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Abstract: Traditionally, bioactive glasses have been used to fill and restore bone defects. 
More recently, this category of biomaterials has become an emerging research field for 
bone tissue engineering applications. Here, we review and discuss current knowledge on 
porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate 
glass compositions and relevant composite structures. Starting with an excerpt on the 
history of bioactive glasses, as well as on fundamental requirements for bone tissue 
engineering scaffolds, a detailed overview on recent developments of bioactive glass and 
glass-ceramic scaffolds will be given, including a summary of common fabrication 
methods and a discussion on the microstructural-mechanical properties of scaffolds in 
relation to human bone (structure-property and structure-function relationship). In addition, 
ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are 
addressed. Finally, areas of future research are highlighted in this review. 

Keywords: bioactive glasses; glass-ceramics; melt-derived glasses; scaffolds; bone;  
tissue engineering; composites; ion release; osteogenesis; angiogenesis 

 

1. Introduction 

Tissue engineering (TE) and regenerative medicine aim to restore diseased or damaged tissue using 
combinations of functional cells and biodegradable scaffolds made from engineered biomaterials [1,2]. 
Some of the most promising biomaterials for application in bone tissue engineering are bioceramics 
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such as hydroxyapatite (HA), calcium phosphates, bioactive glasses and related composite materials 
combining bioactive inorganic materials with biodegradable polymers [3,4]. Bioactive inorganic 
materials are capable of reacting with physiological fluids forming tenacious bonds to bone through 
the formation of bone-like hydroxyapatite layers leading to effective biological interaction and fixation 
of bone tissue with the material surface [5,6]. Moreover, in the case of silicate bioactive glasses, such 
as 45S5 Bioglass® [5], reactions on the material surface induce the release and exchange of critical 
concentrations of soluble Si, Ca, P and Na ions, which can lead to favorable intracellular and 
extracellular responses promoting rapid bone formation [7-11].  

In 1969, Hench and colleagues discovered that rat bone can bond chemically to certain  
silicate-based glass compositions [8,9]. This group of glasses was later termed “bioactive”, being  
“a material that elicits a specific biological response at the material surface which results in the 
formation of a bond between the tissues and the materials” [9,12]. Hench [8] has recently published the 
history leading to the development of bioactive glass (BG) focusing on the breakthrough discovery of 
the classical 45S5 Bioglass® composition to successful clinical applications and tissue engineering. 
This oldest BG composition consists of a silicate network (45 wt % SiO2) incorporating 24.5 wt % 
Na2O, 24.5 wt % CaO and 6 wt % P2O5 as network modifiers. The high amounts of Na2O and CaO, as 
well as the relatively high CaO/P2O5 ratio make the glass surface highly reactive in physiological 
environments [11]. Other bioactive glass compositions developed over the years contain no sodium or 
have additional elements incorporated in the silicate network such as fluorine [13], magnesium 
[14,15], strontium [16-18], iron [19], silver [20-23], boron [24-27], potassium [28] or zinc [29,30].  

Fabrication techniques for bioactive glasses include both traditional melting methods and sol-gel 
techniques [1,3,4,10,31-33], the latter are being highlighted elsewhere [34] and are not covered in this 
review. The typical feature common to all bioactive glasses, being melt or sol-gel derived, is the ability 
to interact with living tissue, in particular forming strong bonds to bone (and in some cases soft tissue 
[35,36], a property commonly termed bioreactivity or bioactivity [1], as mentioned above. It is now 
widely accepted that for establishing bond with bone, such a biologically active apatite surface layer 
must form at the material/bone interface [1,8,11,12,37] (see also discussion in §4). Thus, the basis of 
the bone bonding property of bioactive glasses is the chemical reactivity in physiological body fluids 
(in vitro and in vivo) resulting in the formation of a hydroxycarbonate apatite (HCA) layer to which 
bone can bond. This bonding to living bone tissue occurs upon a sequence of reactions on the material 
surface [9] followed by cellular reactions [5], both of which are explained in detail  
elsewhere [1,5,9,11,12]. Briefly, the processes on the glass surface are characterized by ion 
leaching/exchange, dissolution of the glass network and precipitation and growth of a  
calcium-deficient carbonated apatite (HCA) surface layer, whereas cellular reactions include 
colonization, proliferation and differentiation of relevant (bone) cells [11,12] (Error! Reference 
source not found.). In parallel to the chemical reactions on the material surface leading to bone 
bonding, recent studies have proven that ion dissolution and release from BG activate gene expression 
in osteo-genitor cells that give rise to enhanced bone regeneration (see §4.1). 
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Figure 1. Sequence of interfacial reactions involved in forming a bond between bone and a 
bioactive glass (modified after reference [5]). 
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1 Exchange of alkali ions with hydrogen ions from body fluids 
2 Network dissolution and formation of silanol (SiOH) bonds 
3 Silica-gel polymerization: SiOH + SiOH            Si–O–Si  
4 Chemisorption of amorphous Ca + PO4 + CO3 
5 Crystallization of the HCA layer 

 Biochemical adsorption of growth factors on HCA layer 
7 Action of macrophages 
8 Attachment of stem cells 
9 Differentiation of stem cells 
10 Generation of matrix 

11 Crystallization of matrix 

12 Proliferation and growth of bone 
 
The development of such a bioactive apatite layer is the common characteristic of all known 

inorganic materials used for bone replacement, orthopedic implants and bone tissue engineering 
scaffolds [1,38]. Early clinical applications of bioactive glasses were in the form of solid pieces for 
small bone replacement, i.e., in middle ear surgery [1,8,11]. Later, other clinical applications of 
bioactive glasses were proposed, for example in periodontology or as coating on metallic orthopedic 
implants [5,8]. Historically, the main function of biomaterials and implants has been to replace 
diseased or damaged tissues. During the past three decades, however, the strategy in biomaterial 
research began to shift from developing biomaterials with a bio-inert tissue response to producing 
bioactive components that could elicit a controlled action and reaction in the physiological 
environment [1]. Since the late 1990’s and the beginning of the new millennium, great potential has 
been attributed to the application of bioactive glasses in tissue engineering and regenerative  
medicine [39-43]. Bone tissue engineering is one of the most exciting future clinical applications of 
bioactive glasses. Both micron-sized and recently nanoscale particles [23,44,45] are considered in this 
application field, which includes also the fabrication of composite materials, e.g., combination of 
biodegradable polymers and bioactive glass [38,46-50], as discussed in detail in §3.2. Bioactive 
silicate glasses exhibit several advantages in comparison to other bioactive ceramics, e.g., sintered 
hydroxyapatite, in tissue engineering applications. For example, it has been demonstrated that 
dissolution products from bioactive glasses up-regulate the expression of genes that control 
osteogenesis [7,51], which explains the higher rate of bone formation in comparison to other inorganic 
ceramics such as hydroxyapatite [52]. Further studies using 45S5 Bioglass® particles have shown 
encouraging results regarding potential angiogenic effects of Bioglass®, i.e., increased secretion of 
vascular endothelial growth factor (VEGF) and VEGF gene expression in vitro, as well as 
enhancement of vascularization in vivo [53-56] (see §4). In addition, the incorporation of particular 
ions into the silicate network, such as silver [20-22] and boron [26,27], has been investigated in order 
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to develop antibacterial and antimicrobial materials. Bioactive glasses can also serve as vehicle for the 
local delivery of selected ions being able to control specific cell functions [30,57-64]. For example, 
mesoporous BG microspheres have demonstrated enhanced haemostatic activity, as well as reduced 
clot detection times and increased coagulation rates compared to nonporous microspheres [65].  
The release of calcium ions is believed to be responsible for its haemostatic properties [65]. Moreover, 
ferromagnetic bioactive glasses and glass-ceramics containing magnetite are being currently developed 
for hyperthermia treatment of cancer [19,66-69]. 

Bioactive glass-ceramics belong to the group of Class A bioactive materials which are characterized 
by both osteoconduction (i.e., growth of bone at the implant surface) and osteoinduction  
(i.e., activation and recruitment of osteoprogenitor cells by the material itself stimulating bone growth 
on the surface of the material) [5,8,33,70]. Differences between Class A and B bioactive materials are 
discussed elsewhere [8,33,70]. As indicated above, the range of bioactive glasses exhibiting these 
attractive properties has been extended over the years, in terms of both chemical composition and 
morphology, as new preparation methods have become available. At this point, for completeness, it 
has to be mentioned that an early significant modification of bioactive glasses was the development of 
apatite/wollastonite (A/W) bioactive glass-ceramics [71,72]. A recent review summarizing research on 
Ca-Si-based ceramics is available [73].  

Bone tissue engineering scaffolds are generally highly porous, 3-dimensional (3D) templates, 
exhibiting tailored porosity, pore size and controlled interconnectivity [37,74]. Several scaffold 
fabrication techniques, including foam replication methods, salt or sugar leaching, thermally induced 
phase separation, microsphere emulsification sintering, electrospinning to form nanofibrous structures, 
computer assisted rapid prototyping techniques [75,76], textile and foam coating methods [60,77,78], 
as well as biomimetic approaches [79,80] to optimize the structure, properties and mechanical integrity 
of scaffolds have been reported in the literature. Comprehensive reviews of the general state-of-the art 
in scaffold manufacturing and optimization are available [3,4,37,38,77,81]. The bio-mimicry of human 
bone, i.e., the design and incorporation of nano-topographic features on the scaffold surface 
architecture, in order to mimic the nanostructure of natural bone, is also becoming a significant area of 
research in bone tissue engineering [10,82-84]. 

This review is organized in the following manner. In section 2, we discuss the essential design 
requirements for bone tissue engineering scaffolds. Section 3 provides a comprehensive summary of 
the main bioactive glass and glass-ceramic scaffold fabrication technologies, followed by a discussion 
of scaffold microstructures developed (e.g., porosity, pore structure, pore interconnectivity) and 
relevant structural-mechanical properties correlations (structure-function and structure-property 
relationships) in relation to human bone. Section 4 reviews the latest developments in the field of ion 
release effects on cell and tissue response to bioactive glass scaffolds, highlighting the effect of 
dissolution products from bioactive glasses in relation to osteogenesis and angiogenesis. Finally, in 
section 5, limitations of recently developed silicate scaffolds are discussed, and areas where further 
research is needed are identified. This review thus gives a complete overview on recent developments 
in the field of bioactive glasses for tissue engineering, focusing on melt-derived BG, and represents a 
literature update as well as an expansion of previously presented articles on the  
topic [34,73,77,81,85-88]. 
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2. Basic Scaffold Requirements 

The most important function of a bone TE scaffold is its role as template that allows cells to attach, 
proliferate, differentiate and organize into normal, healthy bone as the scaffold degrades. Figure 2 
illustrates the most important factors involved in the design of TE scaffolds and their 
interdependencies, according to Guarino et al. [3]. Depending on the final application, scaffold 
requirements include matching the structural and mechanical properties with those of the recipient 
tissue and optimizing the microenvironment to foster cell integration, adhesion and growth, issues that 
have become known as structural and surface compatibility of biomaterials [89,90].  

Figure 2. Schematic diagram of key factors involved in the design of optimal scaffolds for 
bone tissue engineering (modified after reference [3]). 
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(porosity, pore size, 
pore interconnection, 
mechanical properties)

Bioactivation
(chemical modification, 
surface activation, 
controlled release)

Biological requirements
(cell adhesion, 
proliferation                                       
and differentiation)

Cells
(stem cells, 
marrow stromal
cells, osteoblasts, 
chondrocytes and 
fibroblasts

Materials
(synthetic and 
natural polymers, 
ceramic and glass)

Signalling molecules
(soluble and insoluble signals)

 
 
Scaffolds for bone tissue engineering are subjected to many interrelated biological and structural 

requirements which must be taken into consideration when selecting the suitable biomaterial for 
fabrication. Firstly, scaffolds need to encourage cell attachment, differentiation and proliferation which 
are cell functions highly dependent on substrate material properties. This is related to the property of 
osteoconductivity, which is important not only to avoid the formation of encapsulating tissue but also 
to induce a strong bond between the scaffold and host bone [5]. The rate of biodegradation in vivo is 
another criterion for selection of biomaterials for fabricating scaffolds, which should be tailored to 
match the rate of regeneration of new tissue. When considering biodegradable materials, it is also 
important to understand the time dependent variation of their mechanical properties and varying 
structural integrity since the mechanical strength of scaffolds has to be sufficient to provide 
mechanical stability in load-bearing sites during the period of new tissue formation.  

Further requirements are related to the scaffold architecture. An ideal bone tissue scaffold should 
possess an interconnected porous structure, i.e., it should be highly permeable (see §3.1), with porosity 
>90% and pore diameters in the range 10–500 μm for cell seeding, tissue ingrowth and 
vascularization, as well as for nutrient delivery and waste removal [37,38,74,91]. A particular design 
criterion of tissue engineering scaffolds is the mimicry and implementation of the bimodal porosity of 
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cancellous bone tissue, which is an important factor for the effective scaffold vascularization and for 
bone ingrowth [92]. Microporosity (≈2–10 μm, <50 μm) is essential for immediate protein and cell 
adhesion, cell migration and osteointegration [13,74,92-94]. Higher pore sizes (>300 μm) are required 
for enhanced new bone formation, greater bone ingrowth and the formation of capillaries. Because of 
vascularization, pore size has been shown to affect the progression of osteogenesis. Small pores 
favored hypoxic conditions and induced osteochondral formation before osteogenesis, while large 
pores, that are well-vascularized, lead to direct osteogenesis (without preceding cartilage  
formation) [74]. However, higher scaffold porosity results in diminished mechanical properties thereby 
setting an upper functional limit for pore size and porosity. Thus, a balance must be reached depending 
on the repair, rate of remodeling and rate of degradation of the scaffold material [74], and the scaffold 
design has to consider an optimal porosity enabling sufficiently high permeability  
(i.e., pore interconnectivity, see discussion in §3.1) for waste removal and nutrient supply and 
adequate stiffness and strength (see §3.1, Figure 7, Figure 9) to sustain the loads transmitted to the 
scaffold from the surrounding healthy bone [95]. Furthermore, scaffolds should be amenable to 
fabrication in complex or irregular shapes in order to match specific defect morphologies in bone of 
individual patients. Finally, material synthesis and fabrication of the scaffold should be suitable for 
sterilization as well as commercialization [8], i.e., the technology of scaffold production must be 
scalable and cost-effective.  

3. Silicate-Based Bioactive Glass Tissue Engineering Scaffolds 

3.1. Bioactive Glass Based Glass-Ceramic Scaffolds 

Glass-ceramics are partially crystallized glasses produced by heating the parent bioactive glass 
above its crystallization temperature, usually at about 610–630 °C [33,44,96,97]. In the case of  
glass-ceramics obtained by a sintering process, during the occurrence of crystallization and 
densification, the microstructure of the parent glass shrinks, porosity is reduced and the solid structure 
gains mechanical strength [70]. However, the brittleness and low fracture toughness remain a major 
impediment of these materials. The limited strength and low fracture toughness (i.e., ability to resist 
fracture when a crack is present) of bioactive glasses has so far prevented their use for load-bearing 
implants [8,70,96,98], and thus the repair and regeneration of large bone defects at load-bearing 
anatomical sites (e.g., limbs) remains a clinical/orthopedic challenge [99,100]. Recent developments 
related to bone TE try to bridge this gap and overcome this problem by architectures and components 
carefully designed from comprehensive levels, i.e., from the macro-, meso-, micrometer down to the 
nanometer scale [101], including both multifunctional bioactive glass composite structures (see §3.2) 
and advanced bioactive glass-ceramic scaffolds exhibiting oriented microstructures, controlled 
porosity and directional mechanical properties [99,102-105], as discussed in the following paragraphs. 
Most studies have investigated mainly the mechanical properties, in vitro and cell biological behavior 
of glass-ceramic scaffolds [13-15,30,43,52,94,95,97,99,102-124], as summarized in Table 1, and 
scaffolds with compressive strength [99,102] and elastic modulus values [99,105] in magnitudes far 
above that of cancellous bone and close to the lower limit of cortical bone have been realized. 
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Table 1. Overview on recent studies performed on silicate bioactive glass-ceramic 
scaffolds. The symbol § denotes fiber diameter. 

Glass composition/system 
Particle size of 
starting glass powder 

Fabrication technique Study 

45S5 < 5 μm Polymer foam replication  [95] 
SiO2-CaO-CaF2-Na2O-K2O-P2O5-MgO < 32 μm Polymer foam replication  [13] 
SiO2-P2O5-CaO-MgO-Na2O-K2O < 30 µm Polymer foam replication [15,94] 
SiO2-P2O5-CaO-MgO-Na2O-K2O < 30 µm Polymer foam replication [108] 
45S5 10–20 µm Polymer foam replication [118] 
SiO2-Na2O-CaO-MgO < 100 μm Starch consolidation [14] 

SiO2-P2O5-B2O3-CaO-MgO-K2O-Na2O 75 μm§ 
Compaction and sintering 
of  melt-spun fibers [113] 

SiO2-CaO-Na2O-K2O-P2O5-MgO-CaF2 < 106 µm 
Polymer porogen bake-
out [102] 

45S5 20–50 μm Polymer foam replication [97] 
SiO2-Na2O-K2O-MgO-CaO-P2O5 255–325 μm Slip casting [107] 
SiO2-Na2O-K2O-MgO-CaO-P2O5 < 5–10 μm Polymer foam replication  [105] 
SiO2-Na2O-K2O-MgO-CaO-P2O5 < 5 µm Freeze casting [99] 
SiO2-CaO-K2O < 106 µm Polymer porogen burn-off [106] 

SiO2-TiO2-B2O3-P2O5-CaO-MgO-K2O-Na2O 75 μm§ 
Compaction and sintering 
of  melt-spun fibers [30] 

45S5 45–90 μm 
Polymer porogen bake-
out [119] 

45S5 < 5 µm Polymer foam replication [103] 

SiO2-Na2O-K2O-MgO-CaO-P2O5; 45S5 25–40 μm§ 
Densification and 
sintering of melt-spun 
fibers 

[114] 

45S5 ≈ 5 μm Polymer foam replication [43] 
45S5 5–10 μm Polymer foam replication [109] 
45S5 ≈ 10 μm Polymer foam replication [110] 

SiO2-P2O5-CaO-MgO-Na2O-K2O n.a. 
Polymer burn-off, foam 
replication [104] 

45S5 < 5 µm Polymer foam replication [120] 
SiO2-Na2O-CaO-P2O5-B2O3-TiO2 n.a. Solution combustion [52] 
SiO2-Na2O-CaO-P2O5-B2O3-TiO2 n.a. Solution combustion [121] 

SiO2-CaO-P2O5-Al2O3 8–30 μm§ 
Manual free-forming of 
melt- spun fibers [122] 

SiO2-CaO-Na2O-P2O5-K2O-MgO-B2O3 n.a. Polymer foam replication [123] 

SiO2-CaO-Na2O-K2O-MgO-P2O5-B2O3 75 μm§ 
Densification and 
sintering of melt-spun 
fibers 

[124] 

 
Fu et al. [99] fabricated bioactive glass (13–93) scaffolds with oriented (i.e., columnar and lamellar) 

microstructures and found that at an equivalent porosity of 55–60%, the columnar scaffolds had a 
compressive strength of 25 ± 3 MPa, compressive modulus of 1.2 GPa, and pore width of 90–110 µm, 
compared to values of 10 ± 2 MPa, 0.4 GPa, and 20–30 μm, respectively, for the lamellar scaffolds. 



Materials 2010, 3                            
 

 

3874

The compressive strength of these columnar bioactive glass scaffolds is >1.5 times higher than the 
highest strength reported for trabecular bone (0.1–16 MPa, see Table 2). In addition, the cellular 
response of murine postosteoblasts/pre-osteocytes to columnar scaffolds indicated that these are most 
favorable for cell proliferation, migration, and mineralization (e.g., bone nodule formation, alkaline 
phosphatase activity). From the results in reference [99], the authors claimed that 13–93 bioactive 
glass scaffolds with columnar microstructure are promising candidate materials for the repair and 
regeneration of load-bearing bones in vivo. It is interesting to note in this regard that highly porous 
lamellar HA scaffolds (porosity ≈ 50–70%) fabricated by freeze casting exhibited 2.5–4 times higher 
compressive strengths (≈ 20–140 MPa) than conventional porous HA [101]. 

Table 2. Mechanical properties of human cancellous and cortical bone in comparison to 
dense bioactive glass 45S5 Bioglass®.  

Material property Trabecular bone Cortical bone Bioglass® 45S5 
Compressive strength [MPa] 0.1–16 [125,126] 130–200 [37,125] 500 [37] 
Tensile strength [MPa] n.a. 50–151 [37] 42 [70] 
Compressive modulus [GPa] 0.12–1.1 [127,128] 11.5–17 [74] n.a.  
Young’s modulus [GPa] 0.05–0.5 [37,129] 7–30 [6,37,129] 35 [70] 
Fracture toughness [MPa·m1/2] n.a. 2–12 [37,70] 0.7–1.1 [130,131] 

 
Multi-directional, anisotropic mechanical properties of scaffolds have been also reported by Baino 

et al. [102]. They prepared fluoroapatite containing glass-ceramic scaffolds and investigated their 
mechanical, structural and bioactive properties upon soaking in simulated body fluid (SBF). The 
scaffolds had interconnected macropores (porosity = 23.5–50%) and orthotropic mechanical 
properties, with compressive strength values in the range 20–150 MPa (Figure 7). Thick 
hydroxyapatite layers were formed on the surface of the scaffolds after 7 days of immersion in SBF, 
demonstrating the scaffold excellent bioactivity. Compressive strength values reported in refs. [99,102] 
are considerably higher than those found for bioactive glass-ceramic scaffolds with similar porosities  
(porosity = 54–73%), prepared by the foam replication technique [94]. The latter scaffolds formed 
from SiO2-P2O5-CaO-MgO-Na2O-K2O bioactive glass had a compressive strength of 1.3–5.4 MPa [94] 
(for comparison see Figure 7). 

Ideally, the elastic modulus of the scaffold should be comparable to that of the tissue to be replaced 
in order to promote load transfer and minimize stress shielding, reducing the problems of bone 
resorption [132]. Stress shielding describes the mismatch in elastic moduli between biomaterial and the 
adjacent/surrounding bone. In case of large elastic mismatch, bone becomes “stress shielded”, which is 
undesirable since living bone must be under some tensile load stimuli to remain healthy. In the 
literature, depending on the measurement technique and parameters used, the source of bone and the 
structural variation in bone from the same source, a wide range of values has been reported for the 
compressive modulus of trabecular (0.12–1.1 GPa) and cortical bone (11.5–17 GPa) (Table 2 ).  
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Fu et al. [105] reported for magnesium and potassium substituted bioactive glass-ceramic scaffolds 
(porosity = 85 ± 2%, pore size = 100–500 μm) a compressive strength of 11 ± 1 MPa and compressive 
modulus of 3.0 ± 0.5 GPa, which match the highest values reported for human trabecular bone  
(Table 2). Interestingly, these values are more than 10 times higher than compressive strengths 
reported for 45S5 Bioglass® based scaffolds [43] of similar porosity and prepared by the same foam 
replication method. This finding confirms that glass composition and sintering parameters also affect 
the mechanical properties of glass-ceramic scaffolds. Upon immersion in SBF, Fu et al. [105] observed 
a nanostructured hydroxyapatite layer formed on the surface of the porous scaffolds within 7 days 
(Figure 3), indicating the in vitro bioactivity of the scaffolds. Such HA nanocrystals are found in 
human bone and believed to be beneficial for increased cell adhesion, proliferation and greater tissue 
growth into the scaffold [84,133,134]. Cell culture results and scanning electron microscopy (SEM) 
observations presented in ref. [105] confirmed an excellent attachment and subsequent proliferation of 
MC3T3-E1 pre-osteoblastic cells, both on the surface and in the interior of the scaffolds (Figure 4). 

Figure 3. SEM images of the surface of a 13–93 glass  scaffold fabricated by a foam 
replication method, after immersion for 7 days in SBF: (a) lower magnification image; and 
(b, c) higher magnification image showing fine needle-like hydroxyapatite crystals [105]. 
Figure reprinted with permission of Elsevier. 

 
 
Another interesting approach in the development of bone TE scaffolds is to engineer constructs 

with graded porosity. Vitale-Brovarone et al. [104] and Bretcanu et al. [103] manufactured highly 
porous bioactive glass-ceramic scaffolds with tailored porosity gradient (Figure 5) in order to mimic 
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the morphology and lightweight structure of human bone, formed by cortical (compact bone with 
dense structure) and cancellous bone (trabecular bone with highly porous structure). Trabecular bone 
represents only about 20 wt % of the skeletal mass, but has a nearly ten times greater surface-to-
volume ratio (100−300 cm2/cm3) than compact bone [135,136]. Therefore, trabecular bone is far more 
important in phosphate and calcium homeostasis than compact bone. The unique hierarchical structure 
of bone enables its self-repairing properties; bone can alter its geometry (Figure 6) and material 
properties in response to changing external load stimuli, and it undergoes a continuous remodeling 
process [132,137]. Bone grows in response to load so that the density of trabecular bone depends on 
the magnitude of the loads and the orientation of the trabeculae depends on the loading direction 
(Figure 6). Low-density trabecular bone resembles open-cell foam while high-density trabecular bone 
has a more plate-like structure, with perforations through the plates [138]. 

Figure 4. SEM images of 13–93 glass scaffolds seeded with MC3T3-E1 cells and cultured 
for: (a) 2 days; (b, c) 4 days; and (d, e) 6 days [105]. Reprinted with permission of 
Elsevier. 
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Figure 5. SEM images of scaffolds with 3D continuous porosity gradient after sintering at 
different degrees of compaction in aluminum mould: (a) 75%, (b) 65%, (c) 50%. Reprinted 
from ref. [103], with permission from Springer Netherlands. 

 

 
Analyzing experimental results from the literature [43,94,99,102], a highly negative linear 

relationship between scaffold porosity and compressive strength was found, with coefficients of 
determination R2 between 0.80 and 0.99 (Figure 7), obtained from linear curve fitting. This means that 
for a particular scaffold, at least 80% of the variability of the compressive strength can be explained by 
the systematic influence of porosity. Coefficients of determination found for quadratic or exponential 
functions were in the same order of magnitude. For the different scaffolds, an increase in porosity  
by 10% has been shown to decrease the compressive strength by 2–15 MPa, variations being 
represented by the different slopes in Figure 7. The linear relationship failed to hold for very high 
porosities of 89–92% [43] (Figure 7), which can be explained by the onset of instability phenomena 
(e.g., buckling) which occur in particular at high porosities and promote the collapse of the scaffold 
micro-architecture.  

 2 mm  2 mm  2 mm 
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Figure 6. Scanning electron micrographs showing the cellular structure of trabecular bone. 
(a) Specimen taken from the femoral head, showing low-density, open-cell, rod-like 
structure. (b) Specimen taken from the femoral head, showing a higher density, perforated 
plate-like structure. (c) Specimen taken from the femoral condyle, of intermediate density, 
showing an oriented structure, with rods normal to parallel plates. Figure reprinted from 
reference [138] with permission of Elsevier. 

 
 
The large variations in compressive strength values of the scaffolds can be interpreted by different 

fabrication methods, glass compositions, pore morphologies, pore sizes, pore size distributions, shape 
and thickness of struts (leading to anisotropic mechanical properties), as well as by different 
compressive strength test parameters employed (sample geometry, size, loading speed).  
A linear correlation has also been found between porosity and elastic modulus of glass-ceramic 
scaffolds using ultrasonic wave propagation [112] (Figure 9). 
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Figure 7. Relationship between porosity and compressive strength of bioactive  
glass-ceramic scaffolds. Data adapted from refs. [43,94,99,102]. 
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For human bone, different functional relationships between bone volume fraction (i.e., porosity) 

and mechanical properties have been observed. On the basis of image-guided failure assessment 
(IGFA), Nazarian et al. [128] found highly positive linear correlations (R2 = 0.8−0.9) between bone 
volume fraction and compressive yield strength (Figure 8 B), as well as between bone volume fraction 
and elastic modulus (Figure 8 A). Other authors reported quadratic [138] or power-law relationships 
between bone volume fraction (relative density) and compressive strength [125], as well between bone 
volume fraction and Young’s modulus of human bone (Figure 9) [138,139]. Moreover, a second order 
polynomial relationship between porosity and Young’s modulus has been found in the modeling of the 
mechanical properties of a face-cubic-centered (fcc) scaffold microstructure [140,141] (Figure 9). 
However, the Young’s modulus of fcc microstructures with moderate porosities of between 30% and 
80% (pink, dashed overlapped data line in Figure 9) was well-estimated by linear regression analysis. 

The non-linear relationships between porosity and stiffness (E-Modulus) [125,138,139,141] are 
well in agreement with the homogenization of heterogeneous materials and micromechanics theory of 
porous solids [138,142], whose details are far beyond the scope of this review. Briefly, the stiffness of 
a cellular solid depends mainly on its microstructure and the mechanical properties of the base 
material. This means that the biomechanics of porous solids is determined by a complex interplay 
between porosity, microstructure and bulk mechanical properties. On the one hand, the porosity 
determines the resultant microstructure morphology, and consequently a certain degree of anisotropy 
may eventually occur, in cases where pores show a preferential direction. On the other hand, the 
intrinsic base material properties (e.g., material composition in the case of scaffolds, or mineral 
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content in bone; see Figure 10) induce the overall stiffness. According to the micromechanics theory, 
individual curves of different base materials showing the ratio E/E0 (being E the apparent Young’s 
modulus and E0 the Young’s modulus of the solid) as a function of porosity match each other if the 
microstructure (pore/cell geometry of different porosities) is geometrically similar (i.e., no architecture-
elastic modulus dependence) and as long as the mode of deformation or failure is the same [138]. 

Although strength and stiffness underlie completely different physical mechanisms (strength is 
related to a critical point of material collapse, whereas Young’s modulus is related to the linear elastic 
relationship between stress and strain), the similarity in the density dependencies of Young’s modulus 
and compressive strength of human bone, reported as being both linear [128] (see Figure 8) and both 
quadratic [138], suggest that the failure strain is a constant in cases where material instabilities are not 
predominant during collapse.  

The state of knowledge regarding the relationship between porosity and pore size of biomaterials 
used for bone regeneration, and the effect of these morphological features on osteogenesis, have been 
reviewed in detail by Karageorgiou and Kaplan [74] whilst the mechanical properties of bioactive 
glass-ceramic scaffolds have been summarized by Thompson and Hench [70,98]. 

Figure 8. Linear regression models illustrating that (A) compressive modulus of elasticity 
and (B) compressive yield strength of non-cancer (Non-CA), normal and osteoporotic, and 
metastatic cancer (CA) cancellous bone specimens are functions of bone volume fraction 
(BV/TVMIN) regardless of the underlying pathology. Specimen groups: cancer (CA, red), 
non-cancer (green), cancer and non-cancer combined (black). Reprinted from reference 
[128], with permission of Springer-Verlag, New York. 
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Figure 9. Young’s modulus of an fcc scaffold microstructure [141] and of bone [139] as a 
function of porosity (Data kindly provided by Prof. J. A. Sanz-Herrera, University of 
Seville, Spain). The pink, dashed line, overlapping the blue line, represents the data range 
(porosity of fcc structure = 30–80%), in which a highly linear relationship between 
porosity and Young’s modulus exists. A second order polynomial function describes the 
Young’s modulus of the fcc structure over the entire range of investigated porosities  
(1.2–89.6%). For Bioglass®-based glass-ceramic scaffolds (data adapted from ref. [112]), a 
highly linear negative correlation (coefficient of determination R2 = 0.866) between 
porosity and elastic modulus was found on the basis of ultrasonic wave  
propagation measurements. 
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In the complex process of bone regeneration, scaffold microstructure and microstructure anisotropy 

play important roles because both morphological features determine the spatial distribution of the 
newly formed tissue [143]. The sophisticated hierarchical micro-structure of bone with highly 
interconnected trabeculae ensures waste removal, nutrient/oxygen supply and protein transport during 
tissue regeneration and bone growth [95,144]. Because studies have shown that cell growth into a 
scaffold depends on how well nutrients can permeate through the porous structure [145,146], the 
permeability of scaffolds, a property directly related to the degree of pore interconnectivity, is a key 
factor influencing the scaffolds ability to enhance bone tissue regeneration [95]. Permeability 
quantifies the ability of a porous medium to transmit fluid through its interconnected pores or channels 
when subjected to pressure, and therefore controls the nutrient flow to cells that migrate through the 
scaffolds [95].  

To our knowledge, there are only a few studies on the permeability assessment/evaluation of porous 
bioceramic scaffolds including both numerical modeling [147] and experimental determination of 
permeability constants [95,145,148,149]. In a recent study on bioactive glass-ceramic scaffolds 

Bone 

fcc scaffold Glass-ceramic 
scaffold (45S5) 
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(porosity: 90–95%), Ochoa et al. [95] using deionized water as working fluid measured an average 
permeability constant of 1.96 × 10−9 m2. This value is close to reported experimental data for bovine  
(k = 2 × 10−9–9.5 × 10−9 m2, [150]) and human trabecular bone (k = 5.1 × 10−9–7.2 × 10−9 m2, [151]), 
confirming that the fabricated scaffolds had transport properties as well as pore structure close to 
trabecular bone. 

Figure 10. Basal studies investigating cortical and cancellous bone have resulted in 
information on the effect of trabecular architecture, mineral distribution, and bone 
remodeling on bone strength and stiffness. As the resolution of clinical imaging techniques 
and data extraction techniques improve, this information will gradually become available 
directly from clinical data. Reprinted from ref. [156], with permission of Springer. 

 
 
In this context, it has to be pointed out that the intrinsic permeability is a function of pore 

morphology (e.g., interconnection, shape and size of pores), as well as overall porosity [95]. This fact 
implies that scaffolds of the same porosity might have different values in the intrinsic permeability due 
to differences of the microstructural design of the pore structure and morphology. However, for 
scaffolds showing a regular microstructure over a wide range of porosities, the permeability has shown 
to be proportional to the third power of porosity [141]. However, with increasing porosity, the 
apparent scaffold stiffness and strength decrease [141] (Figure 7, Figure 9). Another point of interest 
related to the intrinsic scaffold permeability is the attachment and migration of cells to the scaffold 
surface. This mechanism seems to be dependent on both the bulk biomaterial stiffness [152] and the 
available specific surface area. The specific surface is not directly related to the permeability although 
it is influenced by permeability since the specific surface is a function of the micro-structural design of 
the scaffold and porosity, which determine the overall permeability [95]. As we have discussed above, 
with higher porosities the permeability of scaffolds increases, whereas the stiffness and specific 
surface area decrease. Therefore, depending on the particular application, a compromise has to be 
made in scaffold porosity design. 

For human bone, the microstructure–property relationship as well as the relative importance of bone 
mineral density and bone architecture in the etiology of fractures have poorly been understood and 
largely unexplored [128,153-156]. Functional micro-imaging at the interface of mechanics and biology 
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(IGFA) is increasingly becoming a powerful technique to gain insights into the fracture mechanisms of 
bone. So far, studies have shown that bone strength and stiffness depend strongly on bone mass, but 
they also depend on the morphometry and micro-architecture of cortical and cancellous bone (e.g., 
shape, thickness, spacing of trabeculae). All these aspects differ between individuals and between 
anatomic sites [156]. For completeness of the treatment of this topic in this review, Figure 10 shows 
influencing factors which determine the strength and fracture risk of human bone.  

In addition to providing excellent in vitro bioactivity [14,43,94,109,110,115], cell biology  
behavior [15,105,114,118,119] and favorable mechanical properties [99,102,105], bioactive glass-
ceramic scaffolds have shown superior in vivo behavior (e.g., bone formation, mineralization, higher 
interfacial strength between implant and bone) compared to the glass in particulate form [113] or 
compared to other bioactive materials (HA, tricalcium phosphate) [52].  

In a pilot study, Moimas et al. [113] created cortical holes in the tibia of rabbits and filled the 
cavities with bioactive glass fibrous scaffolds as well as with 45S5 Bioglass® particles (PerioGlas®). 
After 6 months of implantation, the histology showed that three-dimensional implants were more 
effective than PerioGlas® particles in helping new bone formation and remodeling (Figure 11). 
Tomographic analysis of the negative control (empty defects) and of the filled defects provided 
evidence of the superiority of the empty defect as regards cortical bone formation. However, filling 
using the three-dimensional constructs aided trabecular bone formation also in areas in which bone 
was not naturally present. In a similar in vivo study using a rabbit calvarial bone model, San Miguel  
et al. [124] reported superior osteoconductive behavior (i.e., significantly higher bone formation, bone 
deposition) of SBF-pretreated scaffolds (BG fiber constructs) compared with non-treated porous BG 
scaffolds, bioactive glass granules (PerioGlas®) and empty bone defects.  

Figure 11. Optical micrograph from histological sections of tibial bone defects after 6 
months of implantation of bioactive glass based materials: (a) The histological section of a 
defect filled with glass fiber scaffold (porosity of 55–60%) shows regenerated cortical 
bone in the form of mature bony lamellar structure. A bone regeneration lacuna can be 
identified in the centre of the section and it appears to be free from glass remnants. (b) The 
histological section of a defect filled with PerioGlas® (particles) shows mature cortical 
bone with non-homogenous structure. Some regeneration lacunae with fragments of glass 
are also present. Reprinted from ref. [113] with permission from Elsevier. 
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3.2. Bioactive Glass containing Composite Scaffolds 

As discussed in detail above, depending on bioactive glass composition, fabrication method and 
porosity, a large range of compressive strength values has been reported (0.3–150 MPa) (Figure 7). 
There is a clear tendency towards lower mechanical strength with increasing porosity, so that a 
compromise between porosity and mechanical strength has to be made for the particular bone TE 
application. Most of the prepared glass-ceramic scaffolds in the presented studies reviewed here 
exhibited a suitable interconnected macroporous network and yielded compression strengths > 2 MPa, 
being in the range of the compression strength of cancellous bone (Table 2, Figure 7). They therefore 
can match the criterion in terms of compressive strength, but load bearing bone defect sites are usually 
under cyclic loading and as the scaffolds are made from porous glass they are normally inherently 
brittle and have poor tensile strength (Table 2).  

Fracture toughness values in the range reported for cortical bone (2–12 MPa·m1/2) are required for 
load-bearing applications [70] and therefore toughness must be introduced into this type of scaffolds, 
which can be achieved by producing composites [10]. Polymer/bioceramic composite scaffolds 
represent a convenient alternative due to the possibility to tailor their various properties  
(e.g., mechanical and structural behavior, degradation kinetics and bioactivity) [157]. Composites 
made of polymers and bioceramics combine the advantages of their singular components [98]. 
Polymers exhibit generally high ductility, toughness, favorable formability as well as processibility 
and plasticity. The glass or glass-ceramic phase adds stiffness and adequate mechanical strength to the 
composite. In particular, composites based on biodegradable polymers are being increasingly studied 
as bone TE materials because this particular combination does not require a revision surgery for their 
removal as newly formed bone gradually substitutes the implanted scaffold during degradation [42,81]. 
However, perhaps the most clinically successful and commercially available bioactive composite on 
the market is non biodegradable, e.g., it is based on HA and polyethylene [8,158]. Much current 
research is therefore focused on the fabrication of bioactive composite materials, as both solid and 
porous systems with the bioactive phase incorporated either as filler or coating (or both) into the 
bioresorbable polymer matrix (Figure 12, Table 3). Effort is devoted in particular to the development 
of porous, high-strength composite structures for the regeneration of human bone at load-bearing sites. 
A comprehensive general review on bone TE scaffolds based on composites with inorganic bioactive 
fillers has been published by Rezwan et al. [37]. The state of knowledge on polymer-bioceramic 
composites with focus on polymer coatings and interpenetrating polymer-bioceramic structures for 
bone TE has recently been summarized by Yunos et al. [77]. 
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Figure 12. Schematic diagram showing the types of synthetic bioactive and biodegradable 
polymer composite scaffolds for bone tissue engineering applications (modified after 
reference [81]).  
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In 2003, Boccaccini and Maquet [42] reported for the first time on the successful fabrication of 
porous foam-like bioactive glass containing poly(lactide-co-glycolide) (PLGA) composites, which 
exhibited well-defined, oriented and interconnected porosity. Since then, many studies have been 
carried out to optimize and investigate bone TE composite scaffolds concerning material 
combinations, bioactive properties, degradation characteristics [161,164,165,168], in vitro  
[47,161-163,169] and in vivo behavior [47,164], as well as mechanical properties [50,81,160].  

In particular, with regard to their mechanical properties in comparison to human bone, porous 
polymer/ceramic (glass) composites scaffolds have revealed insufficient mechanical integrity [37]. So 
far, the mechanical strength of most of today’s available porous polymer/BG composite scaffolds is 
inadequate for bone substitution because they are at least one order of magnitude weaker than natural 
cancellous bone and orders of magnitude weaker than cortical bone (Figure 13). Moreover there is still 
limited understanding on how microstructure features (e.g., geometry of struts, pore size distribution, 
pore orientation, interconnectivity, morphology and distribution of the BG filler) affect the scaffold 
mechanical response and its functional performance [143]. In addition, insufficient particle-matrix 
bonding is considered a possible reason for the low mechanical properties of these composites. With 
regard to the latter, two key issues have to be solved to effectively improve the material properties of 
matrices by adding bioactive glass particles as filler: interfacial bonding and the proper, homogeneous 
dispersion of the individual particles in the matrix (e.g., by particle surface functionalization). 
According to the concepts of the composites theory [176], load transfer at the filler  
(i.e., BG particles)/matrix interface is key to achieve strengthening and stiffening, which depends on 
the quality of interfacial bonding between the two phases (filler and matrix). Strong interfacial bonding 
is therefore a significant condition for improving the mechanical properties of biodegradable polymer 
composite scaffolds containing BG fillers. 
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Table 3. Overview on studies performed on BG containing composite scaffolds for bone 
TE. Key: PDLLA, poly(D, L lactide); P(3HB), poly3-hydroxybutyrate), P(CL/DLLA), 
poly(ε-caprolactone/D, L lactide); PLGA, poly(lactic-co-glycolic acid); PDLG, poly(D, L 
lactide-co-glycolide); PLA, poly(L lactide); S53P4, 53 wt % SiO2, 23 wt % Na2O, 20 wt % 
CaO, 4 wt % P2O5; m-BG, micron-sized bioactive glass; n-BG, nano-sized bioactive glass. 
ST/PL, sugar template/particulate leaching; TIPS, thermally induced phase separation. 

Bioactive 
glass 

wt % Particle size Matrix 
Fabrication 
technique/process 

Ref. 

45S5 m-BG 5, 29, 40 < 40 μm PDLLA 
Co-extrusion+compaction; 

TIPS 
[159] 

45S5 m-BG 4.8, 28.6 5–20 μm PDLLA TIPS [160] 

45S5 m-BG 10 < 5 μm P(3HB) ST/PL [47] 

45S5 n-BG 10 30 nm P(3HB) ST/PL [47] 

S53P4 m-BG 20, 50 90–315 µm P(CL/DLLA) ST/PL [161] 

S53P4 m-BG 30 < 45 μm P(CL/DLLA) ST/PL [162] 

45S5 m-BG 10, 30 < 40 μm PLGA Microsphere emulsification [163] 

45S5 m-BG 10 4 μm PDLG TIPS [164] 

45S5 m-BG 25, 50 50–63 µm PLA Freeze extraction technique [165] 

45S5 m-BG 5, 40 > 90 μm PDLLA Solvent casting [166] 

45S5 m-BG 10, 25, 50 < 5 μm PDLLA TIPS [167] 

45S5 m-BG 10, 25, 50 < 5 μm PLGA TIPS [167] 

45S5 m-BG 5, 10, 40 < 5 μm PDLLA TIPS [168] 

45S5 m-BG 5, 40 < 5 μm PDLLA TIPS [169] 

45S5 m-BG 10, 25, 50 < 5 μm PLGA TIPS [42] 

45S5 m-BG 25 < 40 μm PLGA Solvent casting [50] 

45S5 m-BG 20 < 10 μm P(3HB) Solvent casting [170] 

45S5 m-BG 20 < 5 μm P(3HB) Solvent casting [171] 

45S5 n-BG 10, 20 29 nm P(3HB) Solvent casting [46] 

45S5 m-BG 10, 20, 30 < 5 μm P(3HB) Solvent casting [48] 

45S5 n-BG 10, 20, 30 30–50 nm P(3HB) Solvent casting [48] 

45S5 m-BG 5, 30 5 μm PDLLA TIPS [172] 

45S5 m-BG 5, 30 5 μm PDLLA TIPS [173] 

45S5 m-BG 5, 40 < 5 μm PDLLA TIPS [174] 

SiO2-3CaO-

P2O5-MgO 
10, 30, 50 10 μm PLA TIPS [175] 
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Figure 13. Elastic modulus vs. compressive strength values of biodegradable polymers, 
bioactive ceramics and composites after ref. [37]. Porosities of scaffolds are considered to 
be >75% and mostly interconnected. Dense polymers can match cancellous bone 
properties and approach cortical bone properties. Moreover, the bioactive ceramics region 
is close to cortical bone. Porous scaffolds, however, are at least one order of magnitude 
weaker than cancellous bone and orders of magnitude weaker than cortical bone. Figure 
reproduced with permission of Elsevier.  

 
 
Blaker et al. [160] have developed highly porous (porosity ≈ 94%) poly(D, L lactide) 

(PDLLA)/Bioglass® foams using thermally induced phase separation (TIPS). The scaffolds exhibited a 
bimodal and anisotropic pore structure (Figure 14), with tubular micropores of ≈ 100 µm in diameter, 
and with interconnected micro-pores of ≈ 50–10 μm, along with anisotropic mechanical properties. 
With respect to the direction of the tubular pores, similar axial yield strengths of about 0.08 MPa were 
found for all composites (0, 4.8, 28.6 wt % Bioglass®), whereas a higher axial compressive modulus 
(1.2 MPa) was obtained for 28.6 wt % Bioglass® containing scaffolds compared to the pure PDLLA 
constructs (0.89 MPa). These yield strength values reported in ref. [160] are considerably lower than 
those for cancellous bone (yield strength: 5.7–356 MPa [127,128]), so that a further improvement is 
necessary to increase the mechanical performance towards the levels required for bone TE 
applications. The compressive moduli are in the range of those determined for trabecular bone, but 
lower than those for cortical bone (see Table 2.) 

Other authors found, however, considerably higher mechanical strength for their composite 
scaffolds [50,167]. Maquet et al. [167], for example, have reported highly porous (porosity > 90%) 
PDLLA and PLGA scaffolds, containing 50 wt % Bioglass® exhibiting compressive moduli of about 
21 MPa and 26 MPa, respectively, being a factor of 1.5–2.5 higher than those for the pure polymer 
scaffolds. Lu et al. [50] determined for PLGA scaffolds incorporated with 25 wt % Bioglass®  
(porosity = 43%, pore diameter = 89 µm) a compressive modulus of about 51 MPa, and compressive 
strength of about 0.42 MPa, which is in the range of values reported for trabecular bone (Table 2), 
however at the cost of porosity (43%). 
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Figure 14. SEM images of a PDLLA/Bioglass® scaffold fabricated by TIPS showing the 
typical homogeneous, tubular regions of (a) pure PDLLA foam, (b) PDLLA / 4.8 wt % 
Bioglass® foam, (c) PDLLA / 28.6 wt % Bioglass® foam [160]. Figure reprinted with 
permission of Elsevier.  

 
 
Interestingly, numerical analyses presented in ref. [160] showed that the compressive modulus of 

the composite foams can be well predicted by micromechanic theories based on the combination of the 
Ishai-Cohen [177] and Gibson-Ashby models [178]. The modulus-density (volume fraction) 
relationship was characterized by a power-law function with exponents between 2 and 3. This is close 
to the exponents found for similar relationships valid for human bone (2–3.2) [138,139], and to that of 
an ideal isotropic open-cell porous structure with pores in cubic arrays, which is characterized by an 
exponent of two [138,178]. On the basis of cellular solids models, this finding suggests that for the 
porous polymer/BG scaffolds prepared by TIPS [160], struts bending is the dominant mode of linear 
elastic deformation similar to the trabeculae bending proposed for cancellous bone [138]. 

Extensive work has been also carried out to investigate the cellular response to bioactive glass 
containing composites concerning composition, particle concentration and particle size effect in vitro 
and in vivo [46-48,161-164,166,169-171,174]. For example, Lu et al. [179] showed that for 
PLGA/bioactive glass films (0, 10, 25, 50 wt %), the growth, mineralization and differentiation of 
human osteoblast-like SaOS-2 cells (Figure 15), as well as the kinetics of Ca–P layer formation and 
the resulting Ca–P chemistry were dependent on BG content. The 10 wt % and 25 wt % BG composite 
supported greater osteoblast growth and differentiation compared to the 50 wt % BG group.  

100 μm 
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Figure 15. Effect of composition on the growth of osteoblast-like (human osteosarcoma 
SaOS-2) cells on bioactive glass-PLGA composites (a–c). SEM image in (a) shows lower 
amount of cells on the pure PLGA surface compared to the two bioactive glass containing 
composite films (b, c). Alizarin red staining after 28 days in culture (d-f) indicated the 
positive effect of bioactive glass content on matrix mineralization. The amount of 
mineralization was significantly higher on the 10 wt % bioactive glass composite (e), 
likely a combination of cell-mediated mineralization and surface Ca–P formation on the 
PLGA-bioactive glass composite. Mineralization on sample surfaces: (d) 0 wt %, (e)  
10 wt %, (f) 50 wt % bioactive glass containing PLGA composites. Images adapted from 
Lu et al. [179]. Figure published with permission of Elsevier.  

PLGA/0 wt % BG            PLGA/10 wt % BG  PLGA/50 wt % BG 

 

 
 
Such bioactive glass dose-dependent cell proliferation and ALP synthesis were also reported by 

Yang et al. [174], Verrier et al. [169] and Tsigkou et al. [166]. Tsigkou et al. [166] observed that 
human fetal osteoblasts were less spread and elongated on PDLLA and PDLLA/5 wt % BG, whereas 
cells on PDLLA/40 wt % BG were elongated but with multiple protrusions spreading over the BG 
particles. However, when differentiation and maturation of fetal osteoblasts were examined, 
incorporation of 45S5 Bioglass® particles within the PDLLA matrix was found to significantly 
enhance ALP and osteocalcin protein synthesis compared to PDLLA alone. Alizarin red staining 
indicated extracellular matrix mineralization on 5 wt % and 40 wt % BG containing films, with 
significantly more bone nodules formed than on neat PDLLA films. Yang et al. [174] pre-treated 45S5 
BG containing (0, 5, 40 wt %) PDLLA scaffolds with serum and found in human bone marrow 
mesenchymal stem cells a significant increase in ALP activity in 5 wt % Bioglass® composites relative 
to the 0 and 40 wt % Bioglass® groups, whereas in vivo studies indicated significant new bone 
formation throughout all the scaffolds. The results of these studies [166,169,174,179] confirmed the 
osteogenic potential of BG containing scaffolds and suggest that for composites there is a critical 
threshold range of BG content (5–40 wt %) which is optimal for osteoblast growth and Ca–P 
formation. This finding might have also consequences for the vascularization and angiogenic 
properties of composite scaffolds, as discussed in section §4. 

a b c 
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To our knowledge, Misra et al. [48] were the first who incorporated bioactive glass nanoparticles 
(30–50 nm) of composition matching the 45S5 BG composition  into degradable matrices (in their case 
P(3HB) was used) and compared their thermal, mechanical, microstructural, bioactive and cell 
biological properties with those of conventional, micron-sized BG (5 µm) containing composites. The 
addition of bioactive glass nanoparticles (n-BG) enhanced the Young’s modulus by 50–100% to values 
of 1.2 and 1.6 GPa, compared to both pure polymer film and the corresponding micro-sized BG  
(m-BG) containing films (10, 20, 30 wt %). The nanostructured surface topography induced by n-BG 
considerably improved protein adsorption on the n-BG composites compared to the unfilled polymer 
and the m-BG composites, whereas no substantial differences in the proliferation of MG-63 osteoblasts 
were observed between the different surfaces. The results of this investigation confirmed that the 
addition of nanosized bioactive glass particles had a more significant effect on the mechanical and 
structural properties of a composite system in comparison with microparticles, as well as enhancing 
protein adsorption, two desirable effects for the application of composites in bone tissue engineering.  

Tailoring porosity (e.g., nano or mesoporosity [64,180]) and surface topography, e.g., by the 
incorporation of nanophase bioactive glass particles into degradable polymer matrices, can favor 
protein adsorption and cellular interactions [48,171], as well as improve the bioactive  
behavior [46,170], antimicrobial/antibacterial [181-183] and mechanical properties [48] of bioactive 
glass and related (composite) scaffolds. For example, relatively high mechanical properties 
(compressive strength, Young’s modulus) have been found for polymer matrices incorporating surface 
functionalized BG nanoparticles prepared from sol-gel routes [49,180]. A further literature overview 
on sol-gel bioactive glasses and an analysis of functionalization approaches for BG nanoparticles for 
development of biocomposite materials is however beyond the scope of the present review. Recent key 
papers on this topic [184-190] and an informative review highlighting the potential of the sol–gel 
technology in the research field of bioactive materials for biomedical applications can be found in  
the literature [34]. 

4. Ion Release from Silicate Scaffolds: Effects on Osteogenesis and Angiogenesis 

4.1. Ion Dissolution from Bioactive Glasses: Genetic Control of Osteoblast Cell Cycle and 
Osteogenesis 

For many years, it was assumed that formation of a biologically active HCA surface reaction layer 
was the critical requirement for bioactive behavior [5,8,11]. Today, the formation of a surface HCA 
layer is considered to be a useful but not the critical stage of reaction for bone regeneration. Key 
mechanisms leading to enhanced new bone growth are now known to be related to the controlled 
release of ionic dissolution products from the degrading bioactive glass, especially critical 
concentrations of biologically active, soluble silica and calcium ions [8,191]. Recent studies have 
shown that bioactive (partially) resorbable glasses and their ionic dissolution products enhance osteo-
genesis by regulating osteoblast proliferation, differentiation, and gene expression [7,41,51,191-198].  

Bioactive glass is thus proposed to determine bone cell gene expression by four main mechanisms: 
(1) surface chemistry, (2) topography, (3) rate and type of dissolution ions released and (4) shear stress 
at scaffold/bone interfaces (mechanical properties) [198] (Figure 16). 
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Figure 16. Genetic expression mechanisms in osteoblasts provoked by ion dissolution 
products of bioactive glasses (adapted from reference [198]).  
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Gene activation by controlled ion release provides the conceptual basis for the molecular design of 

so-called third generation biomaterials [1], which are optimized for in situ tissue regeneration. In the 
case of silicate bioactive glasses, the mechanism for in situ tissue regeneration involves up-regulation 
of seven families of genes that control the osteoblast cell cycle, mitosis and differentiation giving rise 
to rapid bone regeneration [7,51,191,198]. In order to regenerate bone, it is essential for 
osteoprogenitor cells to undergo cell division (mitosis) and to receive the correct chemical stimuli 
from their local environment that instruct them to enter the active segments of the cell cycle [8,41]. 
Sun et al. [196] showed that 45S5 Bioglass® promotes human osteoblast proliferation by reducing the 
growth cycle to pass through G1 and S phase and then enter G2 quickly. In the presence of critical 
concentrations of Si and Ca ions, within 48 h osteoblasts that are capable of differentiating into a 
mature osteocyte phenotype begin to proliferate and regenerate new bone. Moreover osteoblasts that 
are not in the correct phase of the cell cycle and unable to proceed towards differentiation are switched 
into apoptosis by the ionic dissolution products [36,196].  

The release rate and therapeutic levels of ions, which are both determined by concentration and 
particle size of BG (in case of composite materials) or by scaffold morphology and porosity, as well as 
the relative contribution of specific ion dissolution products from bioactive glasses or Si-substituted 
calcium phosphates [199] to osteogenesis and angiogenesis have been controversially debated in the 
literature [53,54]. It has been hypothesized, but to the authors’ knowledge not proven as yet, that the 
high silicon concentration from bioactive glass could be a major factor in stimulating osteoblasts to 
grow fast, which might be effective for melt-derived bioactive glasses [7,36,196]. However,  
Bielby et al. [192] found no significant differences in the proliferation of human primary osteoblasts 
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grown in conditioned cell culture media containing similar Ca, P, and Na ions but different Si ion 
concentrations (164 and 203 ppm) released from 58S sol-gel derived glass. Clearly, more fundamental 
investigations and further studies are required to gain quantitative knowledge and to confirm the 
conditions and the mechanisms leading to glass degradation and ion dissolution products affecting 
gene expression in bone cells. Recent findings also indicate that controlled release of low 
concentrations of ionic dissolution products from bioactive glasses can induce angiogenesis  
(as discussed below: §4.3 and 4.4). Thus understanding the role of ions released from bioactive glasses 
in given concentrations and release rates will lead to the design of gene activating glasses 
[7,41,51,193] and bioactive glass (composite) scaffolds with osteogenic and angiogenic properties 
[53,56] offering increased potential for the regeneration of complex tissue structure defects at soft-hard 
tissue interfaces (e.g., tendon-bone interface).  

4.2. The Role of Angiogenesis in Bone Regeneration 

The lack of a functional microvasculature connected to the host blood supply has been identified as 
the culprit for implant failure and is currently acknowledged as the major challenge in tissue 
engineering [200]. Bone is a highly vascularized tissue reliant on the close spatial and temporal 
connection between blood vessels and bone cells to maintain skeletal integrity. Angiogenesis (or  
neo-vascularization) plays therefore a key role in skeletal development and bone regeneration [100]. 
However, unlike organ transplants where there is a preexisting vascular supply, man-made bone TE 
scaffolds are devoid of vasculature [100]. In addition to the development of pre-vascularized scaffolds 
in vitro, one particular approach being suggested in the field of bioactive glass scaffolds is the 
controlled release of gene activating ions from bioactive glasses that could promote angiogenesis and 
bone morphogenesis in vivo [53,100]. Because recent studies have shown that the combination of 
angiogenic and osteogenic factors can stimulate bone healing and regeneration [201,202], the design of 
advanced bone TE scaffolds with controlled composition of bioactive glass and scaffold 
microstructure, as well as with controlled local ion release kinetics from biodegradable materials is 
considered a promising strategy to enhance the repair mechanism of critical sized bone defects. The 
role of angiogenic and osteogenic factors in the adaptive response and interaction of osteoblasts and 
endothelial cells during the processes of bone development and bone repair has been highlighted in a 
review by Kanczler and Oreffo [100]. While a further analysis of the cell biology and in vivo aspects 
of this topic is beyond the scope of the present review, the next section summarizes the state of the art 
in the field of angiogenic effects of bioactive glasses, a topic of increasing research interest [47]. 

4.3. Effect of Bioactive Glass on Angiogenesis 

A detailed overview on studies investigating bioactive glasses with respect to angiogenesis has been 
recently published by Gorustovich et al. [53]. Cell culture studies demonstrated the pro-angiogenic 
potential of BG over a limited range of BG concentrations implying that dose-dependent effects are 
also involved in angiogenesis similar to those shown for osteogenic differentiation (ALP synthesis) 
and cell behavior (adhesion, growth; see §3.2) [166,169,174,179]. Experiments have shown that 
bioactive glass stimulates the secretion of angiogenic growth factors in fibroblasts [54,164,203-205], 
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the proliferation of endothelial cells [29,54,56,204,206], and the formation of endothelial  
tubules [54,56], as discussed next.  

Human fibroblasts in direct contact with 45S5 Bioglass® coatings (0.0625, 0.3125, 0.625 mg/cm2, 
particle size < 5 μm) have shown to secrete significantly higher vascular endothelial growth factor 
(VEGF) compared to uncoated surfaces [54]. Similar results were found for human microvascular 
endothelial cells attached to BG coatings (≈0.06, 0.6 mg/cm2) [56]. In their study, Leu et al. have 
shown that BG has a biphasic nature in that it possesses proangiogenic potential over a limited range 
of concentrations and greater osteogenic potential at higher concentrations [56]. 

In the case of BG-filled composites, filler weight percentages of 0.0625, 0.625 and 6.25 wt % [55], 
as well as of 1 and 10 wt % [164] have shown angiogenic stimuli in human CCD-18Co fibroblasts and 
mouse (L929) fibroblasts, respectively. Day et al. [55] found that L929 fibroblasts cultured on the 
surface of PLGA/Bioglass® discs with 0.01%, 0.1%, and 1% (w/v) 45S5 Bioglass® particles  
(size < 5 μm), equivalent to 0.0625–6.25 wt %, secreted increased amounts of VEGF compared with 
cells cultured on PLGA alone. In a related study, Keshaw et al. [164] recently reported that 
microporous spheres of PLGA containing 10 wt % 45S5 Bioglass® particles (mean particle size = 4 µm) 
stimulated a significant increase in VEGF secretion from CCD-18Co fibroblasts consistently over a 
10-day period compared with neat PLGA microporous spheres. Moreover, murine preosteoblastic cells 
(MC3T3-E1) cultured on porous 3D PLGA scaffolds have shown enhanced angiogenic expression 
(VEGF secretion, VEGF expression) in comparison to cells cultured on two-dimensional PLGA films [207]. 
A “dimension response element” has been suggested to be involved in the regulation of osteogenic and 
angiogenic gene expression [207], which supports the hypothesis formulated above that the geometry 
and morphology of the scaffold are important factors controlling the mechanisms  
of angiogenesis. 

In vivo results have confirmed that BG is able to stimulate and promote neo-vascularization 
[52,55,120-122,164,203,206,208-211]. For example, Leu et al. [211] filled calvarial defects in Sprague-
Dawley rats with 45S5 Bioglass® impregnated (1.2 mg) collagen sponges (volume = 0.05 cm3) and 
unloaded, empty sponge as a control. After two weeks of implantation, histological analyses of calvaria 
demonstrated significantly greater neo-vascularisation and vascular density within defects treated with 
45S5 BG (35 ± 16 vessels/mm2) than with collagen controls alone (12 ± 2 vessels/mm2) (Figure 17). 

The angiogenic effect of bioactive glass was, however, much more pronounced in bioactive  
glass-based scaffolds (i.e., loaded sponges [56], discs [208], meshes [203], tubes [209] and porous 
glass-ceramics scaffolds [52,121,122]) than in composite structures incorporating and fully embedding 
bioactive glass particles (e.g., microsphere composites [164], or foams [55,210]). However, in vivo 
results so far are inconsistent with in vitro results, and provide an incomplete picture concerning the 
suggested angiogenic potential.  

Keshaw et al. [164] reported that microporous spheres of PLGA containing 10 wt % 45S5 
Bioglass® particles stimulated in vitro a prolonged and significant increase in VEGF compared to pure 
polymer constructs but observed in vivo for the same scaffolds no significant difference in the number 
of blood vessels infiltrating the voids between microporous spheres. The authors concluded that the 
presence of well-vascularized voids inside the neat PLGA microporous spheres suggests either that the 
inclusion of an angiogenic stimulus is not necessary to promote scaffold neo-vascularization at the 
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implant site, or that the normal wound healing response has masked the angiogenic stimulus initiated 
by bioactive glass.  

Figure 17. Two-week decalcified tissues stained with hematoxylin/eosin and treated with 
BG-loaded collagen sponge (A) or collagen control (B) Arrows denote blood vessels. 
Reprinted from ref. [211] with permission of Mary Ann Liebert. 

    
 
From the few studies which investigated the angiogenic potential of BG-filled composites with 

filler contents of 0.625 wt % [55], 10 wt % [164], and 30 wt % [210], only Day et al. [55] found 
favorable angiogenic properties (i.e., greater tissue infiltration and higher blood vessel formation) for 
compression-molded BG composites compared to the corresponding unfilled polymer scaffolds. 
Interestingly, the same authors found no difference in the number of formed blood vessels for scaffolds 
prepared by TIPS technology. This result indicates that the geometry and morphology (pore 
orientation, pore size, interconnectivity) of the scaffold affect the angiogenic response of the construct 
in vivo [53-55].  

5. Conclusions and Future Work 

One of the most significant challenges in bone tissue engineering remains the fabrication of 
scaffolds exhibiting mechanical, structural, surface-chemical, topographical and biological properties 
suitable to regenerate large (critical size) cortical bone defects and capable of functioning under 
relevant loads. Although a number of bioactive glass and glass-ceramic scaffolds with favorable 
properties are available as comprehensively discussed in this review, several issues need to be 
addressed prior to clinical application, such as mechanical reliability of scaffolds, tailored 
degradability, and induction of vascularization. In bone TE, the major challenge remains the proper 
cellularization and controlled vascularization of 3D scaffolds. For successful bone regeneration, there 
is a need for functional, mature vessels promoting functionality to the intrinsically “inactive”  
man-made TE constructs. In angiogenesis, the development of mature blood vessels is necessary 
because these have the ability to differentiate into arteries and veins. One alternative to accelerate 
osteogenesis and angiogenesis is the incorporation of active biomolecules such as growth factors into 
the scaffold structure [206,212-216]. However, short half-life and uncontrolled release of growth 
factors from scaffolds associated with possible toxicity effects are a problem or limitation of current 
drug delivery scaffolds. The use of bioactive glass as filler in degradable matrices might offer a 

  100 μm   100 μm 
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promising strategy for the regulated in situ secretion/expression of angiogenic growth factors  
(e.g., VEGF) and osteogenic markers (e.g., ALP) in therapeutic levels leading to successful 
vascularization and bone formation (mineralization) of TE scaffolds.  

Further improvement of scaffold function is related to surface modification, e.g., through the 
control of specific/non-specific protein adsorption [217], plasma treatment [218,219] or enzyme 
grafting [220], to provide biofunctional groups for cell attachment and response, thus making the 
scaffold more surface compatible. There is still limited understanding regarding the long-term in vivo 
behavior of porous 3D silicate scaffolds and polymer/BG composite scaffolds, particularly regarding 
the degradation, ion release kinetics and angiogenic stimulus of these highly porous systems. In this 
context, it has to be pointed out that the influence of sterilization on the cytotoxic, mechanical (e.g., 
compressive strength, fracture toughness) and physical properties (glass transition temperature, 
crystallinity) of biodegradable composites has often been overlooked in the past. This is particularly 
important for scaffolds incorporating a polymeric phase. Sterilization issues have to be considered and 
monitored in parallel to the design and development stages of the scaffolds because standard medical 
product sterilization techniques (gamma irradiation, ethylene oxide gas exposure) have shown to 
reduce molecular weight of resorbable polymers by a factor of 2–3 [221-223].  

Moreover, more focus on in vivo studies is inevitable and there is need for more research on the 
application of scaffolds in realistic biological systems. Engineered scaffolds from silicate amorphous 
or partially crystallized systems, combined with biodegradable polymers, shall continue being 
improved and optimized. These scaffolds may constitute the “scaffolds of choice” in future 
developments and their combination with stem cells is of high interest [62,224-226]. The use of 
bioactive glass and glass ceramic nanoparticles [10,44] and carbon nanotubes (CNTs) [89,227,228] as 
well as their combination with bioresorbable polymers [46-48,89,170,229] may also improve the 
environment to enhance cell attachment, proliferation, angiogenic and osteogenic properties as well as 
adding extra functionalities to the base scaffold. However, possible toxicity issues associated with 
nanoparticles and CNTs will have to be comprehensively investigated [89].  
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