resulted in unsatisfactory selectivity, especially in terms of 

enantioselectivity (up to 20% ee), probably due to the following reasons: (i) The environment of 
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photoreactive substrates is not necessarily “monoclonal” in these LC media, because the substrates are 

just mixed with chiral mesogenic components which weakly interact with them. (ii) In the attempts of 

enantio-control by cholesteric LC media, their helical structures (from 100 nm to m pitch) seem to be 

too huge to have a significant effect on events at a molecular level. Thus, LC-media induced 

asymmetric reaction has still remained as a challenging target in this field. On the other hand, LC 

reaction media have proven to be a powerful tool to fabricate mesoscaled huge architectures. 

5.2. Asymmetric transformation of organic molecules in lyotropic LCs 

Contrary to thermotropic LC systems, lyotropic ones have rarely been explored as media for 

asymmetric reactions. Recently, Wu and Tung, et al. have reported on the asymmetric photoreactions 

in lyotropic LC reaction media. They employed lyotropic LCs based on the mixture of sodium dodecyl 

sulfonate (20), 1-pentanol, and water, which were doped with substrates and chiral inducers [56,57]. 

As a general feature of lyotropic LCs, two types of LC structures could form from the same 

constituents by changing the composition; with the ratio of 20/pentanol/water being 2:3:2 (w/w/w), a 

lamellar LC was yielded, while the weight ratio of 6:1:9 gave a hexagonal columnar LC (Figure 10). 

In these lyotropic LCs, the photochemical transformations of cyclohexyl phenyl ketone (22) were 

conducted. Principally, the photoirradiation of 21 can lead to the intramolecular hydrogen abstraction 

product 1-phenyl-hept-6-en-1-one 22. Additionally, in the presence of appropriate electron donors, the 

intermolecular reduction also proceeds to give a chiral product, -cyclohexyl benzyl alcohol 23. A 

systematic study on the product distribution revealed that these lyotropic LCs have a strong propensity 

to enhance the intermolecular reduction, where the ratio of 23 to 22 was 10–200 times larger than that 

observed in isotropic reaction systems. When optically active electron donors, such as (1R,2S)-4d, 

(1S,2R)-4d, and (1R,2S)-4k were added to these lyotropic LC systems (7.0 eq. to 22), the reduction 

product 23 was obtained in nonracemic forms. Unfortunately, however, the enantiomeric excess was at 

an unsatisfactory level (up to 5% ee). 

By using the same lyotropic LC media, Wu and Tung, et al. demonstrated the enantiocontrolled 

photoelectrocyclization of tropolone ethers (24a and 24b) in the presence of (1S,2R)-4d or (1R,2S)-4d 

as a chiral inducer [57]. The hexagonal LC was found to significantly enhance the influence of chiral 

inducers during the cyclization (up to 40% ee for 24a and 35% de for 24b), while the selectivities 

achieved in the lamellar LC was considerably lower than those in the hexagonal LC (up to 10% ee for 

24a and 6% de for 24b). Worth noting is that relatively high selectivities were realized although the 

amount of the chiral inducer was only seven times of the amount of the substrate 24. 
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Figure 10. Asymmetric synthesis in lyotropic LCs. 

 

5.3. Asymmetric transformation of organic molecules in two-component thermotropic LCs 

As described in Sections 3 and 4, several salts of amphiphilic carboxylic acids with 2-amino 

alcohols were found to exist as thermotropic liquid crystals in wide thermal ranges [16,18]. Likewise, 

the opposite combinations, i.e., the salts of amphiphilic 2-amino alcohols with carboxylic acids, were 

also anticipated to exhibit liquid-crystalline phases. If photoreactive carboxylic acids are employed as 

a component of the latter combination, photoreactions in liquid-crystalline matrices might be easily 

conducted just by the photoirradiation of the liquid-crystalline salts. Compared with traditional LC 

media, such a system seems to have obvious advantages in the following aspects: (i) The relative 

orientation of the substrate (carboxylic acid) molecules is considered to be well defined, because the 

substrate itself is the component of the LC. (ii) Every photoreactive molecule intimately interacts with 

a chiral source 2-amino alcohol by hydrogen-bonding interaction and salt-pair formation. (iii) Owing 

to the availability of various photoreactive carboxylic acids, as well as the noncovalency of interaction 

between the two components, such 2-amino alcohol units would offer a special environment to various 

substrates/reactions. As the first successful example of this approach, we recently reported that the 

photodimerization of 2-anthracenecarboxilic acids generated a satisfactory yield with unprecedented 

high enantioselectivity, by using a two component LC matrix as the reaction medium 

(Figure 11) [19,20]. 

The amphiphilic 2-amino alcohol to construct the two-component LC, (1S,2S)-26, was synthesized 

from an (S)-alanine derivative in a stereopure form. The salts of (1S,2S)-26 with various carboxylic 

acids were prepared by mixing equimolar amounts of the units, and the mesomorphic behavior of the 

resultant salts was studied. As we had expected, (1S,2S)-26 was capable of forming liquid-crystalline 

salts with a variety of photoreactive carboxylic acids, including sorbic acid (27a), cinnamic acid (27b), 

2-anthracenecarboxylic acid (27c), and 1-anthracenecarboxylic acid (27d). Although all of the LC salts 

are principally applicable to the in situ photoreactions, the photoinduced [4+4] cycloaddition of  

2-anthracenecarboxylic acids (27c) was chosen as our initial target because of its simple reaction 

course, high quantum yield, and ease for product analysis.
 
It still remains a challenge to control the 
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regio- and stereochemistries of the photodimerization of 27c; the photodimerization in principle gives 

rise to no less than four configurational isomers (head-to-head/head-to-tail isomers with syn/anti 

isomerism, denoted as syn
HH

, anti
HH

, syn
HT

, and anti
HT

), two isomers of which consist of a pair of C2-

enantiomers, respectively ((R)/(S)-anti
HH

 and (R)/(S)-syn
HT

) [58]. 

Figure 11. Schematic representation of the photoreaction within two-component LC media. 

 

Table 4. Photodimerization of 2-anthracenecarboxylic acid 27c. 

 

The salt (1S,2S)-26·27c exhibited two kinds of thermotropic LC phases (Meso and Smectic A 

phases) in the cooling process from the isotropic melt. Quite interestingly, the LC matrices provided 

by (1S,2S)-26 showed an excellent capability of controlling the photodimerization of 27c (Table 4 and 

Figure 12a). Thus, both LC phases realized excellent regioselectivity to yield the HH dimers 

exclusively (HH:HT = 97:3–98:2). The selectivity was against the usual tendency (HT > HH) 

governed by the relative stability of the products, where the HH dimers are less stable than the HT 

dimers due to the electrostatic repulsion between the two carboxylate moieties, as was reported. As far 

as we are aware, the HH/HT ratios achieved here are the highest level in this kind of bimolecular 

photoreactions. Stereoselectivity in terms of syn
HH

/anti
HH

 ratio revealed a striking difference between the 

two LC phases. Meso phase afforded the anti
HH

 dimer as the main product (syn
HH

:anti
HH

 = 27:73–29:71), 
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whereas Smectic A phase almost equally yielded the two diastereomers (syn
HH

:anti
HH

 = 45:55). 

Moreover, the liquid-crystalline media were found to offer a reaction environment with an excellent 

chirality-induction ability. Particularly, the photodimerization performed in Smectic A phase afforded 

the anti
HH

 dimer with unexpectedly high enantioselectivity (up to 81% ee, Figure 12b). The present 

outstanding selectivity is not likely to be a simple chirality transfer within the discrete salt pair, 

because the isotropic phase attained insufficient selectivity (9% ee). To the best of our knowledge, the 

reaction conducted in Meso phase is the first successful asymmetric synthesis induced by a chiral 

liquid crystal. 

Figure 12. HPLC estimation of the isomer distribution of the photodimer esters 28. (a) An 

authentic mixture of the four isomers of 28 (top) and a mixture obtained from  

photo-irradiated 27c·(1S,2S)-26 (bottom). (b) An authentic racemate of anti
HH

-28 (top) and 

anti
HH

-28 obtained from photo-irradiated 27c·(1S,2S)-26 (bottom). 

 

6. Conclusions 

We have reviewed new aspects of template reactions in multi-component LCs. Particularly, our 

recent studies have featured which demonstrate the potential utility of the ionic LCs, composed of the 

salts of carboxylic acids with 2-amino alcohols salts, as chiral media for molecular recognition and 

reactions. Owing to the characteristic properties of the ionic LCs, such as ordered molecular 

alignment, proper mobility of molecules, and the noncovalent nature of the interactions between 

components, template reactions within the LC matrices proceeded efficiently. As a result, highly 

efficient chiral recognition, chiral sensing, and asymmetric transformation have been realized. In 

principle, the same strategy is applicable to other supramolecular aggregates including gels, micelles, 

monolayers, and bilayers, which would further enhance the expediency of chemistry in tailored media. 
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