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Abstract: Olefin metathesis using ruthenium carbene complexes is a useful method in 
synthetic organic chemistry. Enyne metathesis is also catalyzed by these complexes and 
various carbo- and heterocycles could be synthesized from the corresponding enynes. 
Dienyne metathesis, cross enyne metathesis and ring-opening enyne metathesis have been 
further developed. Various complicated compounds, such as the natural products and the 
related biologically active substances, could be synthesized using these metatheses reactions. 
Skeletal reorganization using the transition metals and metallotropic rearrangement are also 
discussed. 

Keywords: enyne metathesis; ring-closing enyne metathesis; dienyne metathesis; cross 
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Introduction 

Since the discovery of molybdenum and ruthenium carbene complexes by Schrock and Grubbs in 
1990 [1] and 1992 [2], synthetic organic chemistry has made rapid progress using metathesis reactions. 
Grubbs et al. found that molybdenum carbene complex 1a was effective for olefin metathesis [3]. They 
then synthesized ruthenium-carbene complex 1b for olefin metathesis [2], and synthesized carbo- and 
heterocyclic compounds using ring-closing olefin metathesis [4–6]. In 1995, Grubbs found that 
ruthenium-carbene complex 1c has the same reactivity as that of 1b [7], and it is now commercially 
available. Complexes 1b and 1c are stable and easy to handle (Figure 1). Thus, many researchers were 
able to use these catalysts, and various cyclic compounds were synthesized from dienes using 
ring-closing metathesis (RCM).  

Figure 1. Ruthenium catalysts for alkene metathesis. 
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Figure 2. Ruthemium catalysts for alkene metathesis. 
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In 1999, Herrmann [8–9], Nolan [10–11] and Grubbs [12–16] found novel ruthenium-carbene 
complexes 1d-1g having a heterocyclic carbene as a ligand. Since these catalysts, called as the 
second-generation ruthenium carbene complex, are very effective for olefin metathesis compared with 
1b and 1c [14], olefin metathesis has been further progressed by use of these catalysts. Furthermore, 
cross-metathesis (CM) of alkene and ring-opening metathesis (ROM) have been developed using these 
complexes. Later, many ruthenium carbene complexes 1h-k [17–22] having various ligands were 
synthesized (Figure 2). 

Metathesis of enynes having alkene and alkyne moieties in a molecule is an extremely interesting 
reaction [23–27]. In this reaction, the double bond of enyne 2 is cleaved and a carbon-carbon bond is 
formed between the double and triple bonds, and the cleaved alkylidene part of the double bond migrates 
onto the alkyne carbon to produce a cyclic compound 3 having a 1,3-diene moiety (Scheme 1). 

Scheme 1. Ring-opening enyne metathesis. 
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The first enyne metathesis was reported by Katz [28–30], who used a Fischer tungsten-carbene 
complex. Then Mori reported a chromium-catalyzed enyne metathesis [31–34]. It was later found that 
the ruthenium-carbene complex 1b or 1c was very effective for enyne metathesis [35–36]. The reaction 
would proceed via a [2+2] cycloaddition of a ruthenium-carbene complex with an alkyne part to produce 
ruthenacyclobutene 4, and ring-opening of this affords a ruthenium carbene complex 5, which reacts 
with an alkene part to produce ruthenacyclobutane 6, and ring-opening of this gives a cyclized 
compound 3 and a ruthenium-carbene complex is regenerated (Scheme 2, Route 1). In some cases, 
metathesis products via complexes 4’ were obtained. The other mechanism also considered involves at 
first reaction of the alkene part of enyne 2 with ruthenium carbene complex to afford a new ruthenium 
carbene complex 7. The latter species reacts with the alkyne part to produce ruthenacyclobutene 8 and its 
subsequent ring-opening gives ruthenium carbene 9, that undergoes intermolecular [2+2] cycloaddition 
with the alkene part of enyne 2 to produce ruthenacyclobutane 10. Ring-opening of this gives cyclic 
compound 3 and ruthenium carbene complex 7 is regenerated (Scheme 2, Route 2).  

Later, the detailed study on the reaction mechanism was shown by Lippstreu and Straub, who 
described that the reaction would proceeds via Route 2, and ruthenacyclobutene 4, generated from an 
alkyne part of enyne 2 and ruthenium carbene complex, do not exist as local minimum in the catalytic 
cycle [37].  

Using ruthenium carbene complexes 1b and 1c, various carbo- and heterocycles could be synthesized 
from the corresponding enynes [35–36]. Furthermore, dienyne metathesis, cross enyne metathesis and 
ring-opening enyne metathesis have been developed. As the results, the novel route for the synthesis of 
various complicated compounds, such as the natural products and the related biologically active 
substances, were pioneered. Skeletal reorganization using the transition metals and metallotropic 
rearrangement will be discussed. 
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Scheme 2. Ring-closing enyne metathesis. 
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1. Ring-Closing Enyne Metathesis (RCM) 

Mori reported the synthesis of heterocycles having a diene moiety using enyne metathesis [35–36]. 
Enynes 11 were treated with 1 mol % of Grubbs catalyst 1b at room temperature to afford heterocycles 
12 in high yields. Using this procedure, five- to nine-membered heterocycles could be synthesized 
(Scheme 3).  

Scheme 3. Synthesis of heterocycles using ruthenium catalyst. 
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In this reaction, enynes 11 (R = H), having a terminal alkyne, did not give a satisfactory result [38]. 
For example, RCM of enyne 11h afforded cyclic compound 12h in only 21% yield. It is reasoned that an 
alkene part in product 12h further reacts with ruthenium carbene methylidene complex 1l to afford 
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ruthenium carbene 14, which would be coordinated by the alkene part to produce 15. Thus, the catalytic 
activity would decrease (Scheme 4). In fact, when the reaction of 11h using 1c was carried out under 
ethylene gas, the catalytic activity was much larger to afford 12h in 90% yield, even with the use of  
1 mol % of the ruthenium catalyst 1c. The higher reactivity observed in enyne metathesis in the presence 
of ethylene gas has often been advantageous in applications to natural product synthesis. 

Scheme 4. Metathesis of enyne having terminal alkyne under ethylene gas. 
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When the second-generation ruthenium carbene complexes were used for enyne metathesis, 
unprecedented results were shown [39–40]. The reaction of enyne 16a or 16b was carried out using 5 
mol % of 1f to afford expected metathesis product 17a or 17b along with six-membered compound 18a 
or 18b. Use of other second-generation ruthenium carbene complex 1g to the reaction of 16a gave a 
similar result. Presumably, when ruthenium carbene methylidene complex 1l reacts with the alkyne 
moiety in 16, two regiochemically different pathways are possible (Scheme 5, path A and B). Each 
carbene complex 19 or 20 gives a different product 17 or 18, respectively. On the other hand, if 1l reacts 
with an alkene moiety (path A’), compound 17 is formed. In this case, the path B’ is a non-productive 
process. Thus, compound 18 should be formed via path B. However, it is not clear why two products 17 
and 18 were formed when the second-generation ruthenium carbene complexes were used. 

Recently, it was reported that cyclobutene derivative 22 could be synthesized from enyne 21 using 
ruthenium carbene complex 1g under microwave irradiation conditions with 58% yield (Scheme 6) [41]. 

Two synthetic methods of highly functionalized conjugated diene 26 using ring-closing enyne 
metathesis were reported (Scheme 7). The reaction of propargyl alcohol 23 and allylboronate 24 in the 
presence of 1c gave cyclic boronic ester 25a. In this reaction, enyne 27a should be formed as an 
intermediate. Treatment of cyclic boronic ester 25a with H2O2 in aqueous NaOH gave diol 26a [42–43]. 
Silicon-tethered ring closing enyne metathesis of 27b by ruthenium carbene catalyst 1c gave 25b, which 
was subjected to Tamao oxidation to afford diol 26b [44–45].  



Materials 2010, 3                 
           

2092

Scheme 5. Enyne metathesis using second generation ruthenium catalysts. 
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Scheme 6. 1,5-Enyne metathesis. 
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Scheme 7. Synthesis of functionalized diene. 
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Enyne 28a having a silyl ynol ether on the alkyne gave cyclic compound 29a having a silyl enol ether 
moiety, which was converted into 1-acetylcyclopentene 30a by desilylation. In a similar manner, enyne 
28b afforded bicyclic methyl ketone 29b in 68% yield after deprotection of the silyl group [46]. 
However, ynoate 28c and yne-phosphonate 28d did not give cyclized compounds. Ene-alkynyl ether 31a 
or 31b afforded cyclic enol ethers 32a or 32b in good to moderate yield (Scheme 8) [47].  

Scheme 8. Metathesis of ene-alkynyl ether. 

OTIPS

OTIPSO
O

H

H

R

OTIPS

O
O

H

H

O

60 °C, 15 min
98%

68%

28a 29a

28b 29b 28c

1c

28d

HF

CH3CN

O

30a

1. 1c

OPMP
H H

O
H

n
OPMP

H H

O
H

n

n=1
n=2

77%
20%

CH2Cl2

1c

2. TBAF

31a
31b

R=OEt
R=OPO(OEt)2

32a
32b  

 

RCM of ene-alkynyl amide 33a using 1g gave pyrrolidine derivative 34a, which afforded indole 
derivative 35a by Diels–Alder reaction [48–49]. In a similar manner, one-pot RCM of ene-alkynyl 
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amide 33b, a one carbon-elongated homolog, followed by Dield–Alder reaction, gave quinoline 
derivative 35b in a high yield (Scheme 9) [48–51]. 

Metathesis of enyne 36a containing conjugated ene-yne using ruthenium catalyst 1k gave 
cycloheptene derivative 37a having a triene unit. This reaction did not proceed by first or 
second-generation ruthenium catalyst 1c or 1g (Scheme 10) [52]. Enynes 36b and 36c having internal 
alkyne and diene afforded eight-membered ring compounds 37b and 37c in high yields [53]. 

The synthesis of substituted styrene 39 was achieved by ring-closing enyne metathesis (Scheme 11). 
As an application of this method, 1,1’-binaphthyl derivative 41 was prepared [54–55].  

Metathesis of allene-yne 42 using molybdenum catalyst 1a gave cyclic compound 43 having an 
allene moiety. RCM of 42-D gave 43-D, which indicates that the vinylallene skeleton was constructed by 
a metathesis-type reaction between the alkyne moiety and the proximal carbon-carbon double bond of 
the allene moiety (Scheme 12) [56]. 

Scheme 9. Ring-closing metathesis of ene-alkynyl amide. 
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Scheme 10. Reaction of enyne containing diene-yne. 
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Scheme 11. Synthesis of carbocyclic aromatic ring-closing metathesis. 
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Scheme 12. Ring-Closing Enyne Metathesis (RCM)  of allene-yne 
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Syntheses of Natural Products and Related Compounds Using Ring-Closing Enyne Metathesis (RCM) 

The first example of the total synthesis of a natural product using ring-closing enyne metathesis is the 
synthesis of (-)-stemoamide [57–58]. (-)-Pyroglutamic acid was converted into enyne 44 having an ester 
group on the alkyne, and RCM of enyne 44 was carried out in the presence of 4 mol % of 
ruthenium-carbene complex 1c to afford bicyclic compound 45 in 87% yield. Conversion of 45 into 46 
smoothly proceeded. From this compound 46, (-)-stemoamide could be synthesized (Scheme 13). 

Scheme 13. Total synthesis of (-)-stemoamide. 
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Carbacephem 49a and carbapenem 49b were synthesized from enynes 48a and 48b, which were 
prepared from 4-acetoxy-azetidinone 47. The yield of the latter compound 49b is lower compared with 
that of 49a because of the highly strained fused 4,5-membered ring system (Scheme 14) [59–60]. 

(±)-Differolide could be easily synthesized by enyne metathesis [61]. Enyne 50 was reacted with 1c 
to give lactone 51, which was spontaneously dimerized to afford (±)-differolide (Scheme 15). 

Scheme 14. Construction of carbacephem and carbepenem skeleton. 
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Scheme 15. Synthesis of (±)-differolide. 
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An enantioselective biomimetic synthesis of longithorone A was accomplished on the basis of the 
proposed biosynthesis [62]. Two [12]-paracyclophanes 52 and 53 were synthesized from common 
intermediate 54 by applying enyne metathesis macrocyclization in 42% and 31% yields, respectively. 
Intermolecular Diels-Alder reaction of 52 and 53 provided 59. Deprotection followed by oxidation gave 
60, which spontaneously gave longithorone A via transannular Diels-Alder reaction (Scheme 16). 

The total synthesis of (+)-anatoxin-a was achieved by Martin [63–64] and Mori [65–66] by the same 
strategy. The key step is the construction of an azabicyclo[4.2.1]nonene ring system. For that purpose, 
the 2,5-cis-disubstituted pyrrolidine derivative 61 having cis-substituents was synthesized from 
(+)-pyroglutamic acid. Enyne metathesis of 61 was carried out using 1g to form this ring system. From 
this azabicyclic compound 62, anatoxin-a could be synthesized (Scheme 17). 
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Scheme 16. Total synthesis of (-)-longithorone A. 
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Scheme 17. Total synthesis of anatoxin-A. 
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By a similar procedure, (+)-ferruginine was synthesized from (-)-pyroglutamic acid [67]. 
Construction of the azabicyclo[3.2.1] octane ring system was carried out using enyne metathesis of 64. 
Wacker oxidation to the resultant diene 65 afforded methyl ketone, and then deprotection followed by 
methylation gave (+)-ferruginine (Scheme 18). 

Scheme 18. Synthesis of (+)-ferruginine. 
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Kozmin developed a highly efficient synthesis of cyclic compound bearing the methyl ketone 
functionality from enyne having a silyloxy group on the alkyne (Scheme 8) [46]. As an application of 
this method, they succeeded in the synthesis of eremophilane [68]. RCM of enyne 66a having a silyloxy 
group on the alkyne followed by treatment with HF gave cycloalkene 68b having the methyl ketone 
functionality. Hydrogenation of the double bond in compound 68b gave 69. From this compound 69,  
α- and β-eremophilane could be synthesized (Scheme 19).  

New allocolchinoids functionalized at C10 or C11 in the C ring were synthesized using the RCM of 
enyne 70 for the construction of the seven-membered ring. The reaction proceeded smoothly to give 71 
using 1g in 92% yield. Deprotection followed by PCC oxidation gave 72, which was subjected to a 
Diels-Alder-aromatization sequence to form 73. Amination of 73 followed by acetylation gave 
allocholchicines (Scheme 20) [69]. 
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Scheme 19. Total synthesis of eremophilane. 
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Scheme 20. Synthesis of allo-colchicine. 
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The agalacto-spirolactone B subunit of quartromicins has been synthesized using the 
Claisen-Ireland/ RCM of enyne approach by Haudrechy et al. [70]. Enyne 74 was treated with 1g in 
toluene at 80 °C to afford 75 in 73% yield. From this compound 75, subunit B of quartromicin was 
synthesized (Scheme 21). 

An enantioselective synthesis of (-)-galanthamine was realized in 11 steps starting from isovanillin 
(Scheme 22). The enyne 76 (92% ee) underwent an efficient RCM reaction in the presence of 3 mol % of 
1c to give diene 77 in 85% yield. Hydroboration of the terminal alkene of 77 followed by oxidation gave 
homoallylic alcohol 78 in excellent yield, and palladium-catalyzed cyclization followed by SeO2 
oxidation gave 79. Mesylation of 79 followed by deprotection afforded (-)-galanthamine [71]. 
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Scheme 21. Synthesis of subunit of quartromicin. 
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Scheme 22. Total synthesis of galanthamine. 
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For the synthesis of angucyclinone-type natural products, a concise and highly enantioselective route 
was developed (Scheme 23). Chiral vinylcyclohexene derivative 81 was synthesized using RCM of 
enyne 80 under an atmosphere of ethylene in high yield. Intermolecular Diels-Alder reaction of 81 and 
82 followed by aromatization gave compound 83 having benz[a]anthraquinone skeleton. Utilization of 
this strategy, total synthesis of YM-181741, (+)-ochromycinone, (+)-rubiginone B have been 
accomplished [72]. 

Stereoselective total synthesis of (+)-valienamine was reported utilizing ring-closing enyne 
metathesis (Scheme 24) [73]. 
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Scheme 23. Synthesis of benz[a]anthraquinone skeleton. 
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Scheme 24. Synthesis of (+)-valienamine. 
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An interesting acceleration effect of an allylic hydroxy group on ring-closing enyne metathesis has 
been demonstrated. Ring-closing enyne metathesis of terminal alkynes possessing an allylic hydroxy 
group proceeded smoothly. The synthesis of (+)-isofagomine with the aid of this efficient reaction has 
been demonstrated [74].  

Grubbs demonstrated the synthesis of various fused polycyclic compounds using tandem metathesis 
reaction. A steroidal skeleton could be constructed using tandem enyne metathesis. Treatment of 
polyenyne 86 having double and triple bonds at the appropriate positions in the carbon chain gave 
compound 87 in high yield in one step, although many processes were contained in this reaction as 
shown in Scheme 25 [75]. 

Tandem ring-closing enyne metathesis followed by cross olefin metathesis is interesting and useful 
because the reaction process is shortened and the yield is raised compared with that of the stepwise 
reaction. One-pot RCM–CM reaction was realized by Royer et al. (Scheme 26). The RCM of 88 in the 
presence of an excess amount of methyl acrylate using ruthenium carbene complex 1g gave cyclic 
compound 89 in good yield. The reaction would proceed via the formation of 90 and subsequent CM 
with methyl acrylate to produce 89 [76]. 
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Scheme 25. Construction of a steroidal skeleton. 
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Scheme 26. One-pot reaction of RCM-CM. 
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Synthesis of anthramycine derivative 99a was achieved using RCM and CM (Scheme 27) [77]. 
L-Methionine was converted into enyne 91, and RCM of 91 using 1c gave pyrrolidine derivative 92. 
Deprotection followed by condensation with commercially available acid chloride 93 gave 94. 
Reductive cyclization of 94 using Zn-AcOH followed by treatment with dilute HCl gave 
pyrrolo-1,4-benzodiazepinone 95. To convert the vinyl group into an α,β-unsaturated ester group, olefin 
cross metathesis with ethyl acrylate was carried out using catalyst 1j [20–21]. The reaction proceeded 
smoothly to give compound 96 in 60% yield. Isomerization of the double bond in the pyrrolidine ring 
using RhCl3·H2O afforded desired compound 97, the amide group of which was converted into aminal 
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98. Conversion of 98 into ester 99a was achieved. Stille has already reported the conversion of 99b into 
(+)-anthramycin. 

Scheme 27. Synthesis of anthramycin derivative. 
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Scheme 28. Synthesis of (-)-dihydroxanthatin. 

O

O

Me

Me

O

O

O

H

H

(-)-Dihydroxanthatin

1. 1g 70%

Me

O

O

H

H
2. LDA
    MeI 90%

1g

O 66%100 101

H

H

 

Morken and Evans succeeded in the synthesis of (-)-dihydroxanthatin using RCM and CM [78]. 
Enyne metathesis of 100 using 1g followed by methylation gave bicyclic compound 101. Cross 
metathesis of 101 and methyl vinyl ketone in the presence of 1g afforded (-)-dihydroxanthatin  
(Scheme 28). 
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Martin succeeded in the first total synthesis of the novel sesquiterpene 8-epi-xanthatin [79]. 
Palladium-catalyzed carbonylation of 102 followed by desilylation gave lactone 104. The total synthesis 
of 8-epi-xanthatin was directly achieved by tandem RCM-CM of lactone 104 using 1h in the presence of 
an excess amount of methyl vinyl ketone in one step (Scheme 29).  

Scheme 29. Synthesis of 8-epi-xanthatin. 
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Scheme 30. Construction of ABC ring of lancifodilactone G. 
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Lancifodilactone G has eight rings with complicated cyclic connectivity. Paquette synthesized ABC 
segment 109 of lancifodilactones G using ring-closing enyne metathesis and then cross metathesis as the 
key steps (Scheme 30) [80]. Ring-closing enyne metathesis of 105 using 1g in CH2Cl2 gave 
cycloheptene derivative 106, which was subjected to cross metathesis with methyl acrylate to give 
α,β-unsaturated ester 107. From this compound 107, target compound 109 was obtained.  

2. Ring-Closing Dienyne Metathesis 

Grubbs reported an ingenious method for synthesizing bicyclic compounds from dienynes taking 
advantage of the metathesis reaction (Scheme 31) [81–82]. When a benzene solution of dienyne 110a 
was stirred in the presence of 3 mol % of 1b, bicyclic compound 111a was obtained in 95% yield in one 
operation. In the case of 110b, two bicyclic compounds 111b and 112b were formed. Furthermore, 
dienyne 110c gave tricyclic compound 111c in a quantitative yield. Probably, ruthenium carbene 
methylidene complex 1l reacts with an alkene moiety in dienyne 110b to give ruthenium carbene 
complex 113 and/or 116, which reacts with an alkyne part to give ruthenacyclobutene 114 and/or 117. 
Ring opening of this complex gives ruthenium carbene complex 115 and/or 118, which reacts with the 
alkene part intramolecularly to give ruthenacyclobutane. Ring opening of this complex gives bicyclic 
compounds, 111 and/or 112. 

Scheme 31. Dienyne metathesis. 

Me

OTES

1b3 mol%

65 °C, 15 h

86%

OTES OTES

Me Me1 : 1
110b 111b 112b

R'

R

R'

R
110b

Ru

Ru
R'

R

Ru

111

+

Ru

O
O

O O

100%

5 mol % 1b

CH2Cl2, reflux

Me

OTES
1b3 mol%

rt, 8 h

95%

OTES

Me
110a 111a

111c110c

113 114 115
1l

R'

R

Ru

R'

R

116

Ru
R'

R

Ru

117 118

112

m n

m n

m n

m n

m n

nm

 



Materials 2010, 3                 
           

2106

The transformation of dienyne into the bicyclic vinylboronate is shown in Scheme 32. 
Alkynylboronate 119 cleanly underwent ruthenium-promoted metathesis in 70% yield. The resultant 
bicyclic dialkenylboronic ester 120 was efficiently oxidized to corresponding enoate 121 by treatment 
with Me3NO in refluxing THF. In the presence of CsF, reaction of 120 with 3-bromobenzonitrile under 
the catalysis of PdCl2(dppf) furnished cross-coupling product 122 (Scheme 32) [83].  

A versatile route for the synthesis of a phosphorus oxide template was presented (Scheme 33). 
Dienyne metathesis using 1g on substrate 123 led to the formation of bicyclic phosphorus heterocycles 
124 [84]. 

Scheme 32. Reaction of eneyne having alkynyl boronate. 
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Scheme 33. Synthesis of phosphorous mono- and bicycles by RCM. 
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Base-promoted isomerization of propargyl amide 125 gave alkynyl amide 126, dienyne metathesis of 
which gave bicyclic compounds 127 and 128 in a ratio of 1:1 (Scheme 34) [85]. 

Scheme 34. Base-promoted isomerization of propargyl amide followed by RCM. 
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Dienyne metathesis of β-carboline derivative 130 afforded oxidized pentacyclic compound 131 
related to alkaloids containing a β-carboline unit. The starting material 129 was readily synthesized from 
tryptamine derivative (Scheme 35) [86].  

Scheme 35. Dienyne metathesis of β-carboline derivative. 
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Syntheses of Natural Products and Related Compounds Using Dienyne Metathesis 

Dienyne metathesis is a useful method for the synthesis of fused bicyclic or polycyclic compounds in 
one step, and many bond fissions and bond formations occur during the dienyne metathesis. Therefore, 
when dienyne metathesis is used for the total synthesis of natural products, retro synthetic analysis for 
them is unique, and the reaction process is generally shortened.  

A new approach to the synthesis of a linearly fused 6–8-6 tricarbocyclic ring system was realized 
using dienyne metathesis [87]. This ring system is a carbon framework analogous to the proposed 
transition state of isomerization of previtamin D3 to vitamin D3. The starting dienyne 134, which was 
prepared by condensation of indenone 132 and alkyne 133 followed by deprotection and then 
introduction of an allyl group, was reacted with 1c to give target molecule 135 as a diastereomeric 
mixture at the C-10 position in 48% yield (Scheme 36). 

Scheme 36. Synthesis of a [6.4.0]carbocyclic system. 
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A concise route to a key intermediate in the total synthesis of guanacastepene A using dienyne 
metathesis was reported [88]. The main feature includes the construction of fused seven- and 
six-membered rings. Metathesis of dienyne 136 was carried out using 1g and a mixture of tricyclic 
compounds 137 was obtained in a ratio of 1 to 1. Selective epoxidation followed by introduction of an 
allyloxy group in the presence of Yb(OTf)3 gave 138a and 138b. Protection of the hydroxyl group of 
138a gave 139a, and then it was led to compound 140, which was already converted into 
(±)-guanacastepene A (Scheme 37).  



Materials 2010, 3                 
           

2108

Scheme 37. Synthesis of (±)-guanacastephene A. 
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Krishna reported the synthetic study toward the stereoselective total synthesis of ilexlactone, the 
structure of which was already assigned as 143a. Bicyclic ring system was constructed from dienyne 
142a using 5 mol % of 1g in 74% yield. Deprotection of the MOM group afforded the target molecule 
143a. However, the spectral data of this compound was found to be different from those of ilexlactone 
reported in the literature. Thus, the authors further synthesized ent-143a and 143b from 142b in a similar 
procedure. However, the spectral data of ent-143a and 143b were found to be different from those of 
ilexlactone. Thus, the authors concluded that the structure proposed ilexlactone was incorrect  
(Scheme 38) [89].  

Total synthesis of (±)-erythrocarine was achieved by Mori using dienyne metathesis [90]. Synthesis 
of trisubstituted alkene 146 was achieved with a regio- and stereoselective introduction of carbon 
dioxide and an alkynyl group onto the terminal alkyne of 145 followed by desilylation. Hetero-Michael 
reaction of 146 gave isoquinoline derivative 147, which was converted into dienyne 149. Since the 
tertiary amine of 149 coordinates to the ruthenium catalyst and the catalytic activity is decreased, 
dienyne metathesis of 149·HCl was carried out using ruthenium catalyst 1c to give tetracyclic 
compounds as a diastereomeric mixture in a ratio of 1:1 in quantitative yield. Deacetoxylation of 
α-isomer gave erythrocarine (Scheme 39). Hatakeyama succeeded in total synthesis of erythravine using 
a similar procedure [91]. 
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Scheme 38. Synthetic study directed toward the total synthesis of ilexlactone. 
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Scheme 39. Total synthesis of erythrocarine. 
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Honda et al. succeeded in a diastereoselective total synthesis of (-)-securinine in an optically pure 
form by employing RCM of the corresponding dienyne 150 as a key step [92]. They synthesized dienyne 
150 having terminal alkene and disubstituted alkene parts from (+)-pipecolinic acid, because 
ruthenium-carbene complex would at first react with the terminal alkene to form a furan ring. Thus, 
dienyne metathesis of 150 was carried out using 1i [18] to give bicyclic compound 151 in good yield. 
Oxidation of 151 with CrO3 gave lactone 152, which was treated with NBS and then TFA to produce 
(-)-securinine (Scheme 40). They also synthesized viroallosecurinine in a similar manner [93]. 
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Scheme 40. Total synthesis of (-)-securinine. 
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Hatakeyama succeeded in the total synthesis of erythroidine [94]. Construction of C and D rings was 
begun from amino acid 153, which was led to dienyne 158. Dienyne metathesis was carried out using 1c 
to give erythroidine in 42 % yield along with compound 159 in 4% yield. In this case, 1g turned out to be 
less effective and gave erythroidine in less than 30% yield (Scheme 41). 

 
Scheme 41. Total synthesis of (+)--erythroidine. 
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The successful enantioselective syntheses of (-)-acylfulvene and (-)-irofulven was achieved by use of 
ring-closing metathesis strategy [95]. Synthesis of these compounds began through coupling of readily 
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available aldehyde (+)-160 and enyne 161. Treatment of 162a with 1g catalyst (15 mol %) in toluene at 
90 °C afforded desired 163a in 90% yield, which was readily converted into the key triol 164a  
(3S/3R = 6:1) after desilylation. When trienyne 162b was treated in a similar manner, desired 164b was 
obtained in 52% yield along with minor by-product 165 in 20% yield. The key triol 164a was converted 
into triene 166. Diene metathesis of 166 using 1g (15 mol %) proceeded smoothly to give bicyclic 
compound 167, crude product of which was directly converted into (-)-acylfulvene. According to the 
known method, (-)-acylfulvene was converted into (-)-irofulven (Scheme 42). 

Scheme 42. Synthesis of (-)-acylfulvene and (-)-irofulven. 
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For the synthesis of (-)-cochleamycin, conjugate diene 174 was synthesized from 172 by dienyne 
metathesis as a key step. The reaction of alcohol 168 with trialkyne 169 gave alcohol 170, which was 
further reacted with alcohol 171 to give dienyne 172. A tandem ring-closing metathesis of dienyne 
substrate 172 proceeded to provide a bicyclic siloxane 173. Removal of the silicon tether of 173 afforded 
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an (E,Z)-1,3-dienediol 174, which was converted into the key compound 177 for the synthesis of 
(-)-cochleamycin (Scheme 43) [96]. 

Scheme 43. Formal total synthesis of (-)-cochleamycin A using dienyne metathesis. 
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3. Cross Enyne Metathesis 

A novel synthetic procedure of 1,3-diene from alkyne and ethylene using cross enyne metathesis was 
developed in 1997 by Mori [97–98]. When a CH2Cl2 solution of alkyne 178a was stirred under an 
atmosphere of ethylene at room temperature in the presence of 1c, 1,3-diene 179a was obtained in 62% 
yield. It is interesting that, formally, the double bond of ethylene is cleaved and each methylene part of 
ethylene is introduced onto the alkyne carbon to produce 1,3-diene 179 (Scheme 44). The possible 
reaction course was shown in Scheme 45. Reaction of ruthenium carbene methylidene complex 1l, 
generated from 1c and ethylene, with alkyne 178 gives ruthenacyclobutene 180, ring-opening of which 
gives ruthenium carbene 181. It reacts with ethylene to afford ruthenacyclobutane 182, ring-opening of 
which gives 1,3-diene 179, and 1l is reproduced. If 1l reacts with ethylene, this is non-productive process 
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and 1l would be reproduced. However, this method has a problem, that is: propargyl ester 178a or amide 
178b gave good results, while homopropargyl amide 178c led to 1,3-diene 179c in only 11% yield 
(Scheme 44). Presumably, a heteroatom at the propargylic position is important, and the ruthenium 
catalyst would be coordinated by the heteroatom at first and then the reaction proceeds.   

When the second-generation ruthenium-carbene complex 1g was used for this reaction, an alkyne 178 
lacking heteroatoms at the propargylic positions, gave 1,3-dienes 179 in good yield (Table 1) [99–103]. 
Furthermore, the reaction was more rapid and the functional groups on the alkyne were tolerated. 

Cross metathesis between terminal alkynes 178i and terminal alkenes was subsequently developed by 
Blechert, and 1,3-disubstituted diene 183i was obtained in high yield [104]. Phenylalanine derivative 
184 could be synthesized by use of this procedure followed by Diels-Alder reaction (Scheme 46) 
[104–105]. 

Scheme 44. Synthesis of 1,3-diene using cross metathesis. 
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Scheme 45. Possible reaction course for formation of 1,3-diene. 
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Table 1. Synthesis of Various 1,3-dienes from alkyne and alkene using 1g.a 

entry alkyne 178 1,3-diene 179 time 
(h) 

yield 
(%) 

1 
MeO 178d  MeO 179d

0.5 88 

2 
178e  179e

0.5 71 

3 

CH3

178f 179f
0.5 85 

4 
MeO

TMS
178g  MeO

TMS

179g

16 87 

5 
MeO

COOMe
178h MeO

COOMe

179h

16 43 

a All reactions were carried out using 5 mol % of 1 g under 1 atm. pressure of ethylene gas in toluene 
at 80 °C. b The starting material was recovered in 10% (entry 4) and 34% (entry 5) yields, 
respectively. 

Scheme 46. Synthesis of alanine derivative. 
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A short and efficient synthesis of highly substituted tetrahydropyridines was achieved from a 
monosubstituted alkyne, a terminal alkene, and an imine by a combination of cross enyne metathesis and 
aza-Diels-Alder reaction under high pressure. Cross metathesis of terminal alkyne and alkene afforded 
diene 185, which was reacted with imine to give pipecolinic acid derivative 186 in high yield  
(Scheme 47) [106]. 
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Scheme 47. One-step synthesis of pipecolinic acid. 
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The reaction was further extended to intramolecular Diels-Alder reaction, and 
cis-hexahydro-1H-indene 189 was synthesized from diene 187 and terminal alkyne in one operation 
[107]. The intermediate would be 190, which was spontaneously converted into 188. Deprotection of the 
silyl group followed by PCC oxidation gave indanone 189 (Scheme 48).  

Scheme 48. Synthesis of cic-fused carbo-bicycles. 
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One pot synthesis of nitrogen and oxygen heterocycles was reported using intermolecular cross enyne 
metathesis in the presence of Bronsted acid (Scheme 49) [108]. 

Scheme 49. One pot synthesis of nitrogen heterocycles using cross metathesis. 

NHTs NHTs

5 mol %

TfOH, 40 °C
NTs

C4H9

81%

C4H9

C4H9

1c

191 192  

Diver reported cross metathesis of terminal alkyne and cyclopentene using 1g [109]. 
Ruthenium-carbene complex 1l reacts with the terminal alkyne to produce ruthenium-carbene complex 
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194, which reacts with cyclopentene to produce ruthenium-carbene complex 195. It reacts with the 
alkene part to afford a cycloheptadiene derivative 193 (Scheme 50). 

Scheme 50. Cross metathesis of cyclopentene and alkyne. 
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Synthesis of Natural Products and Related Compounds Using Cross Metathesis  

Synthesis of natural products using cross metathesis is interesting because 1,3-diene moiety is 
constructed onto the alkyne carbons at the later step. Anolignans were synthesized using cross 
metathesis of enyne as a key step. 1,3-Diene 197 could be synthesized from alkyne 196 by treatment 
with 1g under ethylene gas. Palladium-catalyzed deacetoxylation followed by deprotection gave 
anolignan A. Anolignan B could be synthesized in a similar manner. It was interesting that two 
methylene parts of the anolignan skeleton could be introduced at a later stage of the total synthesis using 
cross metathesis (Scheme 51) [110].  

Scheme 51. Synthesis of anolignan A using cross enyne metathesis. 
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Novel vitamin D receptor antagonists, 24,24-ethanovitamine D3–26,23-lactones 198a and 198b and 
their analogs were synthesized (Scheme 52) [111]. The CD-ring precursors 203a and 203b were 
efficiently synthesized via ruthenium-catalyzed intermolecular enyne metathesis of 200 with ethylene as 
a key step. Cyclopropanation of resultant enyne metathesis product 201 followed by treatment with 
DIBAL-H and then deprotection gave compounds 203a and 203b. Oxidation of 203a and 203b followed 
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by palladium-catalyzed coupling reaction with 204 and then deprotection afforded 198a and 198b, 
respectively.  

Scheme 52. Synthesis of 24,25-ethanovitamine D3 lactones. 
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Scheme 53. Synthesis of C-aryl glycoside. 
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A versatile strategy for the synthesis of C-aryl glycoside was successfully developed. An 
intermolecular enyne metathesis of C-alkynyl glycoside 205 with ethylene gave diene 206, which  
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was followed by Diels Alder reaction and then aromatization to provide C-aryl glycoside 207  
(Scheme 53) [112]. 

Lee succeeded in the total synthesis of (-)-amphidinolide E, whose side chain was constructed using 
cross enyne metathesis [113–114]. Alkyne 208 was first reacted with ethylene in the presence of 1g to 
give 209, which was further engaged in situ in a chemoselective cross metathesis with 
2-methyl-1,4-pentadiene to give triene 210 in 65% yield along with diene 209 in 19% yield. Isolated 
diene 209 was further recycled and reacted with 2-methyl-1,4-pentadiene in the presence of 1g to afford 
triene 210, which was further elaborated into 211. Condensation of 211 and 212 afforded compound 213. 
From this compound 213, total synthesis of amphidinolide E was achieved (Scheme 54). 

Scheme 54. Synthesis of amphidinolide E. 
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Recently, same group succeeded in the total synthesis of amphidinolide K using intramolecular cross 
enyne metathesis in the key step [115]. 

Fürstner succeeded in the total synthesis of amphidinolide V using ring-closing alkyne metathesis for 
the construction of the macrocycle (Scheme 55). Dialkyne 214 was treated with molybdenum complex 
215 to give macrocycle 216 in 84% yield. Then an intermolecular enyne metathesis of the resulting 
cycloalkyne 216 with ethene was used to set the vicinal exo-methylene branches. From this compound 
217, amphidinolide V was synthesized. As the result, the absolute configuration of amphidinolide V was 
determined to be as 8R, 9S, 10S, 13R [116–117]. 

Scheme 55. Synthesis of amphidinolide V. 
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4. Ring-Opening Enyne Metathesis 

Tandem metathesis of cycloalkene-ynes is a unique reaction because different cyclic compound is 
formed from the starting cycloalkene via many steps by a one operation. These reactions are contained 
ring opening metathesis (ROM), ring closing metathesis (RCM) and/or cross metatheses (CM). Mori 
reported the ROM of cycloalkene-yne [118]. When cycloheptene-yne 220a, the substituent of which was 
placed at the 3-position of cycloalkene, was reacted with the first generation ruthenium carbene complex 
1c in CH2Cl2 under ethylene gas at room temperature for 24 h, pyrrolidine derivative 221a was obtained 
in 56% yield (Table 2, entry 1). Various cycloalkene-ynes 220 gave pyrrolidine derivatives 221 in high 
yields by a one-pot operation. Formally, in this reaction, the double bonds of ethylene and cycloalkene 
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were cleaved and each methylene part of ethylene was introduced onto the alkyne and cycloalkene 
carbons, respectively, and a carbon-carbon double bond was formed between the alkyne and cycloalkene 
carbons to form a pyrrolidine ring (Figure 3). In each case, pyrrolidine ring is formed and the length of 
the substituent corresponds to the initial ring size minus 1. The possible reaction course for formation of 
221 from 220 was shown in Scheme 56. 

Table 2. ROM-RCM of cydoalkene-yne. 

H2C=CH2

N
Ts

R

N
Ts

CH2H2C
R

n

1c (10 mol %)

CH2Cl2, rt, time

220 221

n

Figure 3

H2C CH2
R

 
entry R ring size n time (h) yield (%)a 

1 220a Me 7 2 24 221a 56b 
2 220b H 6 1 4 221b 78 
3 220c H 7 2 1 221c 70 
4 220d H 8 3 1 221d 75 

a Yields were calculated from 1H NMR. b 220a was recovered in 36% yield. 

Scheme 56. Possible reaction course for ROM of 220. 
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Blechert reported the same type of ROM-CM. Reaction of cyclopentene derivative 222a having a 
propargyloxy group at the 3-position with 1c in the presence of diethyl allyl malonate afforded 
compound 223a in 75% yield [119–120]. In this reaction, the cleaved alkylidene part of diethyl allyl 
malonate is introduced onto the cyclopentene carbon, and the methylene part is introduced onto the 
alkyne carbon to form furan derivative 223a (Figure 4). Furthermore, the five-membered ring of estrone 
222b or 222c is cleaved using 1c in the presence of an alkene to give 223b or 223c, and an alkene part is 
introduced onto the C-ring (Scheme 57). 
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Scheme 57. ROM-CM enyne in the presence of alkene. 
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Scheme 58. Ring-opening metathesis of cycloalkene-yne. 
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Ring-opening metathesis of 1-substituted cycloalkene-yne 224 with 1g afforded bicyclic compound 
225 [121–122]. Reaction of an alkyne part of 224 with ruthenium carbene complex 1l gives 
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ruthenacyclobutene 226. Ring opening of this gives ruthenium carbene complex 227, which reacts with 
cycloalkene to afford highly strained ruthenacyclobutane 228. Ring opening of this affords ruthenium 
carbene complex 229 and then it reacts with alkene part to afford ruthenacyclobutane 230, ring-opening 
of which gives bicyclic compound 225. When a CH2Cl2 solution of cyclopentene derivatives 224a was 
stirred in the presence of 1g under ethylene gas for 26 h, bicyclic compound 225a was obtained in 
quantitative yield. In a similar manner, cyclopentene-yne 224b, the side chain of which was elongated, 
was reacted with 1g to give bicyclic compound 225b in 76% yield. These results indicated that the initial 
ring (n) was enlarged to (n + 2) ring and the size of the other ring corresponds to the carbon chain length 
from an alkyne carbon to an alkene carbon (Scheme 58).  

To synthesize an isoquinoline derivative using this method, the initial cycloalkene would be 
cyclobutene and the chain length between alkyne and alkene carbons containing nitrogen would be four. 
Treatment of cyclobutene-yne 231a with 1g afforded isoquinoline derivative 232a in 60% yield in one 
step. Furthermore, glycine derivative 231b having a cyclobutene ring in a tether afforded cyclic amino 
acid 232b in 76% yield. This procedure was further extended to the synthesis of biaryl compound 232c 
from cyclobutene-yne 231c. It was interesting that in this case, an aryl group on the alkyne of 231c is 
placed at the 5-position of isoquinoline 232c (Scheme 59) [123].  

Scheme 59. Synthesis of isoquinoline derivatives using ROM of cyclobutene-yne. 
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Plumet et al. described domino metathesis of propargyl (2-endo-7-oxanorborn-5-enyl) ethers 233a–c 
with allyl acetate in the presence of Grubbs’ ruthenium catalyst 1c (Scheme 60) [124–125]. The reaction 
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proceeded stereoselectively to produce substituted cis-fused bicyclic ethers 234a-c. In a similar manner, 
indolizidinone derivative 234d was obtained from azabicyclo[2.2.1]heptenone 233d in high yield. Later, 
the substituent effect of this reaction was further investigated and pyrrolizidinone derivative 234e was 
obtained in 40% yield along with indolizidinone derivative 234e’ in 30% yield when the toluene solution 
of 233e (R=Me) and 1g was warmed at 80 °C for 30 min under ethylene gas [126].  

North and Banti observed double ring-opening metathesis of dialkynyl cycloalkenes 233f affording 
tricyclic compound 234f in high yield (Scheme 61) [127–128].  

Scheme 60. ROM-RCM followed by CM of cycloalkene-yne. 
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Scheme 61. ROM-RCM of norbornene derivative. 
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5. Skeletal Reorganization Using Transition Metals 

Trost discovered palladium-catalyzed enyne metathesis during the course of his study on 
palladium-catalyzed enyne cyclization [129–135]. Treatment of Z-235 with palladacyclopentadiene 
(TCPT, 236a) in the presence dimethyl acetylene dicarboxylate (DMAD) in dichloroethane at 60 °C led 
to metathesis product E-238 in 68 % yield, which consisted of only E-isomer E-238. Similarly, the 
E-substrate E-235 gave predominantly Z-238 (Scheme 62) [129].  

This method provides a very simple route to bridged bicycles possessing bridgehead olefins (Scheme 
63). When enyne 239a was treated with TCPCTFE 236b, bicyclo[6.2.1]undecadiene 240a was formed in 
53% yield. When a mixture of 4% TCPCHFB 236c, 4% tri-o-tolylphosphate, 
bis(heptafluorobutyl)-acetylenedicarboxylate and enyne 239b in dichloroethane was heated at 80 °C, 
tricyclic compound 240b was obtained in 85% yield. It means that the reaction proceeds via the 
formation of the four-membered-ring [132].  
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Scheme 62. Enyne metathesis using palladium catalyst. 
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Scheme 63. Confirmation of four-membered ring. 
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The simple platinum complex (Ph3P)2Pt(OAc)2 effected metathesis of enyne. Enyne 241a gave 
cyclized compound 242a, and the yield was comparable to that of TCPC but significantly faster. Murai 
and Chatani [136] also reported the PtCl2-catalyzed reaction of cycloalkene-yne 241b. In this case, 
exclusively bicyclic compound 242b was obtained in 97% yield (Scheme 64).  

In 1994, Murai and Chatani reported skeletal reorganization of 1,6-enyne using [RuCl2(CO)3]2 as a 
catalyst (Scheme 65) [137–138]. When the reaction of E-243a (E/Z=80/20) was carried out in the 
presence of [RuCl2(CO)3]2 under carbon monoxide, E-isomer 244a was produced predominantly. It is 
interesting that from Z-243a (E/Z=11/89), E-244a was formed. An E/Z mixture of 1,7-enyne 243b 
afforded only E-isomer of 244b in 86% yield.  
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Scheme 64. Platinum-catalyzed skeletal reorganization. 
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Scheme 65. Ruthenium-catalyzed skeletal reorganization. 
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Scheme 66. Trapping of carbenoid intermediate. 

E
E

E
E

E

E

E

E

H

H

H
H

MX2
E

E

245 246

toluene, 80 °C E
E

H

catalyst

[RuCl2(CO)3]2
PtCl2
[Rh(OCOCCF3)2]2
[IrCl(CO)3]n
ReCl(CO)5

4 h
4 h
1 h
4 d
1 d

84%
75%
72%
54%
74%

E=CO2Et 247

 

They speculated that complex 247 having two carbenoid carbons would be generated on the alkyne 
carbons during the reaction [138]. To trap this intermediate, the reaction of 6,11-dien-1-yne 245, which 
has an olefin moiety in a tether, was carried out in the presence of [RuCl2(CO)3]2 in toluene at 80 °C for 
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4 h to give tetracyclic compound 246 containing two cyclopropane rings in 84% yield. It is interesting to 
note that other transition-metal complexes, such as PtCl2, [Rh(OOCCF3)2]2, [IrCl(CO)3]n, and 
ReCl(CO)5 also showed catalytic activity for this very complex transformation. 

Rh(II)-catalyzed skeletal reorganization of 1,6- and 1,7-enynes through electrophilic activation of 
alkynes was also reported [139–140]. 

Surprisingly, in some cases, simple Lewis or Brønsted acids as the catalysts could replace PtCl2 
(Scheme 67). Treatment of 248 with BF3·Et2O or HBF4 gave skeletal reorganization product 249 in good 
yield [141]. 

Scheme 67. Lewis and Bronsted acids catalyzed skeletal reorganization. 
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 Murai and Chatani group reported skeletal reorganization of enynes to 1-vinylcycloalkene by GaCl3 
[142]. The reaction of 250a proceeded in methylcyclohexene at 0 °C and was completed within 1 h to 
give 251a. It is interesting that highly strained cyclobutene derivative 251b was obtained from 1,7-enyne 
251a in high yield (Scheme 68). 

Scheme 68. Skeletal reorganization by GaCl3. 
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Presumably, each skeletal reorganization reaction starts by coordination of the metal to the alkyne 
part, and then the alkene part would attack the cation center of the alkyne coordinated by metals. 
However, the reaction mechanism is still not clear, and it is thought that each reaction mechanism differs 
depending on the metal used [143]. 
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Synthesis of Natural products Using Skeletal Reorganization  

Skeletal reorganization is a useful tool for the synthesis of complicated natural products. Fürstner 
achieved formal total syntheses of the antibiotics metacycloprodigiosin and streptorubin B by a 
platinum-catalyzed skeletal reorganization reaction (Scheme 69) [144]. The key step leading to the 
meta-bridged pyrrole core structures consisted of a metathesis reaction of electron-deficient enynes 
252a and 252b catalyzed by PtCl2. The skeletal reorganization products 253a and 253b were converted 
into the respective target molecules. 

Scheme 69. Formal total synthesis of streptorubin B and metacycloprodigiosin. 
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Trost succeeded in formal total synthesis of roseophilin [145]. Macrocyclic compound 260 was 
synthesized from enyne 259 by platinum-catalyzed skeletal reorganization. Compound 260 was 
converted into 261, which was led to pyrrole derivative 258 and it was already converted into 
roseophilin (Scheme 70).  
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Scheme 70. Formal total synthesis of roseophilin. 
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6. Metallotropic Rearrangement 

The bond reorganization processes, defined as metallotropic shift, of various alkynyl carbene 
complexes with Rh [146], Mn [147], Re [148], Cr [149], Mo [149], and W [149] metals have been 
already reported. The rearrangement involving Rh, Cr, Mo, and W is a [1,3]-shift, while that with Mn 
and Re is formally defined as a [1,1.5]-shift. However, the metallotropic shift of ruthenium alkynyl 
carbene complexes has not been observed until recently (Scheme 71). The metallotropic [1,3]-shift of a 
transient ruthenium carbene complex is involved in the enyne ring-closing metathesis (RCM) of diyne 
containing substrates. On the basis of this concept, one-step construction of enediynes and oligoenynes 
was realized by the uniquely controlled repetitive metallotropic [1,3]-shift of ruthenium carbene species. 
Reaction of 262a with 1g gave ene-diyne 267a in high yield by one operation. Presumably, reaction of 
262a with 1g gives ruthenium carbene complex 263a, which is converted into ruthenium carbene 
complex 264a via [1,3]-shift. [2+2] Cycloaddition followed by ring opening gives 265a, which is 
converted into 266a via [1,3]-shift. From this complex 266a, ene-diyne 267a is formed. In a  
similar manner, 262b and 262c gave oligoenynes 267b and 267c, respectively, in one operation  
(Scheme 72) [150]. 

Scheme 71. Metalotropic rearrangement. 
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Scheme 72. Synthesis of oligoenynes by metathesis of metallotropy. 
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Synthesis of Natural Products Using Metallotropic Rearrangement 

The metallotropic [1,3] shift of a transient ruthenium carbene complex is involved in the enyne 
ring-closing metathesis of diyne containing substrates. Ring-closing metathesis followed by 
metallotropic [1,3]-shift and cross metathesis allowed for the development of novel strategy for the total 
synthesis of conjugated 1,3-diyne-containing natural product (3R,9R,10R)-panaxytriol [151]. When 
compound 268 was treated with 1g in the presence of 2.0 equiv. of alkene 269, the expected product 270 
was obtained in 61% yield as a mixture of Z/E-isomers (5:1) together with 268 (10%). Metathesis of 
diene in 268 gave ruthenium carbene complex 271, metallotropic [1,3] shift of which gave ruthenium 
carbene complex 272. Cross metathesis of 272 and alkene 269 afforded compound 270. From this 
compound 270, (3R,9R,10R)-panaxytriol could be synthesized (Scheme 73). 
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Scheme 73. Total synthesis of (3R,9R,10R)-panaxytriol. 

O

C6H13 O
O

268

OAcAcO

10 mol % 1g
CH2Cl2, 40 °C

61%

OAcO
O

C6H13

RuLn

C6H13 O
O

O
O

C6H13

RuLn
H

270
cis/trans = 5 : 1

270 O
O

C6H13

OHcis/trans = 1 : 1.6

L-(+)-DET
Ti(OiPr)4
tBuOOH

O
O

C6H13

O

OH

1. PPh3, imidazole, I2

2. Zn dust, AcOH
3. 1N HCl

HO

OH

OH

(3R,9R,10R)-Panaxytriol

1. DIBAL-H

2. I2

271 272

273 274

269

269

 

Total synthesis of (+)-asperpentyn and (-)-tricholomenyn A have been accomplished by 
implementing this metathesis-based tandem reaction sequence as the key step [152]. Compound 276, 
which was prepared from 275 and diyne, was treated with 1g under ethylene atmosphere gave 279a and 
279b via 277 and 278. From 279a, asperpentyn was synthesized. When compound 280 was reacted with 
ethylene in the presence of 1g, the reaction did not proceed. In a similar method, compound 281 was 
treated with 1g under ethylene to give 282, which was led to (+)-tricholomenyn.  
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Scheme 74. Synthesis of (+)-asperpentyn and (+)-tricholomenyn A using tandem enyne metathsis. 
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Perspective 

Since the discovery of stable and isolable catalysts for metathesis by Schrock and Grubbs, a wide 
range of olefin metatheses have been reported, and olefin metathesis now plays an important role in 
natural product syntheses. Enyne metathesis, dienyne metathesis, cross enyne metathesis, and ROM of 
cycloalkene-yne have also been developed. Furthermore, skeletal reorganization using the transition 
metals or metallotropic rearrangement is a unique reaction. Novel procedures for the synthesis of the 
natural products and related compound, various complex molecules and macrocyclic compounds would 
be further developed using these various enyne metatheses. The retrosynthetic analysis of the natural 
products using these enyne metatheses would be completely different from that of the previous synthesis 
and the steps for the synthesis of these compounds would be shortened. 
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