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Abstract: Gold nanoparticles of 10 nm and 250 nm were intravenously injected in rats. At 

24 h after administration, tissues were collected and prepared for transmission electron 

microscopy (TEM). In the liver and spleen of animals treated with 10 nm gold 

nanoparticles, groups of nanoparticles were observed that could be positively identified by 

Energy Dispersive X-ray (EDX) analysis to contain gold, while nanoparticles could not be 

detected in the heart, kidney and brain. The 10 nm gold nanoparticles were present in the 

phagocytic cells of the reticulo-endothelial system (RES). The 250 nm gold nanoparticles 

could not be detected in any of the organs investigated. Considering the number of 250 nm 

gold nanoparticles administered, calculations showed that it would indeed be almost 

impossible to detect the 250 nm gold nanoparticles in TEM preparations in view of the 

very low number of particles that would be theoretically present in one TEM tissue section. 

This shows that relatively high numbers of nanoparticles need to be administered to enable 

the detection of nanoparticles in organs by TEM. In a number of samples, several globular 
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structures of approximately the expected size were found in liver cells and the endothelium 

of blood vessels in the brain. However, elemental analysis with EDX detection showed that 

these structures did not contain gold. Our studies thus indicate that the in vivo 

identification of nanoparticles cannot only depend on the detection of nanosized structures 

in cells. An additional identification of the composing elements of the nanomaterial is 

necessary for a positive identification of the nanomaterial. 

Keywords: gold nanoparticles; tissue distribution; transmission electron microscopy 

 

1. Introduction 

The fast growing number of applications of engineered nanoparticles in drug delivery systems, 

medical devices, food products, consumer products and the subsequent disposal of engineered 

nanoparticles in the environment implies that human exposure to engineered nanoparticles is expected 

to increase greatly. The specific physico-chemical properties at the nanoscale are expected also to 

result in increased reactivity with biological systems. So, in addition to their beneficial effects, 

engineered nanoparticles of different types may represent a potential hazard to human health.  

Kinetic properties are considered to be an important descriptor for potential human toxicity and thus 

for human health risk. It is important to know the amount of the total external exposure that will be 

absorbed by the body and result in an internal exposure. In addition, the distribution of absorbed 

nanoparticles in the body over the various organ systems and within the organs needs to be 

determined. We previously performed a kinetic study to determine the influence of particle size on the 

in vivo tissue distribution of spherical-shaped gold nanoparticles in the rat [1]. Gold nanoparticles were 

chosen as model substances as they are used in several medical applications. In addition, the detection 

of the presence of gold is feasible, with no background levels in the body in the normal situation. Rats 

were intravenously injected in the tail vein with gold nanoparticles with a diameter of 10, 50, 100 or 

250 nm. After 24 h, the rats were sacrificed and blood and various organs were collected for gold 

determination. The presence of gold was measured quantitatively with inductively coupled plasma 

mass spectrometry (ICP-MS).  

For all gold nanoparticle sizes the majority of the gold was demonstrated to be present in blood, 

liver and spleen after 24 h [1]. A clear difference was observed between the distribution of the 10 nm 

particles and the larger particles. The 10 nm particles were present in various organ systems including 

blood, liver, spleen, kidney, testis, thymus, heart, lung and brain, whereas the larger particles were 

only detected in the blood, liver and spleen. The results demonstrate that tissue distribution of gold 

nanoparticles is size-dependent, with the smallest (10 nm) nanoparticles showing the most widespread 

organ distribution. 

For the determination of the gold distribution, the presence of gold was determined by ICP-MS. 

This gives reliable information on the distribution of the material in the various organ systems, 

assuming that gold is not naturally present in these organs. However, there is no information on the 

presence of gold in the form of the actual nanoparticles or their exact location in the organs. One of the 

methods to identify the actual presence of metal nanoparticles is by transmission electron microscopy 
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(TEM). With this method, local accumulation in cells and the localization of the nanoparticles in 

cellular organelles can also be investigated. For interpretation of possible toxic effects of 

nanoparticles, it is important to identify in what type of cells nanoparticles are present, and what the 

cellular localization of the nanoparticles is. This short communication describes the results of the 

evaluation of tissue samples with transmission electron microscopy (TEM) for the presence of gold 

nanoparticles after intravenous administration in rats.  

2. Results 

2.1. TEM Evaluation of Nanoparticle Samples before Injection 

The TEM evaluation of the gold nanoparticles used in this study has been reported elsewhere [1]. 

The 10 nm sample showed mainly individual nanoparticles and some clusters, in which up to 60 

nanoparticles could be counted. The nanoparticles in the cluster were loosely arranged and individual 

nanoparticles could be easily recognized, indicating that the clusters consisted of agglomerates with 

weak binding forces. In samples of nanoparticles of 50, 100 and 250 nm, individual nanoparticles and 

some clusters of 2–8 nanoparticles were observed. Energy dispersive X-ray (EDX) spectrum analysis 

demonstrated the presence of 10 nm gold nanoparticles in the solutions (Figure 1). In the spectrum 

there is a considerable peak overlap between the wolfram (W) and gold (Au) peaks. By comparing 

relative peak sizes it can be concluded whether the presence of Au is really detected. Although 

individual gold nanoparticles showed a much weaker signal than groups of nanoparticles, the 

individual nanoparticles could be identified as consisting of gold. Single 250 nm gold nanoparticles 

clearly can be positively identified by the EDX spectrum analysis (Figure 2). 

Figure 1. EDX spectrum analysis of 10 nm gold suspension. A. The red squares highlight 

evaluated areas 1–3; B. Area 1 shows the presence of two nanoparticles, which at EDX 

spectrum analysis contained gold; C. Area 2 as negative control area contained only 

wolfram (W); D. Area 3 shows an agglomerate of particles identified to contain gold.  

A.      B. 
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Figure 1. Cont. 
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Figure 2. The presence of 250 nm gold nanoparticles in solution. Top: HAADF-STEM 

image depicting two Au-particles. The red rectangle indicates the region that was scanned 

during EDX acquisition. Bottom: EDX analysis of single 250 nm gold nanoparticle as 

present in the solution administered to the animals. In the graph the acquired spectrum of 

the marked area is presented. It is clearly visible that the particle consists of Au. The other 

signals in the spectrum can be explained: C, Cu: from the support grid and film, Fe, Co: 

from the lenses of the microscope. 
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2.2. TEM Evaluation of Tissue Samples 

For the evaluation of tissue samples, only the tissues were evaluated from animals treated with  

10 nm or 250 nm gold nanoparticles as a major difference in tissue distribution was observed between 

these two nanoparticle sizes [1]. Organs of four animals were evaluated (two animals treated with 10 

nm gold nanoparticles and two animals treated with 250 nm gold nanoparticles). The main focus of the 

TEM evaluation was on liver and spleen as one of the functions of these organs is the removal of 

agents and particles from the blood circulation. After intravenous administration of the gold 

nanoparticles, the highest levels of gold were observed in liver and spleen with ICP-MS [1]. Initially, 

liver and brain (is there really passage of the blood brain barrier?) were evaluated as organs of interest 

based on the results of our ICP-MS study [1]. Eight to ten nanometer structures were observed in the 

cytoplasm of most liver cells (hepatocytes) of the animals treated with 10 nm gold nanoparticles. An 

example of these structures is presented in Figure 3. Also in the brain, these structures were regularly 

observed in the cytoplasm of the endothelium of the blood vessels (Figure 4). After administration of 

250 nm gold nanoparticles, 150–400 nm structures were observed to a lesser extent in the liver cells 

compared to the 8–10 nm structures. In contrast to the 10 nm structures, these 15–400 nm structures 

were located in the liver cells in vacuoles surrounded by a membrane, suggesting a lysosome  

(Figure 5). Comparing the structures observed in the tissue samples with the nanoparticles as 

previously reported by us [1], a difference in appearance was noted. The gold nanoparticles in 

dispersion show very sharp edges and a sharp contrast compared to the surroundings, whereas the 

structures in the tissues showed rather soft borders without a sharp edge and an irregular black 

intensity. In order to elucidate the identity of these structures, additional TEM studies were performed 

with EDX spectrum analysis. The observed structures with a diameter of 8–10 nm and the structures 

with a diameter of 150–400 nm were found not to contain gold. So, these structures initially observed 

were not the gold nanoparticles injected in these animals.  

Figure 3. Presence of structures in the cytoplasm of liver cells. Arrows indicate nanosized 

(8–10 nm) structures in cytoplasm of cells. The marker indicates 100 nm. 
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In the liver of both animals injected with 10 nm gold nanoparticles, clusters of 10 nm particles were 

also observed in phago-lysosomes of Kupffer cells (Figure 6). Not all Kupffer cells contained particles, 

and the clusters of particles were not evenly distributed in the liver samples but the presence was 

restricted to certain areas. Also in the spleen of one of the two evaluated animals, similar clusters of 

particles were observed in macrophages but to a lesser extent (Figure 7). Only a few clusters were 

noted in the spleen. In both the liver and spleen the nanoparticles were present in phago-lysosomes. 

All other organs investigated, brain, heart and kidney were negative for the presence of the 10 nm  

gold nanoparticles. 

Figure 4. Presence of structures in endothelial cells of the brain. Arrows indicate 

nanosized (8–10 nm) structures in endothelial cells. The marker indicates 200 nm. 

 
 

Figure 5. Presence of 100–200 nm structures in liver cells. The marker indicates 200 nm. 
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In the animals treated with 250 nm gold particles, some dense particles (diameter 150–400 nm) 

were observed in the liver of both animals and the spleen of one animal (data not shown). In the other 

organs, no such dense particles were observed. 

Additional analysis of the EDX spectrum was performed for positive identification of the observed 

nanostructures. It could be demonstrated that the clusters of 10 nm particles contained elemental gold 

and thus consisted of gold nanoparticles (Figure 8).  

Figure 6. Presence of gold nanoparticles in Kupffer cells of the liver. Top. Presence of 

aggregates of 10 nm gold nanopartiocles in phago–lysosomes in Kupffer cells of the liver. 

The marker indicates 1000 nm. Bottom. Detail of nanoparticle aggregate in  

phago-lysosome. The marker indicates 100 nm. 
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Figure 7. Presence of gold nanoparticles in macrophages of the spleen. Top. Presence of 

aggregate in macrophage of spleen. The marker indicates 200 nm. Bottom. Detail of 

aggregate. The marker indicates 50 nm. 

 

 



Materials 2010, 3              

 

 

4689

Figure 8. Presence of gold nanoparticles in Kupffer cells of the liver. Marker indicates  

200 nm (top panel). Positive identification of the element gold in the observed 

nanostructures by EDX analysis. Area 1: a larger cluster of Au particles (10 nm; bottom 

left panel). Area 2: an area containing 2 Au particles (bottom right panel). In the 

surrounding areas, Os and Pb staining is present. 
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3. Discussion and Conclusions 

The TEM evaluation of the dispersion of gold nanoparticles that were administered revealed the 

presence of clusters of nanoparticles mainly in the dispersion of 10 nm gold nanoparticles. The 

arrangement of the nanoparticles in the dispersion indicated that the clusters were most likely 

agglomerates with weak binding forces. The identity of the gold nanoparticles could be confirmed by 

EDX evaluation. After intravenous administration, the gold nanoparticles may be covered with various 

proteins as present in blood such as serum albumin and apolipoproteins as demonstrated for polymeric 

nanoparticles [2]. These proteins on the nanoparticles may facilitate cellular uptake. In contrast, 

coating of nanomaterials with poly ethylene glycol (PEG) was demonstrated to limit cellular uptake 

and prolong the circulation time by inhibiting the interaction with proteins [3–6]. 

In our initial studies we observed 8–10 nm diameter structures in hepatocytes of the liver. These 

structures could not be identified by EDX spectrum analysis to contain gold. So, it was concluded  

that these structures were not the gold nanoparticles injected in the animals. We did not try to identify 

these structures.  

In our continued study brain, heart, kidney, liver and spleen were assessed for the presence of gold 

nanoparticles. Gold particles could be detected only in the liver and spleen, and only for the animals 

treated with 10 nm nanoparticles. Our results showed the presence of 10 nm particles in the  

phago–lysosomes of cells of the mononuclear phagocytic system (MPS) being macrophages in the 

spleen and the reliculo-endothelial system (RES) being the Kupffer cells in the liver. Both cell types 

have a function in clearing the blood from unwanted agents like bacteria and particulates. Although we 

did find the 10 nm particles in the liver, the nanoparticles were not evenly distributed in the liver 

tissue. There were local areas in which some nanoparticles and clusters of nanoparticles were observed 

while other areas were empty. These nanoparticle clusters in the cells were positively identified as 

gold nanoparticles by EDX spectrum analysis. To a lesser extent, similar nanoparticle clusters were 

observed in spleen macrophages. Whether these groups of nanoparticles are aggregates (with strong 

binding forces) or agglomerates (with weak binding forces) cannot be concluded from the TEM 

evaluation. The results of the TEM evaluation of the injected nanoparticle dispersions indicate that in 

the solution administered, the groups of nanoparticles are likely to consist of agglomerates. It is 

unknown whether the clusters found in the liver and spleen were taken up as clusters of nanoparticles 

or as single particles (or small clusters) ending up in the same cell. We did not perform a visual TEM 

analysis of blood samples in order to assess the physical shape of the nanoparticles in the circulation. 

Such an analysis is needed to assess whether the nanoparticles are present as single nanoparticles  

or as clusters of nanoparticles. Our results are in agreement with the results reported by  

Sadauskas et al. [7,8], who used autometallographic staining to detect 40 nm gold nanoparticles in the 

liver of mice. Due to the enhancing effect autometallography is suited to evaluate larger sections and 

thus larger tissue areas for the presence the nanoparticles when compared to EM sections for the 

presence the nanoparticles. After the initial uptake in the Kupffer cells of the liver, a gradual decrease 

over time was observed in the presence of the gold nanoparticles in the liver [7]. 

Particles are mainly taken up into cells by phagocytic pathways. Previously, the presence of 

different types of nanoparticles (gold and titanium oxide of 25 and 22 nm, respectively) was 

demonstrated inside red blood cells [9,10]. It was concluded that nanoparticles are able to cross the 
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cell membrane by processes other than phagocytosis and endocytosis since erythrocytes do not have 

phagocytotic receptors. Diffusion, transmembrane channels, adhesive interactions, or other undefined 

transmembrane processes might play a role in this cellular uptake. Moreover, the uptake of ultrafine 

and 200 nm sized particles in macrophages was not blocked by the phagocytosis inhibitor  

cytochalasin D, whereas the uptake of 1,000 nm (1 mm) particles was inhibited [9], indicating the  

non-phagocytic nature of the uptake of the smaller nanoparticles.  

For the animals treated with 250 nm gold nanoparticles in our study, gold particles could not be 

detected in any of the tissue samples examined.  

The actual dose and the number of nanoparticles administered to the animals (see Table 1) was in 

total 5.1  1012 particles intravenously for the 10 nm size, while for the 250 nm 3.2  108 particles 

were injected. Clusters of 10 nm gold particles were found in the liver but this was limited to certain 

areas of the liver. In the spleen it was much more difficult to find the 10 nm clusters, of which only a 

few could be found. It can be concluded that we have administered a relatively low dose to the 

animals. This explains why we did not find the 250 nm gold particles in the organs. Because of their 

size they are easier to find and to identify than the 10 nm particles. However, in view of the number of 

particles administered, the probability of finding these 250 nm particles in the ultra thin (80–100 nm) 

sections for TEM is rather low. For the 10 nm particles in the liver this would mean approximately 103 

particles in one TEM section (calculation, 1012 nanoparticles per liver of approximately 10 g, 1011 per 

gram liver, equals 1011 per cm3 liver; tissue section for TEM is 5  10–5 mm3 (1 mm  0.5 mm   

0.1 µm); or 5  10–8 cm3 ) For 250 nm particles, the calculation would start at 108 nanoparticles per 

liver resulting in 107 per gram liver tissue, ending with less than 1 (10–1) nanoparticle per TEM 

section. This explains why we were unable to find the 250 nm particles in liver and spleen. In 

comparison, the ICP-MS method used for the detection of the element gold was thus very sensitive in 

detecting the gold nanoparticle distribution as even low percentages of the injected dose in various 

organs could be detected [1]. The liver and spleen contained the highest amount of the injected dose at 

24 h after administration, up to 40% for the liver and 2% for the spleen. 

In conclusion, we were only able to identify the organ localization for the 10 nm gold nanoparticles. 

Groups of 10 nm gold nanoparticles were present in phagocytozing cells of both the liver (Kupffer 

cells) and the spleen (macrophages). In the other organs investigated (brain, heart, kidney) no gold 

nanoparticles could be detected. Probably the dose administered was too low to demonstrate the 

presence of nanoparticles in tissue samples by TEM. Studies with a high concentration might enable 

observations on the localization of 250 nm nanoparticles inside or outside of cells. Our studies indicate 

that the in vivo identification of nanoparticles cannot only depend on the detection of nanosized 

structures in cells. An additional identification, for example by EDX (Energy Dispersive X-ray) 

detection of the composing elements, or a specific marker for the administered nanoparticles, may be 

necessary for a positive identification of the nanomaterial in tissues and cells. 
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Table 1. Gold Nanoparticle characteristics. 

a The original solution was diluted 10% by adding 1 part of a 10 × concentrated PBS solution to 9 
parts of the original solution. 

3. Experimental Section 

3.1. Animals 

Male WU Wistar-derived rats, 6–8 weeks of age were obtained from the animal facility of the 

Institute (RIVM, Bilthoven, The Netherlands). Animals were bred under SPF conditions and barrier 

maintained during the experiment. Drinking water and conventional feed were provided ad libitum. 

Husbandry conditions were maintained according to all applicable provisions of the national laws, 

Experiments on Animals Decree and Experiments on Animals Act. The experiment was approved by 

an independent ethical committee prior to the study. 

3.2. Experimental Design 

Gold nanoparticles of 10, 50, 100 and 250 nm in aqueous suspension were obtained from SPI 

supplies, West Chester, PA, USA. The characteristics of the gold nanoparticles are presented in  

Table 1. The gold suspensions were 10% diluted by adding one part of 10-times concentrated 

phosphate buffered saline (10  PBS) to nine parts of the gold suspension, in order to obtain a 

physiological solution for intravenous injection. Directly after PBS addition, the nanoparticle solutions 

of 10, 50 and 100 nm showed a change in color from red to blue indicating the formation of 

nanoparticle agglomerates/aggregates, whereas the 250 nm particles did not. The solutions remained 

clear and no sediments or agglomerates/aggregates were visually noted. A PBS control solution was 

prepared by adding one part of 10  PBS to nine parts of distilled water (1:10). Treatment groups were 

as follows: 10 nm gold nanoparticles (n = 7), 50 nm gold nanoparticles (n = 2), 100 nm gold 

nanoparticles (n = 4), and 250 nm gold nanoparticles (n = 5), PBS control (n = 3). One milliliter of 

each freshly prepared solution was injected in the tail vein. The injections were well tolerated and no 

adverse effects were observed during the 24 h observation period.  

At 24 h after injection, blood and the following organs were collected: adrenals, aorta, brain, heart, 

kidney, liver, lung, lymph nodes (mesenteric and popliteal), spleen, testis, thymus, and vena cava. 

Organs were weighed, and tissue samples were homogenized and frozen for determination of gold 

content by inductively coupled plasma mass spectrometry (ICP-MS). EDTA blood was collected and 

Particle size (diameter in nm) 10 50 100 250 
Particle number/ml 5.7  1012 4.5  1010 5.6  109 3.6  108 
Particle number/ml (x108) 57000 450 56 3.6 
Particle size (actual size in nm) 9.5 48.2 99.9 247.8 
Surface area per particle (nm2) 283,5287 7298,674 31353,13 192909 
Surface area per ml particles 1.62  1015 3.28  1014 1.79  1014 6.94  1013 
Surface area per ml (× 1013) 162 32.8 17.9 6.9 
Weight injected per animal (ng) 85,706  106,807 98,593  120,220 
Number injected per animala 5.1  1012 4.0  1010 5.0  109 3.2  108 
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stored in the refrigerator (4 °C). The results of the ICP-MS determinations of the gold content of blood 

and organs are reported elsewhere [1]. 

3.3. Transmission Electron Microscopy (TEM) 

Samples of nanoparticle dispersions used for intravenous administration were prepared for 

evaluation by transmission electron microscopy. Samples were added to a carbon-coated formvar film, 

contrasted with 2% phosphotungsten acid pH 5.2, and allowed to dry. Without further preparation, the 

samples were evaluated by transmission electron microscopy.  

For TEM evaluation, from each group of animals treated with a different size of nanoparticles, 

tissue samples were collected from several animals. In this study various organs (brain, heart, kidney, 

liver and spleen) of two animals treated with 10 nm gold nanoparticles, and two animals treated with 

250 nm gold nanoparticles were evaluated.  

Tissue samples were fixed in a mixture of 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M 

sodium cacodylate buffer pH 7.4 for at least one week at +4 °C. Added to the buffer was 0.01 M 

CaCl2, 0.01 M MgCl2, and 0.1 M sucrose. After washing, a second fixation was done in sodium 

cacodylate buffer with 1% osmiumtetroxide and 1.5% potassiumhexanocyanoferrat. Tissue samples 

were dehydrated with serial alcohol and propylene oxide, impregnated and embedded in glycidether 

100 (1,2,3-tris(2,3-epoxypropoxy)propan), which was polymerized at 60 °C. Semithin sections were 

prepared and stained with toluidin blue. Ultrathin sections of 50–70 nm were stained by uranyl acetate 

and lead citrate. Transmission electron microscopy (TEM) was performed using a FEI Company 

TECNAI 12 (FEI Company, Eindhoven, The Netherlands) transmission electron microscope.  

Additional studies at TEM level were performed for further identification of the presence of the 

element gold in various structures identified in the TEM evaluation as nanoparticles. These studies 

were performed using a TECNAI F30ST TEM operated at 300 kV. Mass sensitive HAADF (High 

Angular Annular Dark Field) detector was used for the detection of the presence of heavy (metallic) 

atoms in structures. The mass sensitive detection means that a higher brightness in the image 

corresponds to the presence of (a larger concentration of) heavier atoms. HAADF images are acquired 

in the scanning TEM mode. Using an Energy Dispersive X-ray (EDX) detector element characteristic 

X-rays were assessed. In the EDX spectrum, the detected signal is plotted as a function of the 

(characteristic) energy. Chemical compositions, in this case gold, can be obtained by quantification of 

the data. 
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