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Abstract: This review paper deals with the dielectric and elastic characterization of compos-
ite materials constituted by dispersions of nonlinear inclusions embedded in a linear matrix.
The dielectric theory deals with pseudo-oriented particles shaped as ellipsoids of revolution:
it means that we are dealing with mixtures of inclusions of arbitrary aspect ratio and arbi-
trary non-random orientational distributions. The analysis ranges from parallel spheroidal
inclusions to completely random oriented inclusions. Each ellipsoidal inclusion is made of
an isotropic dielectric material described by means of the so-called Kerr nonlinear relation.
On the other hand, the nonlinear elastic characterization takes into consideration a dispersion
of nonlinear (spherical or cylindrical) inhomogeneities. Both phases are considered isotropic
(actually it means polycrystalline or amorphous solids). Under the simplifying hypotheses of
small deformation for the material body and of small volume fraction of the embedded phase,
we describe a theory for obtaining the linear and nonlinear elastic properties (bulk and shear
moduli and Landau coefficients) of the overall material.

Keywords: nonlinear constitutive equations; composites (nanosystems embedded in a larger
structure); mixture theory and order parameters
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1. Introduction

The central problem of considerable technological importance is to evaluate the effective physical
properties (dielectric or elastic) governing the behavior of a composite material on the macroscopic
scale, taking into account the actual microscale material features [1, 2]. At present, it is well known that
it does not exist a universal mixing formula giving the effective properties of the heterogeneous materials
(permittivity or elastic moduli) as some sort of average of the properties of the constituents. In fact, the
details of the morphology or micro-geometry play a central role in determining the overall properties,
particularly when the crystalline grains have highly anisotropic or nonlinear behavior or when there is
a large difference in the properties of the constituent materials. The primary aim in the study of mate-
rials is to understand and classify the relationship between the internal micro-structure and the physical
properties. Such a relationship may be used for designing and improving materials or, conversely, for
interpreting experimental data in terms of micro-structural features. A great number of theoretical inves-
tigations have been developed in order to describe the behavior of composite materials when a specific
microstructure is considered. On the other hand, a different class of theories does not assume a given
microstructure, searching for general results of broad applicability. The most important properties are
the classical Hashin-Shtrikman variational bounds [3, 4], which provide an upper and lower bound for
composite materials properties, and the expansions of Brown [5] and Torquato [6, 7] which take into
account the spatial correlation function of the constituents. Moreover, in [8], a functional unifying ap-
proach has been applied to better understand the intrinsic mathematical properties of a general mixing
formula.

Dispersions or suspensions of inhomogeneities in a matrix are examples of widely studied hetero-
geneous materials: these media have been extensively analyzed both from the electrical and the elastic
point of view. One of the first attempts to characterize dielectric dispersions of spheres was developed
by Maxwell [9, 10], who found out a famous formula valid for very diluted suspensions. The first
papers dealing with mixtures of ellipsoids were written by Fricke [11, 12] dealing with the electrical
characterization of inhomogeneous biological tissues containing spheroidal particles: he found some
explicit relationships that were simply an extension of the Maxwell formula to the case with ellipsoidal
inclusions. In current literature, Maxwell relation for spheres and Fricke expressions for ellipsoids are
the so-called Maxwell–Garnett Effective Medium Theories (MG-EMT) [13, 14]: both theories hold on
under the hypothesis of very low concentration of the dispersed component. A better model has been
provided by the differential scheme [15, 16]. In this case the results maintain the validity also for less
diluted suspensions [17].

Some other types of microstructures have been taken into consideration. For example, the prob-
lem of the mixture characterization has been exactly solved in the case of linear and nonlinear random
mixtures, that is, materials for which the various components are isotropic, linear and mixed together
as an ensemble of particles having random shapes and positions (in this case there is not a mate-
rial having the role of a matrix and all the media have the same importance in defining the overall
properties) [18–22].

Recent progresses in this field concern dielectrically linear and nonlinear spheroidal inhomogeneities
with geometric factors probabilistically distributed [23]. The size-dependent Bruggeman theory, which
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considers the effective particle dimension for non dilute dispersions, has been introduced as well [24]. A
wide survey of mixture theory applications to metamaterials can be found in [25]. Finally, the dielectric
(focusing or defocusing) Kerr nonlinearity [26] has been utilized to explore the importance of the particle
shape [27].

On the other hand, dealing with the elastic characterization of dispersions, a similar line of research
has been developed [28, 29]. A famous result exists for a material composed by a very dilute concen-
tration of linear spherical inhomogeneities dispersed in a linear solid matrix [30]. To adapt this theory
to the case of any finite volume fraction, the differential method is also applied to the elastic theories
for spherical [31], cylindrical [32] and ellipsoidal particles [33]. Recent works focus on microstruc-
tures that can be characterized as continuous matrices containing inhomogeneities of diverse shapes,
properties and orientations [34, 35]. The evaluation of the effective elastic properties of a body con-
taining a given distribution of cracks belongs to the field of homogenization techniques as well [36].
Recent investigations consider the effects of the orientational statistical distribution of cracks in a given
material [37, 38].

The aim of the present review paper is to describe the dielectric and elastic characterization of com-
posite materials constituted by dispersions of linear or nonlinear inclusions embedded in a linear matrix.
The complete dielectric theory deals with pseudo-oriented particles shaped as ellipsoids of revolution: it
means that we are dealing with mixtures of inclusions of arbitrary aspect ratio and arbitrary non-random
orientational distributions. Moreover, the nonlinear elastic characterization takes into consideration a
dispersion of nonlinear (spherical or cylindrical) inhomogeneities. Under the simplifying hypotheses of
small deformation for the material body and of small volume fraction of the embedded particles, we
describe a theory for obtaining the linear and nonlinear elastic properties of the overall material.

The paper is structured as follows: in Section 2 we present a brief outline of the most important results
describing the dielectric homogenization techniques for linear and nonlinear dispersions. In particular,
in Section 2.1. we describe the methodologies for linear and nonlinear two-phases materials (i.e., linear
or nonlinear homogeneous inclusions embedded in a linear homogeneous matrix). Moreover, in Section
2.2. we describe the methods applied to investigate the three-phases materials (i.e., coated or core-shell
inclusions embedded in a given matrix). We have unified all the specific results in a single framework,
which is suitable for both two- and three- dimensional systems. These results are well-known in scientific
literature and they are introduced here for sake of completeness. Therefore, all the relevant references
have been accurately quoted in order to facilitate the interested reader.

In Section 3 we describe a microstructure constituted by pseudo-oriented ellipsoids, which is impor-
tant since mimics several real materials and exhibits an overall behavior depending on the combination
of two different aspects: the degree of ordering of the system (i.e., the degree of orientational distri-
bution of the ellipsoidal particles inside the medium) and the aspect ratio (controlling the shape of the
inclusion ranging from oblate to prolate spheroids) of the ellipsoids embedded in the matrix. In the fol-
lowing Sections 4–7 the corresponding nonlinear electric homogenization is introduced and developed.
The final equations obtained at the end of the procedure are original achievements of the present work.
However, several intermediate results can be found in earlier literature and will be discussed in detail
in order to provide a complete review. More precisely, in Section 4 we discuss the results concerning
the electrical behavior of a single nonlinear ellipsoid embedded in a linear matrix: the general theory
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has been presented for an arbitrary nonlinearity and the application has been performed for the so-called
Kerr nonlinear constitutive equation. In Section 5 the electric field induced inside the ellipsoidal particle
has been averaged over all the possible orientations of the particle itself. This calculation is original and
it has been developed for a Kerr nonlinearity. Then, in Section 6 we consider a dilute suspension of ran-
domly oriented ellipsoidal inclusions and we obtain the dielectric linear and nonlinear characterization
in terms of the degree of order of the system and the aspect ratio of the particles. Finally, in Section 7
we show an example of application of the previous theory and we discuss the behavior of the effective
permittivities and of the nonlinear susceptibilities.

In Section 8 we introduce the homogenization for nonlinear elastic composite materials. In partic-
ular we describe the microstructures analyzed in the following sections and we introduce the applied
methodologies. This second part of the paper represents a detailed review of recent results in the field of
the nonlinear homogenization (the relevant references will be properly quoted). In Section 9 we discuss
the nonlinear constitutive equations adopted to model the embedded particles (for the nonlinear elastic
homogenization scheme we consider for simplicity spherical or cylindrical inhomogeneities). In Section
10 we introduce the nonlinear generalization of the Eshelby theory, which allows us to determine the
elastic fields induced inside an inhomogeneity. Finally, in Sections 11 and 12 we develop the procedures
for dealing, respectively, with dispersions of spheres and cylinders.

2. Introductory Remarks on Linear and Nonlinear Dielectric Homogenization

In order to introduce the standard homogenization techniques for linear and nonlinear heterogeneous
structures, we consider a two-phases material (spheres or cylinders embedded in a given matrix) and a
three-phases material (coated spheres or cylinders embedded in a given matrix). In both cases we analyze
the electric behavior of the single particle and of a given assembly of inclusion.

2.1. Two-phases materials

We describe the linear electric behavior of a given spherical (d = 3) or cylindrical (d = 2) particle
with permittivity ε2 and radius R embedded in a matrix with permittivity ε1. For the spherical object
we adopt a system of spherical coordinates (ρ, θ, φ) (x = ρ sin θ cos φ, y = ρ sin θ sin φ, z = ρ cos θ)
and for the cylindrical particle we use a system of cylindrical coordinates (ρ, θ, y) (x = ρ sin θ, y = y,

z = ρ cos θ). We suppose to apply a remote electric field E∞ along the z-axis in both cases. The electric
potentials inside and outside the inclusion, φi and φe, are given by [14, 15]

φi = −E∞
[

dε1

ε2 + (d− 1) ε1

]
ρ cos θ (1)

φe = −E∞
[
1− ε2 − ε1

ε2 + (d− 1) ε1

(
R

ρ

)d
]

ρ cos θ (2)

Therefore, the electric field induced inside a particle is

Ei =

[
dε1

ε2 + (d− 1) ε1

]
E∞ (3)

This internal field is called Lorentz field and it is always uniform: it is possible to prove that Ei > E∞

if ε2 < ε1 and Ei < E∞ if ε2 > ε1. In Figure 1 one can observe the lines of the electric field for an
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inclusion with ε2 > ε1 and for the case ε2 < ε1. In both cases the uniformity of the internal field and the
dipolar character of the external one are evident.

Figure 1. Field lines of the electric field for an inclusion with ε2 > ε1 and for another one
with ε2 < ε1.

We consider now a dispersion of particles in a given region. We assume that the volume fraction c of
inclusions is very low (c ¿ 1): it means that Equation (3) is valid for each particle and that the average
value of the electric field over the entire structure can be obtained as 〈E〉 = cEi +(1− c) E∞. In similar
way it is possible to calculate the average value of the displacement vector as 〈D〉 = c (ε2 − ε1) Ei +

ε1〈E〉. We define the concept of effective permittivity εeff through the relation 〈D〉 = εeff〈E〉. The
above expressions allow us to obtain the following important result (Maxwell formula) [9]

εeff = ε1
cε2d + (1− c) [ε2 + (d− 1) ε1]

cε1d + (1− c) [ε2 + (d− 1) ε1]
(4)

This is the main result concerning the linear homogenization of an assembly of spherical (d = 3) or
cylindrical (d = 2) particles.

We consider now the nonlinear behavior of a single inclusion. This methodology has been developed
in [39] and it has been utilized both for a single particle and an assembly of nonlinear spheres. The
benefit of this approach is that of considering an arbitrary nonlinearity describing the electric behavior
of the inhomogeneities embedded in the matrix. The nonlinear constitutive relation for the particle can
be written as Di = ε̃2(Ei)Ei where ε̃2(Ei) is the field-dependent permittivity. The important Equation
(3) is still valid but now it is an implicit equation giving the actual internal field Ẽi

Ẽi =

[
dε1

ε̃2(Ẽi) + (d− 1) ε1

]
E∞ (5)

Therefore, the balance equations for a dilute dispersion of nonlinear particles are the following




Ẽi = dε1
ε̃2(Ẽi)+(d−1)ε1

E∞

〈E〉 = cẼi + (1− c) E∞

〈D〉 = c (ε2 − ε1) Ẽi + ε1〈E〉
(6)

From the first two expressions in Equation (6) we can eliminate the remote field E∞, by obtaining an
explicit relationship between the internal field Ẽi and the average value 〈E〉

Ẽi =
dε1

ε̃2(Ẽi) + (d− 1) ε1

〈E〉 − cẼi

1− c
(7)
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Now, it is necessary to solve Equation (7) with respect to Ẽi for different values of the average electric
field 〈E〉 (nonlinear microdosimetry). This point can be accomplished with different numerical meth-
ods depending on the complexity of the nonlinearity ε̃2(Ẽi). If we substitute Equation (7) in the last
expression given in Equation (6) we obtain the nonlinear effective constitutive equation

〈D〉 = ε1

[
1 + cd

〈E〉 − Ẽi

(1− c) 〈E〉

]
〈E〉 (8)

Therefore, the effective nonlinear dielectric constant (depending on 〈E〉) is given by

εeff (〈E〉) = ε1

[
1 + cd

〈E〉 − Ẽi (〈E〉)
(1− c) 〈E〉

]
(9)

The explicit form of Ẽi in terms of 〈E〉 (which can be obtained numerically or analytically from Equation
(7)) must be substituted in Equation (9) in order to obtain the nonlinear effective behavior. This method
can be applied to the case of a Kerr nonlinearity for the particles [27]

ε̃2(Ėi) = ε̇2 + α̇|Ėi|2 (10)

where the dots indicate the phasors of the corresponding quantities (we assume a sinusoidal permanent
regime). In this case both ε2 and α can be considered complex numbers. We may substitute Equation
(10) in Equation (7), obtaining

α̇X|X|2 +
(1− c) (ε̇2 − ε1) + ε1d

1− c
X − ε1d

1− c
〈Ė〉 = 0 (11)

where we have defined Ėi = X (the main unknown). This equation assumes the simple form

AX + BX|X|2 = Y (12)

where A = (ε̇2 − ε1) (1− c) + dε1, B = (1− c) α̇ and Y = dε1〈Ė〉. The solution can be approximately
obtained through the following expansion truncated after the third odd term

X = a1Y + a2Y |Y |2 + a3Y |Y |4 (13)

By using Equation (13) in Equation (12) we obtain the values for the coefficients

a1 =
1

A
a2 = − b

A2|A|2 a3 =
2B2

A3|A|4 +
|B|2

A|A|6 (14)

Finally, adopting the value of Ėi = X in Equation (9) we obtain the nonlinear homogenization

εeff = ε̇eff + α̇eff |〈Ė〉|2 + β̇eff |〈Ė〉|4 (15)

where [27]

ε̇eff = ε1
cε̇2d + (1− c) [ε̇2 + (d− 1) ε1]

cε1d + (1− c) [ε̇2 + (d− 1) ε1]

α̇eff =
cd4α̇(

A
ε1

)2

|A
ε1
|2

β̇eff = −2
c (1− c) d6α̇2

ε1

(
A
ε1

)3

|A
ε1
|4
− c (1− c) d6|α̇|2

|ε1|2
ε1

A
ε1
|A
ε1
|6

(16)
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Here we have used the definition A = (ε̇2 − ε1) (1− c) + dε1. The first expression in Equation (16)
represents the Maxwell formula describing the linear behavior of the composite system. The second
relation in Equation (16) represents the Kerr nonlinear coefficient of the dispersion: we observe that it
is directly proportional to the volume fraction c and to the Kerr parameter α̇ of the inclusions. When
c → 1 the value of ε̇eff approaches ε̇2 and α̇eff approaches α̇, as expected. Finally, the coefficient β̇eff

represents the fourth nonlinear term of the heterogeneous structure. We note that it is proportional to
c (1− c): therefore, it is zero for c = 0 (no inclusions in the system) and for c = 1 (the inclusions fill the
whole space). Anyway, we remember that all the results are valid for dilute dispersions (c ¿ 1). Similar
results and some generalizations can be found in [40–42].

2.2. Three-phases materials

We consider a spherical (or cylindrical) structure constituted by a matrix with permittivity ε1 where
a coated particle is embedded. The particle is composed by a core with radius a and permittivity ε3

and a shell contained between the radii a and b with permittivity ε2. On such a system an electric field
E∞ = E∞ez is remotely applied. The electric potentials in the three regions can be calculated as [39, 43]

φ1 = −E∞ρ cos θ + A 1
ρd−1 cos θ if ρ > b

φ2 = Bρ cos θ + C 1
ρd−1 cos θ if a < ρ < b

φ3 = Dρ cos θ if ρ < a

(17)

As before, these expression are valid both in cylindrical symmetry (d = 2) and in spherical symmetry
(d = 3). The coefficients A,B,C,D can be obtained by imposing the continuity of the electric potential
and of the normal component of the electric displacement. These conditions allows us to obtain the
system of equations





C = (D −B) ad

(ε2B − ε3D) ad = (d− 1) ε2C

A− C = (B + E∞) bd

(d− 1) (Cε2 − Aε1) = (Bε2 + E∞ε1) bd

(18)

The exact solutions have been eventually obtained [39]

A =
(ε1 − ε2) [(d− 1) ε2 + ε3]

(
b
a

)d − (ε3 − ε2) [(d− 1) ε2 + ε1]

(d− 1) (ε1 − ε2) (ε3 − ε2)− [(d− 1) ε1 + ε2] [(d− 1) ε2 + ε3]
(

b
a

)d
E∞bd

B =
dε1 [(d− 1) ε2 + ε3]

(
b
a

)d

(d− 1) (ε1 − ε2) (ε3 − ε2)− [(d− 1) ε1 + ε2] [(d− 1) ε2 + ε3]
(

b
a

)d
E∞

C =
−dε1 (ε3 − ε2)

(d− 1) (ε1 − ε2) (ε3 − ε2)− [(d− 1) ε1 + ε2] [(d− 1) ε2 + ε3]
(

b
a

)d
E∞bd

D =
d2ε1ε2

(
b
a

)d

(d− 1) (ε1 − ε2) (ε3 − ε2)− [(d− 1) ε1 + ε2] [(d− 1) ε2 + ε3]
(

b
a

)d
E∞ (19)

To begin with the homogenizing schemes, we search for a homogeneous dielectric material (with per-
mittivity ε̃) in the region 0 < ρ < b, which is equivalent to the structure above described. It means that
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the substitution of the regions with ε2 and ε3 with a single homogeneous particle with permittivity ε̃ does
not alter the values of the electric potential and of the electric field in the external region ρ > b. In the
original heterogeneous structure the external electric potential is given by φ1 reported in Equation (17).
In the equivalent case with a single uniform inhomogeneity this electric potential is described by the
same expression where A = A |ε2=ε̃, ε3=ε̃ since the theory is still correct for ε2 = ε3 = ε̃. By equating the
values A (ε1, ε2, ε3) = A (ε1, ε̃, ε̃), we obtain an equation for the unknown ε̃. The solution is

ε̃ = ε2

(d− 1) (ε2 − ε3)−
(

b
a

)d
[(d− 1) ε2 + ε3]

(ε3 − ε2)−
(

b
a

)d
[(d− 1) ε2 + ε3]

(20)

We remark that this value of the effective permittivity does not depend on the permittivity of the matrix.
In fact, it is a characteristic quantity of the heterogeneous structure (constituted by the core and the shell)
embedded in the homogeneous material with permittivity ε1. Moreover, it depends on the ratio between
the radius of the core and the radius of the shell. Therefore, we can define the volume fraction of the
core of permittivity ε3 in the shell of permittivity ε2 as c̃ =

(
a
b

)d. Therefore, Equation (20) assumes the
very simple form

ε̃ = ε2
c̃ε3d + (1− c̃) [ε3 + (d− 1) ε2]

c̃ε2d + (1− c̃) [ε3 + (d− 1) ε2]
(21)

This is an exact result. It is interesting to note that Equation (21) is formally identical to the Maxwell
formula, which describes the effective permittivity of a dilute dispersion of inclusions of permittivity ε3

in a hosting material of permittivity ε2. Nevertheless, the Maxwell formula is an approximate solution
which is valid only for low values of the volume fraction c̃ of the spheres embedded in the matrix.

We have obtained a uniform electric field in the core (with intensity −D) and a more complicated
spatial behavior in the shell. For the following development it is useful to calculate the average value of
the electric field in the shell [39]. More precisely, we search for the average value of E2 = −~∇φ2 over
the region a < ρ < b

〈E2〉 =
1

Ω

∫

Ω

−~∇φ2dv (22)

where Ω is the region corresponding to the shell (or coating). When d = 2, we solved the double integral

〈E2〉 =
1

π (b2 − a2)

∫ ∫

a2≤x2+z2≤b2

(
−∂φ2

∂x
,−∂φ2

∂z

)
dxdz = (0,−B) (23)

Moreover, for d = 3 we obtained

〈E2〉 =
1

4
3
π (b3 − a3)

∫ ∫ ∫

a2≤x2+y2+z2≤b2

(
−∂φ2

∂x
,−∂φ2

∂y
,−∂φ2

∂z

)
dxdydz = (0, 0,−B) (24)

It means that, in each case, the relation 〈E2〉 = −Bez is always fulfilled.
Now, we consider a dispersion of coated particles in the linear electric regime. We utilize the property

which homogenizes each particle, in order to apply the Maxwell formula in a second step. We define
c = Vd

V
= Vd

Vd+Vf
¿ 1 where V is the total volume of the material, Vd is the total volume of the effective
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inclusions with permittivity ε̃ and Vf is the volume of the external region with permittivity ε1. At the end
of this procedure we obtain

εeff = ε1
cε̃d + (1− c) [ε̃ + (d− 1) ε1]

cε1d + (1− c) [ε̃ + (d− 1) ε1]
(25)

where ε̃ is given in Equation (21). The optical particles of core-shell particle composites has been
also analyzed for the confocal ellipsoids configuration: interested readers can consult [44, 45] for more
information.

This procedure can be generalized to the case with a nonlinear core in the particles [39, 46, 47].
This model has been applied to investigate the optical bistability of suspensions of nonlinear coated
nanoparticles [48, 49] and the orientation of core-shell inclusions in an electric field [50]. We suppose
that each core can be described by a Kerr nonlinearity ε̃3 = ε3 + χ|E3|2, where E3 is the electric field
for ρ < a (for simplicity we omit the dots indicating the phasors). From the above discussion we obtain
E3 = −D where D is given in Equation (19). In nonlinear regime, the coefficient D is not constant since
it depends on ε̃3 and, therefore, on the core field E3. Explicitly

E3 =
d2ε1ε2E

∞

− (d− 1) (ε1 − ε2) (ε̃3 − ε2)
(

a
b

)d
+ [(d− 1) ε1 + ε2] [(d− 1) ε2 + ε̃3]

(26)

By recalling the definition c̃ =
(

a
b

)d we can write the denominator of the previous relation as

ε2 (d− 1) {[(d− 1) ε1 + ε2] + c̃ (ε1 − ε2)}+ {(d− 1) (ε2 − ε1) c̃ + [(d− 1) ε1 + ε2]} ε̃3 = α + βε̃3

where we have defined the constants α and β as follows

α = ε2 (d− 1) {[(d− 1) ε1 + ε2] + c̃ (ε1 − ε2)} (27)

β = {(d− 1) (ε2 − ε1) c̃ + [(d− 1) ε1 + ε2]} (28)

Now, Equation (26) can be written in the simple form

E3 =
d2ε1ε2

α + βε̃3

E∞ =
d2ε1ε2

α + β (ε3 + χ|E3|2)E
∞ (29)

At this point it is useful to obtain the average value of the electric field inside the composite material.
We develop our calculations along the z direction. The value of 〈Ez〉 can be obtained as follows

〈Ez〉 = (1− c) E∞ + c (1− c̃) 〈E2〉+ cc̃〈E3〉
= (1− c) E∞ − c (1− c̃) B|ε̃3 + cc̃E3 (30)

where we have used the property 〈E2〉 = −B above discussed. Here, B is not constant since it depends
on ε̃3. We have (note that D and B have the same denominator)

−B =
dε1 [(d− 1) ε2 + ε̃3]

α + βε̃3

E∞ (31)

From Equation (29) we can evaluate ε̃3 in terms of α and β

α + βε̃3 =
d2ε1ε2

E3

E∞ ⇒ ε̃3 =
1

β

(
d2ε1ε2

E3

E∞ − α

)
(32)
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Therefore, the coefficient −B assumes the simpler form

−B =
dε1

[
(d− 1) ε2 + 1

β

(
d2ε1ε2

E3
E∞ − α

)]

d2ε1ε2
E3

E∞ E∞

=
dε1

d2ε1ε2

[
(d− 1) ε2 +

1

β

(
d2ε1ε2

E3

E∞ − α

)]
E3

=
1

dε2

{[
(d− 1) ε2 − α

β

]
E3 +

d2ε1ε2

β
E∞

}
(33)

Now, we can obtain E∞ in terms of E3 from Equation (29)

E∞ =
α + β (ε3 + χ|E3|2)

d2ε1ε2

(34)

Substituting the previous expression in Equation (33) we obtain the average value of the electric field in
the coating shell

−B =
1

dε2

[
(d− 1) ε2 + ε3 + χ|E3|2

]
E3 (35)

The average value of the electric field over the entire structure is then obtained from Equation (30)

〈Ez〉 = (1− c)
α + β (ε3 + χ|E3|2)

d2ε1ε2

E3

+ c (1− c̃)
1

dε2

[
(d− 1) ε2 + ε3 + χ|E3|2

]
E3 + cc̃E3

=

{
(1− c)

α + βε3

d2ε1ε2

+ c (1− c̃)
(d− 1) ε2 + ε3

dε2

+ cc̃

}
E3

+

{
(1− c)

β

d2ε1ε2

+ c (1− c̃)
1

dε2

}
χ|E3|2E3

= ãE3 + b̃|E3|2E3 (36)

where we have defined

ã =

{
(1− c)

α + βε3

d2ε1ε2

+ c (1− c̃)
(d− 1) ε2 + ε3

dε2

+ cc̃

}

b̃ =

{
(1− c)

β

d2ε1ε2

+ c (1− c̃)
1

dε2

}
χ (37)

Now, Equation (36) is in the form 〈Ez〉 = ãE3 + b̃|E3|2E3, which is similar to Equation (12). It can be
simply solved with respect to E3 by considering the first two terms (of order one and three)

E3 =
〈Ez〉

ã
− b̃〈Ez〉|〈Ez〉|2

ã2|ã|2 (38)

We are searching for the effective dielectric constant and, therefore, for the relationship between the
average electric field and the average electric displacement. Then, it is important to evaluate the average
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electric displacement (in direction z)

〈Dz〉 =
1

V

∫

V

Dz dV

=
1

V

∫

V1

D1 dV +
1

V

∫

V2

D2 dV +
1

V

∫

V3

D3 dV

+
ε1

V

∫

V2

E2 dV − ε1

V

∫

V2

E2 dV +
ε1

V

∫

V3

E3 dV − ε1

V

∫

V3

E3 dV

= ε1〈Ez〉+ c (1− c̃) (ε2 − ε1) 〈E2〉+ cc̃〈(ε̃3 − ε1) E3〉
= ε1〈Ez〉+ c (1− c̃) (ε2 − ε1) (−B|ε̃3) + cc̃

(
ε3 + χ|E3|2 − ε1

)
E3

= ε1〈Ez〉+ c (1− c̃) (ε2 − ε1)
1

dε2

[
(d− 1) ε2 + ε3 + χ|E3|2

]
E3

+cc̃
(
ε3 + χ|E3|2 − ε1

)
E3 (39)

where D1, D2 and D3 are the displacement vectors in the three phases. We use Equation (38), giving the
value of E3, in order to approximate the quantity |E3|2. We obtain |E3|2 ∼= |〈Ez〉|2

|ã|2 . Similarly, we also

obtain E3|E3|2 ∼= 〈Ez〉
ã
· |〈Ez〉|2

|ã|2 . Therefore, the average displacement field is given by

〈Dz〉 = εeff〈Ez〉+ χeff〈Ez〉|〈Ez〉|2 (40)

where we have defined the effective quantities

εeff = ε1 + c (1− c̃) (ε2 − ε1)
1

dε2

[(d− 1) ε2 + ε3]
1

ã
+ cc̃ (ε3 − ε1)

1

ã
(41)

χeff = c (1− c̃) (ε2 − ε1)
1

dε2

[(d− 1) ε2 + ε3]
−b̃

ã2|ã|2

+c (1− c̃) (ε2 − ε1)
1

dε2

χ

ã|ã|2 + cc̃
χ

ã|ã|2 − cc̃ (ε3 − ε1)
b̃

ã2|ã|2 (42)

The results given in Equations (41) and (42) represent the complete nonlinear characterization of a dilute
dispersion of coated particles with nonlinear core. It is not difficult to verify that the result for εeff is
coincident with Equation (25), as expected [39]. Moreover, the second relation for χeff represents a
complementary result, describing the nonlinear behavior of the heterogeneous structure.

In this introductory section we have summed up the most important methodologies and results re-
garding simple geometries of heterogeneous structures. In the following we will use similar techniques
to analyze more complicated microstructures.

3. Nonlinear Electric Homogenization for Pseudo-Oriented Ellipsoids

In recent material science development, considerable attention has been devoted to electromagneti-
cally nonlinear composite structures due to their applications, for instance, to integrated optical devices
(such as optical switching and signal processing devices) [51–53]. More specifically, intrinsic optical
bistability has been extensively studied theoretically as well as experimentally with the help of mixture
theory [54, 55]. In all of these cases, a linear medium containing spherical or spheroidal inclusions has
been considered. Important results concerning a dispersion of dielectrically nonlinear and graded parallel
cylinders have been achieved by Wei et al. [56]. Our aim is to extend previous works and the techniques
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discussed in the previous section and to explore the importance of the orientational distribution and of the
inclusion shape in this context. To do this, we consider a dispersion of dielectrically nonlinear spheroidal
particles (ellipsoids of revolution), pseudo randomly oriented in a (dielectrically) linear matrix and we
then develop a mathematical procedure to perform the needed averages of the electric quantities over
all possible orientations of the inclusions. This analysis leads to the nonlinear anisotropic constitutive
equation connecting the macroscopic electric displacement to the macroscopic electric field. A particular
attention is devoted to the analysis of the effects of the orientational distribution of the particles inside the
composite material. The limiting cases of the present theory are represented by all the particles aligned
with a given direction (perfect order) and all the particles randomly oriented (complete disorder). We
take into account all the intermediate configurations between order and disorder with the aim to charac-
terize a material with particles partially aligned. In Figure 2 one can find some orientational distributions
between the upon described limiting cases.

Figure 2. Structure of a dispersion of pseudo-oriented ellipsoids. One can find some orien-
tational distributions ranging from order to disorder. The two-phase material is described by
the electric response of each phase, by the state of order and by the volume fraction of the
inclusions.

To define the geometry, we consider a given orthonormal reference frame and we take as preferen-
tial direction of alignment the z-axis. Each particle embedded in the matrix is not completely random
oriented. The orientation is described by the following statistical rule: the principal axis of each par-
ticle forms with the z-axis an angle ϑ, which follows a given probability density fΘ (ϑ) symmetrically
distributed in [0, π]. The symmetry of the density can be written as fΘ (ϑ) = fΘ (π − ϑ). We assume
that the orientation of each particle is statistically independent from the orientation of other particles. If
fΘ (ϑ) = (1/2)(δ (ϑ) + δ (ϑ− π)) (where δ is the Dirac delta function) we have all the particles with ϑ

= 0 (or ϑ = π, which corresponds to the same orientation) and, therefore, they are all oriented along the
z-axis. If fΘ (ϑ) = sin (ϑ) /2 all the particles are uniformly random oriented in the space over all the
possible orientations. Any other symmetric statistical distribution fΘ (ϑ) defines a transversely isotropic
(uniaxial) material with principal axis aligned with the z-axis. For example, if fΘ (ϑ) = δ (ϑ− π/2), all
particles have the principal axis orthogonal to the z-axis. In the following sections we develop a complete
analysis of the combined effects of the shape (aspect ratio or eccentricity) of the particles and their state
of order/disorder. This analysis allows us to evaluate the overall electric properties of the heterogeneous
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material. In particular, from the point of view of the shape of the particles, the so-called depolarization
factor L is the parameter that intervenes to characterize the medium. We verified that the state of order
acts on the overall linear and nonlinear dielectric properties by means of two parameters that are defined
as follows: C2 = 〈cos2 ϑ〉 and C4 = 〈cos4 ϑ〉. They correspond to the average values of cos2 ϑ and
cos4 ϑ, computed by means of the density probability fΘ (ϑ). The results may be applied to describe
the physical behavior of heterogeneous materials starting from the knowledge of the physical properties
of each medium composing the mixture as well as of the structural properties of the mixture itself, i.e.,
shape of the inclusions and state of order of the orientations (L, C2 and C4). It is worth pointing out, as
it frequently occurs in this field, that the presented results have been derived under electrostatic assump-
tion, but they hold valid also in the low frequency regime, as long as the wavelength is much larger than
the largest dimension of the inclusions. The analysis performed in the following has immediate appli-
cation to the field of the liquid crystals. Actually, our microstructure describes a material positionally
disordered, but with partial orientational order, which corresponds to a nematic phase in liquid crystals
[57, 58]. The level of ordering is reflected in the macroscopic properties. Some previous works have
been devoted to an analysis similar to that developed in this work but only from a dielectrically linear
point of view [59–62]. So, the following development can be considered as a nonlinear extension of such
previous ones.

4. Field Perturbation Due to One Single Nonlinear Ellipsoidal Inclusion in a Uniform Field

Here we present a general solution to the problem of a nonlinear ellipsoidal particle embedded in a
linear material. The theory is based on the following result derived for the linear case, which describes the
behavior of one electrically linear ellipsoidal particle of permittivity ε2 in a linear homogeneous medium
of permittivity ε1. Let the axes of the ellipsoid be lx, ly and lz (aligned with axes x, y, z of ellipsoid
reference frame) and let a uniform electric field ~E0 = (E0x, E0y, E0z) be applied to the structure. Then,
according to Stratton [43], the electric field ~Es = (Esx, Esy, Esz) inside the ellipsoid is uniform and it
can be expressed as follows

Esi =
E0i

1 + Li (ε2/ε1 − 1)
(43)

Here, and throughout the paper, the index i takes the x, y and z values. The expressions for the depolar-
ization factors Li in the case of generally shaped ellipsoid can be found in the literature [17]. They can
be expressed in terms of elliptic integrals. The condition Lx + Ly + Lz = 1 is always fulfilled.

Let’s now generalize Equation (43) to the case where a dielectrically nonlinear ellipsoid is embedded
in the linear matrix. A nonlinear isotropic and homogenous ellipsoid can be described from the electrical
point of view by the constitutive equation ~D = ε (E) ~E [63]. Here, ~D is the electric displacement inside
the particle, ~E is the electric field and the function ε depends only on the modulus E of ~E. This latter
property accounts for the fact that the medium inside the ellipsoid is isotropic and homogenous. The
main result follows. The electric field inside the inclusion is uniform even in the nonlinear case and it
may be calculated by means of the following system of equations [27]

Esi =
E0i

1 + Li [ε (Es)/ε1 − 1]
, ∀i (44)

where, as before, ~E0 is a uniform electric field applied to the structure and ~Es, the unknown in the
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nonlinear system (44), is a uniform field as well. This property holds true due to the following reason: if
a solution of (44) exists, due to self-consistency, all the boundary conditions are fulfilled and the problem
is completely analogous to its linear counterpart, treated by Stratton [43], provided that ε2 = ε (Es).

In order to simplify the following analysis we will adopt ellipsoids of revolution. Thus we consider
lx = ly and we define the aspect ratio as e = lz/lx = lz/ly. The depolarization factors for ellipsoids
of revolution may be computed in closed form as follows and the results depend on the shape of the
ellipsoid [17]. It is prolate (of ovary or elongated form) if e >1 and oblate (of planetary or flattened
form) if e <1

Lx = Ly =
e

2

+∞∫

0

dξ

(ξ + 1)2 (ξ + e2)1/2
=





e
4p3

[
2ep + ln e−p

e+p

]
if e > 1

e
4q3

[
π − 2eq − 2 arctan e

q

]
if e < 1

(45)

Lz =
e

2

+∞∫

0

dξ

(ξ + 1) (ξ + e2)3/2
=





1
2p3

[
e ln e+p

e−p
− 2p

]
if e > 1

1
2q3

[
2q − eπ + 2e arctan e

q

]
if e < 1

(46)

where p =
√

e2 − 1 and q =
√

1− e2. The relation 2Lx +Lz = 1 holds on and therefore we will consider
L = Lz as main geometric parameter of the system. An interesting aspect related to the problem faced
in this section shows up when one considers the nonlinear Equation (44) and tries to solve it iteratively
[27]. This means that, in order to solve for Es, one starts with a given initial value E0

s , and one uses the
successive approximations described by the iteration rule

En+1
si =

E0i

1 + Li

[
ε
( ∥∥∥ ~En

s

∥∥∥
)/

ε1 − 1
] (47)

The following sufficient convergence criterion has been verified [27]: the iteration rule given by Equation
(47) is convergent to the exact internal electric field if the nonlinear material of the ellipsoid fulfils the
condition

∣∣E
ε

∂ε
∂E

∣∣ < 1. In a general context, one can describe isotropic nonlinear dielectric materials by
means of the so-called Kerr nonlinearity relation, often adopted in metamaterials study

ε (E) = ε2 + αE2 (48)

which assumes that ε2 and α are constant. The Kerr nonlinearity is called focusing or defocusing ac-
cording to the fact that α > 0 or α < 0, respectively [63]. It is straightforward to verify that the
convergence condition

∣∣E
ε

∂ε
∂E

∣∣ < 1 is always verified for defocusing Kerr nonlinearity and is verified
only if E2

s < ε2/α (here Es is the modulus of the actual electric field inside the inclusion) in the case of
focusing nonlinearity [27].

5. Average Electric Field Inside a Single Pseudo-Random Oriented Inclusion

Now, our aim is to find an explicit version of Equation (44), which is valid when the nonlinear permit-
tivity is given by Equation (48). To begin the analysis, we substitute Equation (48), holding for a single
ellipsoid, in Equation (44)

Esi =
ε1E0i

ε1 + Li

[
ε2 − ε1 + α

(
E2

sx + E2
sy + E2

sz

)] (49)



Materials 2009, 2 1431

This is an algebraic system of degree nine with three unknowns, namely Esx, Esy, and Esz. It might be
hard, if not impossible, to be solved analytically, but we are interested, for our purposes, in just the first
terms of a series expansion for the solution. To obtain it, we may adopt the ansatz Esi = kiE0i + hiE

3
0i

and solve for ki and hi. Alternatively, we may use the iterative scheme given in Equation (47), in literal
form, adopting only the first iterations. For sake of brevity, we omit here the simple but long calculation,
which leads to the solution

Esi =
ε1E0i

(1− Li) ε1 + Liε2

− αε3
1LiE0i

[(1− Li) ε1 + Liε2]
2

∑
j

E2
0j

[(1− Lj) ε1 + Ljε2]
2 + ... (50)

We observe that the first term represents the classical Lorentz field appearing in a dielectrically linear
ellipsoidal inclusion. The second term is the first nonlinear contribution, which is directly proportional to
the inclusion hyper-susceptibility α. To simplify the expressions, from now on, we will use the notation:
ai = (1− Li) ε1 + Liε2. To derive the mixture behavior, we need to calculate the electric field in
a single nonlinear ellipsoidal inclusion arbitrarily oriented in space and embedded in a homogeneous
medium with permittivity ε1. In order to do this, we shall express Equation (50) in the global framework
of reference of the mixture. We define three unit vectors, indicating the principal directions of each
ellipsoid in space: they are referred to as n̂x, n̂y and n̂z, and they correspond to the axes of the ellipsoid.
By using Equation (50), we may compute the electric field induced by a given external arbitrary uniform
electric field inside the inclusion (from now on we will omit the additional higher order terms)

~Es =


ε1

~E0 · n̂i

ai

− αε3
1Li

~E0 · n̂i

a2
i

(
~E0 · n̂j

)(
~E0 · n̂j

)

a2
j


 n̂i (51)

We shall now average it over all the possible orientations of the particle. The expression for the internal
electric field in Equation (51) can be rewritten component by component as follows

Esk =

[
ε1E0lnil

ai

− αε3
1LiE0lnil

a2
i

E0qnjqE0pnjp

a2
j

]
nik (52)

where njk is the k-th component of the unit vector n̂j , (j = x, y, z) and we have considered the implicit
sums of i, j, l, q and pover 1, 2 and 3. For the following derivation, we are interested in the average
value of the electric field ~Es over all the possible orientations of the ellipsoid itself and then we have to
compute the following

〈Esk〉 =
ε1E0l 〈nilnik〉

ai

− αε3
1LiE0lE0qE0p 〈niknilnjqnjp〉

a2
i a

2
j

(53)

We may use Euler angles representation (ψ, ϕ and ϑ) to write down the explicit expressions for the
components of the unit vectors n̂x, n̂y and n̂z





n̂x = (cos ψ cos ϕ− sin ψ sin ϕ cos ϑ,− cos ψ sin ϕ− sin ψ cos ϕ cos ϑ, sin ψ sin ϑ)

n̂y = (sin ψ cos ϕ + cos ψ sin ϕ cos ϑ,− sin ψ sin ϕ + cos ψ cos ϕ cos ϑ,− cos ψ sin ϑ)

n̂z = (sin ϕ sin ϑ, sin ϑ cos ϕ, cos ϑ)

(54)
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In order to obtain the average value of the electric field ~Es, we need to calculate the average value of the
quantities defined in Equation (53). This is done by the following integral over the Euler angles

〈Esk〉 =
1

4π2

π∫

0

2π∫

0

2π∫

0

[
ε1E0lnilnik

ai

− αε3
1LiE0lE0qE0pniknilnjqnjp

a2
i a

2
j

]
dϕdψfΘ (ϑ) dϑ (55)

In order to represent the above described orientation of the particles, the angles ϕ and ψ are uniformly
distributed over the entire range [0 2π] and the angle ϑ follows the given probability density fΘ (ϑ) over
the range [0 π]. So, by performing the integration described in Equation (55) and by using Equation
(54), we may obtain that the average value of Esk depends on the two following parameters, defined by
means of the density probability fΘ (ϑ)

C2 =

π∫

0

cos2 ϑfΘ (ϑ) dϑ and C4 =

π∫

0

cos4 ϑfΘ (ϑ) dϑ (56)

These two parameters completely characterize the effects of the pseudo-orientation of the particles inside
the medium. Some particular values follow. When we are in the case of perfect order we have fΘ (ϑ) =

(1/2)(δ (ϑ) + δ (ϑ− π)) and the corresponding values are C2 = 1 and C4 = 1. If we are in the case of
complete disorder we have fΘ (ϑ) = sin (ϑ) /2 and we obtain C2 = 1/3 and C4 = 1/5. Finally, when
the particles all have the principal axis orthogonal to the z-axis we have fΘ (ϑ) = δ (ϑ− π/2) and the
values of the parameters are C2 = 0 and C4 = 0.

Since we are dealing with ellipsoids of revolution, in performing the integration of Equation (55)
we use the simplified notation a1 = a2 and L1 = L2 = (1 − L)/2, L3 = L. The factor L assumes
some characteristic values in correspondence to special shapes of the particles: for spheres L = 1/3, for
cylinders L = 0 and for lamellae or penny shaped inclusions L = 1. Summing up, we verified, after a
very long by straightforward integration, that the following simple relation gives the final result of the
averaging process

〈Esk〉 = γkE0k − αµklE0kE
2
0l (57)

Here, the sum on the index l is implied and the parameters γk and µkl can be organized as follows

γ =




γ1

γ1

γ3


 ; µ =




µ11 µ11 µ13

µ11 µ11 µ13

µ31 µ31 µ33


 (58)

The explicit results for the parameters γk are

γ1 =
1

2
ε1

a1 + a3

a1a3

+
1

2
ε1

a3 − a1

a1a3

C2 (59)

γ3 = ε1
1

a1

+ ε1
a1 − a3

a1a3

C2 (60)

Moreover, the explicit results for the parameters µkl are

µ11 =
ε3
1

16a4
1a

4
3

{
3a4

3 (1− L) + 6La4
1 + C2 [2a2

1a
2
3 (1 + L) + 2a4

3 (1− L)− 12La4
1] +

a2
1a

2
3 (1 + L) + C4 [6La4

1 − 3a2
1a

2
3 (1 + L) + 3a4

3 (1− L)]

}
(61)
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µ13 =
ε3
1

16a4
1a

4
3

{
8La2

1a
2
3 + 4a4

3 (1− L) + C2 [8a4
3 (1− L) + 24La4

1 − 4a2
1a

2
3 (1 + 7L)] +

+C4 [12a2
1a

2
3 (1 + L)− 12a4

3 (1− L)− 24La4
1]

}
(62)

µ31 =
ε3
1

4a4
1a

4
3

{
a2

1a
2
3 (1− L) + a4

3 (1− L) + C2 [2a4
3 (1− L) + 6La4

1 + 2a2
1a

2
3 (L− 2)] +

+C4 [3a2
1a

2
3 (1 + L)− 3a4

3 (1− L)− 6La4
1]

}
(63)

µ33 =
ε3
1

4a4
1a

4
3

{
2a4

3 (1− L) + C2 [2a2
1a

2
3 (1 + L)− 4a4

3 (1− L)] +

+C4 [2a4
3 (1− L)− 2a2

1a
2
3 (1 + L) + 4La4

1]

}
(64)

This is a first analytical result, which will play a crucial role in the following development of the theory.
It is interesting to observe that if a1 = a3 and L = 1/3 (we are dealing with spherical inclusions),
then the terms containing C2 and C4 completely disappear in Equations (59)–(64): it is correct since the
orientation is not important for an isotropic spherical object.

6. Averaging Process in a Dilute Mixture

From now on we analyze the dispersion of pseudo-oriented nonlinear ellipsoids. The permittivity of
the inclusions is described by the isotropic nonlinear relation ε (E) = ε2 + αE2 [see Equation (48)] and
the linear matrix has permittivity ε1; the overall electrical behavior of the dispersion is expected to be
anisotropic because of the pseudo-random orientation of the particles. This is true because the z-axis has
a special character induced by the partial alignment of the particles. Therefore, the equivalent electric
constitutive equation can be expanded in series with respect to the averaged electric field components:
〈Dk〉 = εeq

kj 〈Ej〉+χeq
kjil 〈Ej〉 〈Ei〉 〈El〉+..., where the coefficients εeq (the superscript eq pointing out the

equivalent character of the term) and χeq are tensors depending on various parameters of the mixture such
as the aspect ratio e of the ellipsoids, the volume fraction c of the included phase, the density probability
fΘ (ϑ) describing the orientational distribution, the permittivities ε1, ε2 and the Kerr susceptibility α of
the inclusions. The homogenization procedure should provide the structure of the entries of the tensors
εeq and χeq in terms of the mentioned parameters. In the technical literature, the coefficients α and χeq

(the first nonlinear terms of the expanded constitutive equations for inclusions and mixture, respectively)
are often called hyper-susceptibilities [27].

The main achievement of this work is the derivation of a closed form expression for the hyper-
susceptibility ratio χeq/α. These quantities are of interest as much as they represent the amplification
of the composite material nonlinear behavior with respect to that of the inclusions. In particular we are
interested in the dependence of these parameters on the state of order/disorder of the system, which is
well described by the density probability fΘ (ϑ). In other words, it means that we will write our results
in terms of the order parameters C2 and C4. Moreover, we may describe the dependence of the hyper-
susceptibility ratio χeq/α on the aspect ratio of the embedded particles, i.e., on the parameter e or L.
The final expressions are derived under the assumption that the constitutive equation of the composite
medium is of the form 〈Dk〉 = εeq

kj 〈Ej〉+χeq
kjil 〈Ej〉 〈Ei〉 〈El〉, which neglects higher order terms. All the

computations are carried out under the same hypothesis underlying the linear Maxwell-Garnett theory,
that is, low concentration c of the dispersed phase. So, if we consider a mixture with a volume fraction
c << 1 of pseudo-randomly oriented, dielectrically nonlinear ellipsoids embedded in a homogeneous
matrix with permittivity ε1, we can evaluate the average of the electric field over the space occupied by
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the mixture. It can be done via the following relationship
〈

~E
〉

= c
〈

~Es

〉
+ (1− c) ~E0 (65)

This means that we do not take into account the interactions among the inclusions because of the very
low concentration: each ellipsoid behaves as an isolated one. Once more, to derive Equation (65),
we assume an approximately uniform average electric field ~E0 in the space outside the inclusions. To
evaluate the equivalent constitutive equation, we compute the average value of the displacement vector
inside the random material. The region V is defined as the space occupied by the mixture, Ve as the
region occupied by the inclusions, and Vo as the remaining space (so that V = Ve∪Vo). The average
value of ~D (~r) = ε ~E (~r) is evaluated as follows ( ~D and ~E represent the local fields,

〈
~D

〉
and

〈
~E
〉

their macroscopic counterparts)
〈

~D
〉

= 1
|V |

∫
V

ε ~E (~r)d~r = 1
|V |ε1

∫
Vo

~E (~r)d~r + 1
|V |

∫
Ve

ε ~E (~r)d~r

= 1
|V |ε1

∫
Vo

~E (~r)d~r + 1
|V |ε1

∫
Ve

~E (~r)d~r + 1
|V |

|Ve|
|Ve|

∫
Ve

(ε− ε1) ~E (~r)d~r

= ε1

〈
~E
〉

+ c
〈
[ε (Es)− ε1] ~Es

〉
(66)

Here |V |is the measure of the region V . It can be noted that the average value given by the expression〈[
ε
(∥∥∥ ~Es

∥∥∥
)
− ε1

]
~Es

〉
is not available from the previous computations. We consider a single ellipsoidal

nonlinear inclusion and we search for the average value of the quantity
[
ε
(∥∥∥ ~Es

∥∥∥
)
− ε1

]
~Es over all the

possible orientations of the particle. From Equations (44) and (50) we obtain

[
ε
(∥∥∥ ~Es

∥∥∥
)
− ε1

]
Esi =

ε1

Li

(E0i − Esi) =
ε1

Li

[
E0i − ε1E0i

ai

+
αε3

1LiE0i

a2
i

∑
j

E2
0j

a2
j

]
(67)

therefore, in vector notation

[
ε
(∥∥∥ ~Es

∥∥∥
)
− ε1

]
~Es =

ε1

Li


 ~E0 · n̂i − ε1

~E0 · n̂i

ai

+
αε3

1Li
~E0 · n̂i

a2
i

(
~E0 · n̂j

)(
~E0 · n̂j

)

a2
j


 n̂i (68)

By taking the k-th component in the global reference framework, we may write

[
ε
(∥∥∥ ~Es

∥∥∥
)
− ε1

]
Esk =

ε1

Li

[
E0lnil − ε1E0lnil

ai

+
αε3

1LiE0lnil

a2
i

E0qnjqE0pnjp

a2
j

]
nik (69)

and averaging, after some straightforward computation

〈Dsk − ε1Esk〉 =
ε1 (ε2 − ε1)

ai

E0l 〈nilnik〉+
αε4

1E0l

a2
i

E0qE0p

a2
j

〈nilniknjqnjp〉 (70)

At this point, the explicit average value can be found by taking into consideration the expressions of the
unit vectors n̂x, n̂y and n̂z, given in Equation (54), and performing the integration in a similar way to
that shown in Equation (55). The effects of the pseudo-orientation of the particles inside the medium
are described, as before, by the order parameters C2 and C4. Of course, performing the averaging in
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Equation (70) we have used again the simplified notation a1 = a2 and L1 = L2 = (1 − L)/2, L3 = L.
So, the final result for the quantity 〈Dsk − ε1Esk〉 is given by the following simple relation

〈Dsk − ε1Esk〉 = (ε2 − ε1) γkE0k + αλklE0kE
2
0l (71)

Here the sum on the index l is implied and the parameters γk have been defined in Equations (58), (59)
and (60). Moreover, the parameters λkl can be arranged in following matrix notation

λ =




λ11 λ11 λ13

λ11 λ11 λ13

λ13 λ13 λ33


 (72)

The explicit values of the relative entries have been calculated as follows

λ11 =
ε4
1

8a4
1a

4
3

{
3a4

1 + 2a2
1a

2
3 + 3a4

3 + C2

[
4a2

1a
2
3 + 2a4

3 − 6a4
1

]
+ C4

[
3a4

1 − 6a2
1a

2
3 + 3a4

3

]}
(73)

λ13 =
ε4
1

8a4
1a

4
3

{
4a2

1a
2
3 + 4a4

3 + C2

[
8a4

3 + 12a4
1 − 20a2

1a
2
3

]
+ C4

[
24a2

1a
2
3 − 12a4

3 − 12a4
1

]}
(74)

λ33 =
ε4
1

2a4
1a

4
3

{
2a4

3 + C2

[
4a2

1a
2
3 − 4a4

3

]
+ C4

[
2a4

3 + 2a4
1 − 4a2

1a
2
3

]}
(75)

Once again, we observe that if a1 = a3 (we are dealing with spherical inclusions), then the terms
containing C2 and C4 completely disappear in Equations (73)–(75): the orientation is not relevant for
an isotropic spherical object. At this point we have all the balance equations needed to describe the
overall electrical behavior of the pseudo random dispersion. These relationships have been summarized
in Equation (76). The first relation corresponds to Equation (65) and furnishes the average electric field
over the mixture volume in terms of the applied field and the average internal field (equation deduced
under the hypothesis of low concentration). The second relation is taken from Equation (57) and gives
the explicit value of the average electric field inside an inclusion (it accounts just for the first nonlinear
terms). The third relation [see Equation (66)] furnishes the average value of the displacement vector over
the entire mixture volume (this formula is exact). Finally, the fourth equation is taken from Equation
(71) and gives the average value of the quantities 〈Dsk − ε1Esk〉 in terms of the applied electric field (as
before, it accounts just for the first nonlinear terms). The complete set of the balance equations follows





〈Ek〉 = c 〈Esk〉+ (1− c) E0k

〈Esk〉 = γkE0k − αµklE0kE
2
0l

〈Dk〉 = ε1 〈Ek〉+ c 〈Dsk − ε1Esk〉
〈Dsk − ε1Esk〉 = (ε2 − ε1) γkE0k + αλklE0kE

2
0l

(76)

We may observe that the nonlinear terms, appearing in the second and in the fourth equations, are simply
proportional to the hypersusceptibility α of the inclusions. By substituting the second equation in the
first one and the fourth relation in the third one we obtain a simpler system

{
〈Ek〉 = (1− c + cγk) E0k − cαµklE0kE

2
0l

〈Dk〉 = ε1 〈Ek〉+ c (ε2 − ε1) γkE0k + cαλklE0kE
2
0l

(77)
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Here, we have three vector fields involved: the average electric field over the entire mixture, the average
electric displacement and the external applied electric field. In order to find out the effective constitutive
equation for the whole composite material, we should obtain a relationship among the components 〈Dk〉
and the components 〈Eh〉. So we have to eliminate the external field E0k in Equation (77). Therefore,
now we need to solve the first relation in Equation (77) with respect to E0k: for our purposes it is
sufficient to obtain a series solution with two terms and thus we let E0k = gk 〈Ek〉+ mkl 〈Ek〉 〈El〉2, we
substitute it in the first relation in Equation (77) and we solve for the unknown coefficients gk and mkl.
The result is

E0k =
〈Ek〉

1− c + cγk

+
cαµkl 〈Ek〉 〈El〉2

(1− c + cγk)
2 (1− c + cγl)

2 (78)

The final achievement is obtained by substituting Equation (78) in the second equation of system (77)
and neglecting the powers of 〈Ek〉 greater than three

〈Dk〉 =

[
ε1 + c (ε2 − ε1)

γk

1− c + cγk

]
〈Ek〉+

[
α

c2 (ε2 − ε1) γkµkl + cλkl (1− c + cγk)

(1− c + cγk)
2 (1− c + cγl)

2

]
〈Ek〉 〈El〉2

(79)
This is the first form of the constitutive equation of the overall dispersion. This result can be further sim-
plified by defining the following quantities, which better describes the transversely isotropic (uniaxial)
character of the composite material: E2

⊥ = 〈E1〉2 + 〈E2〉2 , E// = 〈E3〉, D2
⊥ = 〈D1〉2 + 〈D2〉2 and

D// = 〈D3〉. The symbol // indicates the components aligned with the principal axis (the z-axis) and
the symbol⊥ indicates the components orthogonal to the principal axis. With such conventions Equation
(79) may be rearranged as follows





D⊥ = E⊥
[
ε⊥ + χ⊥,⊥E2

⊥ + χ⊥,//E
2
//

]

D// = E//

[
ε// + χ//,⊥E2

⊥ + χ//,//E
2
//

] (80)

The linear permittivities ε⊥ and ε// and the nonlinear hyper-susceptibilities χ⊥,⊥, χ⊥,//, χ//,⊥ and χ//,//

can be derived by comparison with Equation (79) and the relative explicit expressions are given below

{
ε⊥ = ε1 + c (ε2 − ε1)

γ1

1−c+cγ1

ε// = ε1 + c (ε2 − ε1)
γ3

1−c+cγ3





χ⊥,⊥ = α c2(ε2−ε1)γ1µ11+cλ11(1−c+cγ1)

(1−c+cγ1)4

χ⊥,// = α c2(ε2−ε1)γ1µ13+cλ13(1−c+cγ1)

(1−c+cγ1)2(1−c+cγ3)2

χ//,⊥ = α c2(ε2−ε1)γ3µ31+cλ13(1−c+cγ3)

(1−c+cγ1)2(1−c+cγ3)2

χ//,// = α c2(ε2−ε1)γ3µ33+cλ33(1−c+cγ3)

(1−c+cγ3)4

(81)

All these quantities are the main parameters describing the nonlinear electrical behavior of the overall
dispersion. We may observe that the nonlinear susceptibilities χ⊥,⊥, χ⊥,//, χ//,⊥ and χ//,// are pro-
portional to the susceptibility α of the inclusions and depend on the factors γk, µkl and λkl defined in
Equations (59)–(64) and Equations (73)–(75). It is worth pointing out that, as it is expected, the results
are explicitly written in terms of the depolarizing factor Lz = L of the inclusions, which directly depends
on the aspect ratio e [see Equation (45)], and in terms of the order parameters C2 and C4 that define the
state of orientational order/disorder, which depends on the probability density fΘ (ϑ) (see Equation (56)).
Finally, the particular cases of spherical inclusions (a1 = a3 and L = 1/3) and of ellipsoidal inclusions
with isotropic distribution (C2 = 1/3 and C4 = 1/5) provide results in perfect agreement with previous
investigations [27].
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7. Example of Application

In order to show some results of the previous procedure we choose a particular probability density
fΘ (ϑ) that depends on one parameter a. This probability density is particularly useful because when
the parameter a varies from −∞ to +∞ the orientational distribution of the inclusions assumes all the
interesting possibilities. More precisely, when a → −∞ we are in the case of perfect order and all the
particles are aligned with the z-axis, when a = 0 we are in the case of complete disorder (all the particles
uniformly random oriented in the space) and when a → +∞ all the inclusions have the principal axis
orthogonal to the z-axis. The expression of the normalized probability density over the range [0, π]
follows

fΘ (ϑ) =





1
2
sin (ϑ)

(a2+1) eaϑ

aea π
2 +1

if 0 ≤ ϑ ≤ π
2

1
2
sin (ϑ)

(a2+1) ea(π−ϑ)

aea π
2 +1

if π
2

< ϑ ≤ π
(82)

The function is symmetrical with respect to ϑ = π/2. The above statement can be also formulated as
follows: if a → −∞ one can verify that fΘ (ϑ) = (1/2)(δ (ϑ) + δ (ϑ− π)), where δ is the Dirac delta
function (perfect order); if a = 0 we obtain fΘ (ϑ) = sin (ϑ) /2 (complete disorder); finally, if a → +∞
it is possible to show that fΘ (ϑ) = δ (ϑ− π/2) and all the particles have the principal axis orthogonal
to the z-axis.

Figure 3. Shape of the probability density defined in Equation (82) in correspondence to
three different values of the parameter a (a = -4, a = 0 and a = 4).

In Figure 3 one can find the shape of this probability density in correspondence to three different
values of the parameter a (a = −4, a = 0 and a = 4). One can observe that, for negative values of a,
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we obtain a bimodal density, for a = 0 we obtain the sine shaped function fΘ (ϑ) = sin (ϑ) /2 and for
positive value of a, we have a unimodal behavior. This probability density is particularly useful also
because it allows computing the order parameters C2 and C4 in a closed form

C2 =

π∫

0

cos2 ϑfΘ (ϑ) dϑ =
1

2

(a2 + 1)

aea π
2 + 1

π∫

0

cos2 ϑ sin ϑeaϑdϑ =
2aea π

2 + a2 + 3

(a2 + 9)
(
aea π

2 + 1
) (83)

C4 =

π∫

0

cos4 ϑfΘ (ϑ) dϑ =
1

2

(a2 + 1)

aea π
2 + 1

π∫

0

cos4 ϑ sin ϑeaϑdϑ =
24aea π

2 + a4 + 22a2 + 45

(a2 + 25) (a2 + 9)
(
aea π

2 + 1
) (84)

The previous expressions furnish the following special values: if a → −∞ we have C2 = C4 = 1, if
a = 0 we have C2 = 1/3 and C4 = 1/5 and, finally, if a → +∞ we obtain C2 = C4 = 0. In Figure 4
one can find the behavior of the coefficients C2 and C4 versus the parameter a.

Figure 4. Behavior of the order parameters C2 and C4 in terms of the coefficient a as
described by Equations (83) and (84), respectively.

We have written a software code that implements the complete procedure summed up in Equation
(81), in order to obtain the macroscopic linear and nonlinear features of the composite material in terms
of the aspect ratio e of the ellipsoids and of the parameter a controlling the state of order, as above
described. A first series of results concerns the case with ε1 = 1, ε2 = 10 and c = 0.25. They are
shown in Figures 4–9 versus a and Log10(e). More precisely, one can find: in Figure 4 the permittiv-
ity ε⊥, in Figure 5 the permittivity ε//, in Figure 6 the susceptibility amplification Log10 (χ⊥,⊥/α), in
Figure 7 the susceptibility amplification Log10

(
χ⊥,///α

)
, in Figure 8 the susceptibility amplification

Log10

(
χ//,⊥/α

)
and, finally, in Figure 9 the susceptibility amplification Log10

(
χ//,///α

)
. A second
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series of results, concerning the case with ε1 = 1, ε2 = 0.1 and c = 0.25 can be found in Figures 10–15.
As before, they have been represented in terms of a and Log10(e) and we have adopted the same ordering
for the plots. We may draw a comparison among the results obtained when ε2/ε1 = 10 and the results
obtained when ε2/ε1 = 1/10: in both cases, as for the longitudinal and transversal permittivities, we
may observe that the effect of the order/disorder has opposite behavior for prolate and oblate particles.
Moreover, the complex behavior of the susceptibility amplifications is inverted moving from the case
with ε2/ε1 = 10 to the case with ε2/ε1 = 1/10. The plots exhibit a very complex scenario for the
macroscopic properties of the nonlinear material, strongly dependent on the state of order and on the
geometric features of the embedded ellipsoids of revolution (prolate or oblate).

We draw some conclusions about the homogenization procedure described. We have analyzed the
nonlinear dielectric effects of the orientational order/disorder of non-spherical particles in composite or
heterogeneous materials. As result of this analysis we have found the correct definition of two order
parameters (C2 and C4) in such a way to predict the macroscopic electric properties as function of the
state of microscopic order. In particular, we have found out explicit relationships that allow us the
calculation of the linear permittivity tensor and the nonlinear susceptibility tensor in terms of the shape
of the embedded particles and the order parameters. We have outlined and applied a complete procedure
which takes into account any given orientational distribution of ellipsoids in the matrix. The theory
can find many applications to real physical situations ranging from technological aspects of composite
materials to optical characterization of nematic liquid crystals and to tissues modeling in biophysics.

Figure 5. Permittivity ε⊥ versus a and Log10 (e) for ε1 = 1, ε2 = 10 and c = 0.25.
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Figure 6. Permittivity ε// versus a and Log10 (e) for ε1 = 1, ε2 = 10 and c = 0.25.

Figure 7. Susceptibility amplification Log10 (χ⊥,⊥/α) versus a and Log10 (e) for ε1 = 1, ε2

= 10 and c = 0.25.
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Figure 8. Susceptibility amplification Log10

(
χ⊥,///α

)
versus a and Log10 (e) for ε1 = 1, ε2

= 10 and c = 0.25.

Figure 9. Susceptibility amplification Log10

(
χ//,⊥/α

)
versus a and Log10 (e) for ε1 = 1, ε2

= 10 and c = 0.25.
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Figure 10. Susceptibility amplification Log10

(
χ//,///α

)
versus a and Log10 (e) for ε1 = 1,

ε2 = 10 and c = 0.25.

Figure 11. Permittivity ε⊥ versus a and Log10 (e) for ε1 = 1, ε2 = 0.1 and c = 0.25.
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Figure 12. Permittivity ε// versus a and Log10 (e) for ε1 = 1, ε2 = 0.1 and c = 0.25.

Figure 13. Susceptibility amplification Log10 (χ⊥,⊥/α) versus a and Log10 (e) for ε1 = 1, ε2

= 0.1 and c = 0.25.
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Figure 14. Susceptibility amplification Log10

(
χ⊥,///α

)
versus a and Log10 (e) for ε1 = 1,

ε2 = 0.1 and c = 0.25.

Figure 15. Susceptibility amplification Log10

(
χ//,⊥/α

)
versus a and Log10 (e) for ε1 = 1,

ε2 = 0.1 and c = 0.25.
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Figure 16. Susceptibility amplification Log10

(
χ//,///α

)
versus a and Log10 (e) for ε1 = 1,

ε2 = 0.1 and c = 0.25.

8. Nonlinear Elastic Homogenization

The theoretical approaches utilized to analyze nonlinear elastic composite materials are typically
based on rigorous variational principles which, in addition to possessing mathematical rigor, have the
advantage of leading to bounds and relatively accurate estimates for the mechanical properties. Such
variational principles allow one to obtain estimates of the effective energy densities of nonlinear materi-
als in terms of the corresponding information for linear composites with the same microstructure. These
methodologies can be found on an excellent review by Ponte Castañeda and Suquet [64]. From the his-
torical point of view, the variational procedure of Hashin and Shtrikman [3, 4] is the first important result
concerning the linear behavior of electric and elastic heterogeneous materials. This variational proce-
dure provides lower and upper bounds on the elastic moduli and elastic tensors for isotropic composites
(reinforced by randomly positioned particles). A generalization of the Hashin-Shtrikman variational
principles, suitable for nonlinear materials, was developed by Talbot and Willis [65, 66]. This extension
can be used to obtain improved bounds (depending on a two-point statistical information) for nonlinear
composites. Variational methods for deriving improved bounds and estimates for the effective properties
of nonlinear materials, utilizing the effective modulus tensor of suitably selected linear-elastic compar-
ison materials, were introduced by Ponte Castañeda [67–70] for materials with isotropic phases and by
Suquet [71] for composites with power-law phases. Moreover, a hybrid of the Talbot-Willis and Ponte
Castañeda procedures, using a linear thermoelastic comparison material, was proposed by Talbot and
Willis [72]. An important advantage of the variational procedures that involve linear comparison mate-
rials is that, they can not only produce the nonlinear Hashin-Shtrikman-type bounds of the Talbot-Willis
procedure directly from the corresponding linear Hashin-Shtrikman bounds, but also yield higher-order
nonlinear bounds, such as Beran-type bounds [73], as well as other types of estimates.
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The general nonlinear elastic features are relevant in many materials science problems. For example,
in biomechanics, transient elastography has shown its efficiency to map the nonlinear properties of soft
tissues and it can be used as diagnostic technique [74, 75]. In material science the linear theory is
incapable of fully capturing all fracture phenomena and hyperelasticity plays a governing role in the
dynamics of fracture [76, 77]. The quantum dots growth, ordering and orientation (occurring during
processing) are largely affected by elastic phenomena, even beyond the linear regime [78, 79]. Finally,
many problems of fracture mechanics in composite materials do contain nonlinear features like, e.g., the
interaction between a crack and a fiber (or, more generally, an inclusion) [80].

The aim of the remaining part of the present work is to review the elastic properties of dispersions of
nonlinear elastic inclusions embedded in a linear elastic hosting matrix. Here, we do not apply method-
ologies based on variational principles since we can obtain, in this particular case, the estimate of the
effective elastic behavior by means of the direct calculations of the elastic fields. Therefore, we describe
a procedure similar to that utilized, in the previous sections, for the dielectric homogenization. In partic-
ular, we will study the elastic fields induced in a single nonlinear particle and then we use such results to
homogenize complex dispersions. It is known that the concept of nonlinearity can be introduced in the
theory of elasticity in two different ways [81]. A first nonlinearity can be taken into account by means of
the exact relation for the strain (not limited for small deformation) and the exact equilibrium equations
for a volume element of the body (this first aspect is referred to as geometrical nonlinearity since it is
related to the equations not depending on the material under consideration). Secondly, another nonlinear
effect can be considered through the arbitrariness of the (generically not Hookean) stress-strain consti-
tutive relation (this aspect is referred to as physical nonlinearity since it is related to properties of the
material under consideration). Therefore, by combining the two previous contributions, it follows that
there are four different types of problems in the theory of elasticity [82]

• those having both physical and geometrical linearity;

• those which are physically nonlinear but geometrically linear;

• those linear physically but nonlinear geometrically;

• those nonlinear both physically and geometrically.

The problems of the first type are the subject of the (classical) theory of elasticity (small deforma-
tion in Hookean materials). In this review, we adopt the second conceptual framework. The angles of
rotation can be neglected in determining changes in dimensions in the line elements and in formulating
the conditions of equilibrium of a volume elements: therefore, the balance equations are based on the
standard small-strain tensor and on the Cauchy stress tensor (typically introduced in the problem of the
first type). However, the elongations exceed the Hookean limit of proportionality (between stress and
strain) and this requires a nonlinear stress-strain relationship. This conceptual framework is sometimes
referred to as hypoelasticity: it is intended to model perfectly reversible nonlinear stress-strain behavior
but restricted to infinitesimal strains. Such a description has been already adopted in the past in order to
model nonlinear cubic polycrystals with perturbative and self-consistent methods [83].

In the following we outline a complete homogenizing procedure for two nonlinear composite materi-
als that paradigmatically represent most features of the above described examples. Firstly, we consider
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a dispersion of nonlinear (but isotropic, i.e., amorphous or polycrystalline) spheres embedded in a lin-
ear homogeneous and isotropic matrix. The nonlinearity of the spheres can be described, at most, by
four parameters (the so-called Landau coefficients) measuring the deviation from the linearity. Since the
overall behavior of the heterogeneous structure will be elastically nonlinear, the key point is the evalu-
ation of the effective nonlinear properties of the composite material. Secondly, a similar procedure has
been developed for a distribution of parallel (nonlinear) cylinders embedded in a (linear) matrix. In both
geometries, the most important methodological aspect is given by a useful generalization of the Eshelby
theory [84] to nonlinear inhomogeneities.

9. Nonlinear Elastic Constitutive Equations

In geometrically linear elasticity, the balance of linear and angular momentum hold for all materials,
regardless of their constitution.

The balance of the linear momentum leads to the equation of motion in the form ∂Tij

∂xj
+ bj = ρ∂2ui

∂t2

where the Tij are the components of the Cauchy stress tensor T̂ , bj are the components of the externally
applied body force ~b, ρ is the mass density and ui are the components of the displacement ~u [81]. The
balance of the angular momentum leads to the symmetry of the stress tensor (Tij = Tji). However,
these relations are generally insufficient to determine the elastic fields produced by given boundary
conditions and body forces. They need to be supplemented by a further set of relations, referred to as
constitutive equations, which characterize the constitution of the body. The convenient starting point is
a set of relations in which the stress components are regarded as single-valued functions of the strain
components

Tij = fij (ε̂) or T̂ = f (ε̂) (85)

where the functions fij are chosen so that fij = fji in order to satisfy the stress symmetry and ε̂ is the
small-strain tensor with components εij = 1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
[81].

For example, in physically linear elasticity the tensor relationship

Tij = Cijkhεkh (86)

is taken into consideration in order to describe any kind of anisotropy. The stiffness tensor Cijkh must
fulfill the following constraints:

• Cijkh = Cjikh and Cijkh = Cijhk, in order to preserve the symmetry of the stress tensor and of the
strain tensor;

• Cijkh = Ckhij , derived by the existence of an elastic energy density (Green hypothesis).

For isotropic materials the previous considerations lead to the notable stress-strain relation T̂ = 2µε̂ +

λTr (ε̂) Î , which is based on the two independent Lamè constants λ and µ [85, 86].
When considering nonlinear elastic material, Equation (86) can be generalized by means of higher

order elastic moduli taking into account the deviation from the stress-strain proportionality [87, 88]

Tij = Cijkhεkh +
1

2
Lijkhnmεkhεnm + ... =

[
Cijkh +

1

2
Lijkhnmεnm + ...

]
εkh = CNL

ijkh (ε̂) εkh (87)
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where ĈNL (ε̂) is the nonlinear (strain dependent) stiffness tensor. It can be noticed that the tensor Ĉ
has 21 independent entries, while the second order tensor L̂ has 56 independent components. Tables
for the values of Cijkh and Lijkhnm can be found in literature [83]. These values can be obtained by
experimental procedure [89, 90] and by computational techniques (e.g., molecular dynamics [91] or
first-principles calculations [92]).

For the following purposes we are interested in the isotropic nonlinear constitutive equations ex-
panded up to the second order in the strain components. In order to introduce these forms of physical
nonlinearities we can take into account two different approaches, as described below.

9.1. Cauchy elasticity

The Cauchy approach to the constitutive equations is the less restrictive starting point for the elasticity
theory since it does not consider the strain energy function. It is simply based on the Equation (85). To
develop this approach in an isotropic context an assumption must be made concerning the behavior of
Equation (85) under rigid-body rotations. The function f (ε̂) must satisfy the identity [81]

R̂T f (ε̂) R̂ = f
(
R̂T ε̂R̂

)
(88)

for all proper orthogonal tensor R̂ representing the rotation. A function satisfying the previous identity
is known as an isotropic tensor function, and it can be represented in the form [81]

T̂ = f (ε̂) = q1Î + q2ε̂ + q3ε̂
2 (89)

where Î is the identity operator and q1, q2 and q3 are scalar functions of the invariants Tr(ε̂), Tr(ε̂2) e
Tr(ε̂3) of the strain tensor ε̂

qα = qα

(
Tr(ε̂), Tr(ε̂2), Tr(ε̂3)

)
(90)

The development of Equation (89), up to the second order in the powers of ε̂, provides the following
constitutive equation

T̂ = 2µε̂ + λTr (ε̂) Î + Aε̂2 + BTr
(
ε̂2

)
Î + C [Tr (ε̂)]2 Î + Dε̂Tr (ε̂) (91)

where µ and λ are the standard Lamè moduli concerning the linear contribution and A,B,C and D are
the coefficients describing the nonlinear behavior of the material.

9.2. Green elasticity

The Green elasticity is based on Equation (85) with an additional hypothesis: we suppose that the
stress power, in a given deformation, is absorbed into a strain energy function U(ε̂), representing the
density of elastic potential energy. The existence of such a function and the consideration of energy
balance in the continuum, lead to the evolution equation [85]

dU(ε̂)

dt
= Tij(ε̂)

dεij

dt
(92)

affirming that the function U(ε̂) is an exact differential form such that

Tij(ε̂) =
∂U(ε̂)

∂εij

(93)
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So, if a function U(ε̂) exists, the (arbitrarily nonlinear) constitutive equation for a given material can
be determined by Equation (93) [85, 86]. From the thermodynamics point of view, the strain energy
function can be identified with the internal energy per unit volume in an isentropic process, or with
the Helmholtz free energy per unit volume in an isothermal process. Such an approach can be further
developed for isotropic media: in this case, the function U(ε̂) must satisfy the relation [81]

U(ε̂) = U
(
R̂T ε̂R̂

)
(94)

for any rotation tensor R̂. Equation (94) represents the scalar counterpart of the tensor relation Equation
(88). If Equation (94) is true then it follows that the function U(ε̂) can depend only on the principal
invariants of the strain tensor

U = U
(
Tr(ε̂), Tr(ε̂2), Tr(ε̂3)

)
(95)

We may expand Equation (95) up to the third order in the strain components, obtaining [86]

U(ε̂) = µTr
(
ε̂2

)
+

λ

2
[Tr (ε̂)]2 +

A

3
Tr

(
ε̂3

)
+ BTr (ε̂) Tr

(
ε̂2

)
+

C

3
[Tr (ε̂)]3 (96)

Finally, performing the derivatives indicated in Equation (93), we obtain the nonlinear isotropic consti-
tutive equation (within the Green approach) expanded up to the second order in the strain tensor

T̂ = 2µε̂ + λTr (ε̂) Î + Aε̂2 + B
{

Tr
(
ε̂2

)
Î + 2ε̂Tr (ε̂)

}
+ C [Tr (ε̂)]2 Î (97)

It is evident by comparison of Equation (91) and Equation (97) that the Green elasticity is more re-
strictive than the Cauchy elasticity: we obtain the Green formulation from the Cauchy formulation by
imposing D = 2B. We use four independent parameters (A,B, C and D) in the Cauchy elasticity and
three independent parameters (A,B and C) in the Green elasticity. These parameters are called Landau
coefficients [86].

10. Eshelby Theory for Nonlinear Inhomogeneities

A nonlinear isotropic and homogenous ellipsoid can be generically described by the relation T̂ =

Ĉ(2) (ε̂) ε̂ (see Equation (87)). Let us now place this inhomogeneity in a linear matrix characterized by a
stiffness tensor Ĉ(1) (see Figure 17) and let us calculate the strain field inside the particle when a uniform
field T̂∞ = Ĉ(1)ε̂∞ is remotely applied to the system.

If the particle were linear, with Ĉ(2) independent from the strain, we would have, inside the ellipsoid,
a uniform strain field ε̂s given by the Eshelby theory [93, 94]

ε̂s =

[
Î − Ŝ

(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)]−1

ε̂∞ (98)

where, we have introduced the Eshelby tensor Ŝ , which depends only on geometrical factors of the
ellipsoid (the semi-axes a1, a2 and a3) and on the Poisson ratio of the host matrix [84]. Conversely, if
the ellipsoid were nonlinear, it is easy to prove that the internal uniform field must satisfy the equation

ε̂s =

[
Î − Ŝ

(
Î −

(
Ĉ(1)

)−1

Ĉ(2) (ε̂s)

)]−1

ε̂∞ (99)
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Figure 17. Scheme of an ellipsoidal inhomogeneity.
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Ĉ(1)

T̂
∞

−a3

−a2

−a1

<3 \ Ω

obtained form Equation (98) through the substitution Ĉ(2) → Ĉ(2) (ε̂s). If a solution ε̂s∗ exists for a given
ε̂∞, it means that the nonlinear inhomogeneity could be replaced by a linear one with constant stiffness
Ĉ(2) = Ĉ(2) (ε̂s∗), without modifications of the elastic fields at any point. Therefore, if a solution exists,
then Equation (99) exactly describes, through self-consistency, the elastic behavior of the nonlinear
anisotropic inclusion. This is not a trivial result: for instance, such a generalization of Equation (98)
is not valid if a nonlinear behavior is assumed for material 1 (matrix). The calculation of the internal
strain field from Equation (99) is very complicated and it strongly depends on the kind of nonlinearity
T̂ = Ĉ(2) (ε̂) ε̂. This task will be accomplished in the following, dealing with a sphere or a cylinder
described by physical nonlinearities as those in Equation (91) (Cauchy) or Equation (97) (Green).

To conclude, we have proved the following general statement: if the linear elastic space with a single
inhomogeneity of ellipsoidal shape is subjected to remote uniform loading, the stress field inside the
inhomogeneity will be uniform independent of the constitutive law for the inhomogeneity, provided that
both the matrix and the particle are homogeneous bodies. Some similar properties can be found in earlier
literature [95–97].

When the Green approach is considered it is also possible to verify the existence and the uniqueness
for the solution of Equation (99) [98, 99]. The proof follows.

10.1. Nonlinear Eshelby theory within green elasticity

We adopt here, from the energetic point of view, the Green formulation of the elasticity theory. A
strain energy function U(ε̂) defines the constitutive equation T̂ (ε̂) = ∂U(ε̂)

∂ε̂
of the inhomogeneity, which

is equivalent to T̂ (ε̂) = Ĉ(2) (ε̂) ε̂. In these conditions, the existence and uniqueness of a solution for
Equation (99) can be exactly proved under the sole hypothesis of convexity for the strain energy function
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U(ε̂) [98, 99]. To prove this statement, we rearrange Equation (99) as follows
{

Î − Ŝ
[
Î −

(
Ĉ(1)

)−1

Ĉ(2) (ε̂s)

]}
ε̂s = ε̂∞

ε̂s − Ŝ
[
Î −

(
Ĉ(1)

)−1

Ĉ(2) (ε̂s)

]
ε̂s = ε̂∞

ε̂s − Ŝ ε̂s + Ŝ
(
Ĉ(1)

)−1

Ĉ(2) (ε̂s) ε̂s = ε̂∞

[
Î − Ŝ

]
ε̂s + Ŝ

(
Ĉ(1)

)−1 ∂U(ε̂s)

∂ε̂s
= ε̂∞

Ĉ(1)
[
Ŝ−1 − Î

]
ε̂s − Ĉ(1)Ŝ−1ε̂∞ +

∂U(ε̂s)

∂ε̂s
= 0 (100)

Now, the first linear term can be converted to the gradient of a quadratic form and the second constant
term can be converted to the gradient of a linear form. At the end we observe that the internal strain field
must satisfy the following relation [98, 99]

∂

∂ε̂

{
1

2
ε̂Ĉ(1)

[
Ŝ−1 − Î

]
ε̂− ε̂Ĉ(1)Ŝ−1ε̂∞ + U(ε̂)

}
= 0 (101)

which is exactly equivalent to Equation (99). The first term represents a symmetric and positive definite
quadratic form in ε̂ (see Appendix A) while the second term is a linear function of ε̂. Therefore, the sum
of these two terms is a convex functional with relative minimum at

[
Î − Ŝ

]
ε̂∞. This value represents

the strain field in a void (Ĉ(2) (ε̂) = 0 in Equation (99) or U(ε̂) = 0 in Equation (101)) embedded in the
matrix with stiffness Ĉ(1). If U(ε̂) is a convex functional (with U(0) = 0) the brackets in Equation (101)
contain the sum of two convex terms: they result in an overall convex functional with a unique minimal
extremum at ε̂s.

11. Elastic Dispersion of Nonlinear Spherical Inhomogeneities

We consider an assembly of spherical inhomogeneities (see Figure 18) described by a Cauchy consti-
tutive relation

T̂ s = 2µ2ε̂
s + λ2Tr (ε̂s) Î + A (ε̂s)2 + BTr

[
(ε̂s)2] Î + C [Tr (ε̂s)]2 Î + Dε̂sTr (ε̂s) (102)

randomly embedded in a linear matrix with stiffness tensor Ĉ(1) (moduli λ1 and µ1). We also introduce
the bulk moduli K1 = λ1 + 2

3
µ1 and K2 = λ2 + 2

3
µ2. If needed, we can easily move to the Green

elasticity by assuming D = 2B. We suppose that the volume fraction c of the embedded phase is small
(dilute dispersion). Since the elastic interactions can be neglected, each sphere behaves as an isolated
one under the effect of a remote load T̂∞ = Ĉ(1)ε̂∞. The starting point for the evaluation of the induced
internal strain ε̂s is Equation (99), which can be usefully rearranged as follows

ε̂s − Ŝ ε̂s + Ŝ
(
Ĉ(1)

)−1

T̂ s = ε̂∞ (103)

Here, we have introduced the internal stress given by the relation T̂ s = Ĉ(2) (ε̂s) ε̂s. The result of the

application of
(
Ĉ(1)

)−1

over the stress tensor T̂ s can be easily written in explicit form

(
Ĉ(1)

)−1

T̂ s =
1

2µ1

T̂ s − λ1

2µ1 (2µ1 + 3λ1)
Tr

(
T̂ s

)
Î (104)
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Figure 18. Scheme of a dispersion of nonlinear spheres embedded in a linear matrix.
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Moreover, the explicit expression of the Eshelby tensor for a sphere is reported in literature [28, 84]

Sijkh =
1

15(1− ν1)
[(δikδjh + δihδjk) (4− 5ν1) + δkhδij(5ν1 − 1)] (105)

We can evaluate the effect of Sijkh over an arbitrary strain εs
kh, getting

Sijkhε
s
kh =

2(4− 5ν1)

15(1− ν1)
εs
ij +

5ν1 − 1

15(1− ν1)
εs
kkδij (106)

Now, the Poisson ratio ν1 of the matrix can be written in terms of the bulk modulus K1 and the shear
modulus µ1 through the standard relation ν1 = 3K1−2µ1

2(3K1+µ1)
, obtaining

Ŝ ε̂s =
6

5

K1 + 2µ1

3K1 + 4µ1

ε̂s +
1

5

3K1 − 4µ1

3K1 + 4µ1

Tr (ε̂s) Î (107)

In order to find a single equation for the internal strain ε̂s, we can substitute Equations (102), (104) and
(107) in Equation (103). A long algebraic calculation leads to the important equation [98, 99].

Lε̂s + MTr (ε̂s) Î + N (ε̂s)2 + Oε̂sTr (ε̂s) + PTr
[
(ε̂s)2] Î + Q [Tr (ε̂s)]2 Î = ε̂∞ (108)

which completely defines the internal strain induced in a nonlinear sphere by the uniform remote defor-
mation ε̂∞. The parameters L,M, N, O, P and Q have been written in terms of the shear moduli, bulk



Materials 2009, 2 1453

moduli and nonlinear coefficients as follows

L = 1 +
6

5

K1 + 2µ1

3K1 + 4µ1

(
µ2

µ1

− 1

)
(109)

M =
1

5 (3K1 + 4µ1)

[
5K2 −K1

(
3 + 2

µ2

µ1

)
− 4 (µ2 − µ1)

]
(110)

N =
3

5

A

µ1

K1 + 2µ1

3K1 + 4µ1

(111)

O =
3

5

D

µ1

K1 + 2µ1

3K1 + 4µ1

(112)

P =
1

15 (3K1 + 4µ1)

[
15B − A

(
1 + 3

K1

µ1

)]
(113)

Q =
1

15 (3K1 + 4µ1)

[
15C −D

(
1 + 3

K1

µ1

)]
(114)

At this point we take into consideration the actual dispersion of spheres. We define V as the total volume
of the composite material, Ve as the volume corresponding to the spheres and Vo as the volume of the
matrix (V = Vo∪Ve, see Figure 18). Since we are working under the hypothesis of small volume fraction
c, we can consider the average value of the strain in the matrix equal to the externally applied strain ε̂∞.
Therefore, the average value of the strain in the overall system is given by

〈ε̂〉 = cε̂s + (1− c)ε̂∞ (115)

On the other hand, the average value of the stress over the entire structure can be calculated as follows

〈T̂ 〉 =
1

V

∫

V

T̂dv =
1

V
Ĉ(1)

∫

Vo

ε̂dv +
1

V

∫

Ve

T̂dv

=
1

V
Ĉ(1)

∫

Vo

ε̂dv +
1

V

∫

Ve

T̂dv +
1

V
Ĉ(1)

∫

Ve

ε̂dv − 1

V
Ĉ(1)

∫

Ve

ε̂dv (116)

=
1

V
Ĉ(1)

∫

V

ε̂dv +
1

V

[∫

Ve

T̂dv + Ĉ(1)

∫

Ve

ε̂dv

]

= Ĉ(1) 〈ε̂〉+ c
[
T̂ s − Ĉ(1)ε̂s

]

In order to obtain the macroscopic characterization of the material, we search for the relationship between
〈T̂ 〉 and 〈ε̂〉, given in Equations (115) and (116), respectively.

By substituting Equation (108) in Equation (115), we obtain the average strain 〈ε̂〉 in terms of the
internal strain ε̂s

〈ε̂〉 = [c + (1− c)L] ε̂s

+ (1− c)
{

MTr (ε̂s) Î + N (ε̂s)2 (117)

+ Oε̂sTr (ε̂s) + PTr
[
(ε̂s)2] Î + Q [Tr (ε̂s)]2 Î

}

and by substituting the constitutive relations in Equation (116), we obtain the average stress 〈T̂ 〉 in terms
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of ε̂s

〈T̂ 〉 = 2µ1〈ε̂〉+

(
K1 − 2

3
µ1

)
Tr〈ε̂〉Î

+ c

{
2 (µ2 − µ1) ε̂s +

[
K2 −K1 − 2

3
(µ2 − µ1)

]
Tr (ε̂s) Î (118)

+ A (ε̂s)2 + BTr
[
(ε̂s)2] Î + C [Tr (ε̂s)]2 Î + Dε̂sTr (ε̂s)

}

The last two expressions, although in implicit form, define the macroscopic constitutive equation relating
〈T̂ 〉 and 〈ε̂〉. In fact, we may obtain ε̂s in terms of 〈ε̂〉 from Equation (117) and this result can be replaced
in Equation (118), leading to the final characterization. In order to follow this scheme, we rewrite
Equation (117) in a simpler form

〈ε̂〉 = L′ε̂s + M ′Tr (ε̂s) Î + N ′ (ε̂s)2 + O′ε̂sTr (ε̂s) + P ′Tr
[
(ε̂s)2] Î + Q′ [Tr (ε̂s)]2 Î (119)

where we have used the definitions

L′ = c + (1− c) L (120)

M ′ = (1− c)M (121)

N ′ = (1− c)N (122)

O′ = (1− c)O (123)

P ′ = (1− c)P (124)

Q′ = (1− c)Q (125)

Starting from Equation (119), we can straightforwardly calculate the quantities Tr 〈ε̂〉, 〈ε̂〉2, 〈ε̂〉Tr 〈ε̂〉,
Tr

(〈ε̂〉2) and [Tr 〈ε̂〉]2 in terms of the internal strain ε̂s (by using the relation Tr(Î) = 3). These set of
relations can be written neglecting the terms of order greater than two in ε̂s, since we are interested in the
characterization of the nonlinear elastic properties of the dispersion up to the second order. Therefore,
this set of equations can be arranged in a matrix form, as follows

Ũ




ε̂s

Tr (ε̂s) Î

(ε̂s)2

ε̂sTr (ε̂s)

Tr
[
(ε̂s)2] Î

[Tr (ε̂s)]2 Î




=




〈ε̂〉
Tr 〈ε̂〉 Î
〈ε̂〉2

〈ε̂〉Tr〈ε̂〉
Tr

[〈ε̂〉2] Î

[Tr 〈ε̂〉]2 Î




(126)

The elements of the matrix Ũ have been written in terms of the parameters defined in
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Equations (120)–(125)

Ũ =




L′ M ′ N ′ O′ P ′ Q′

0 L′ + 3M ′ 0 0 N ′ + 3P ′ O′ + 3Q′

0 0 L′2 2L′M ′ 0 M ′2

0 0 0 L′ (L′ + 3M ′) 0 M ′ (L′ + 3M ′)

0 0 0 0 L′2 M ′ (2L′ + 3M ′)

0 0 0 0 0 (L′ + 3M ′)2




(127)

Finally, by using Equation (118) and by inverting Equation (126), we may obtain the matrix form of the
complete constitutive relation

〈T̂ 〉 =







2µ1

K1 − 2
3
µ1

0

0

0

0




T

+ c




2(µ2 − µ1)

K2 −K1 − 2
3
(µ2 − µ1)

A

D

B

C




T

Ũ−1







〈ε̂〉
Tr 〈ε̂〉 Î
〈ε̂〉2

〈ε̂〉Tr 〈ε̂〉
Tr

(〈ε̂〉2) Î

[Tr 〈ε̂〉]2 Î




(128)

11.1. Results

The constitutive equation in the form of Equation (128) can be written in terms of the effective linear
and nonlinear elastic moduli as follows

〈T̂ 〉 = 2µeff〈ε̂〉+

(
Keff − 2

3
µeff

)
Tr〈ε̂〉Î (129)

+ Aeff〈ε̂〉2 + BeffTr
[〈ε̂〉2] Î + Ceff [Tr〈ε̂〉]2 Î + Deff〈ε̂〉Tr〈ε̂〉

As for the linear elastic moduli, we obtain

µeff = µ1 + c
µ2 − µ1

L′
(130)

Keff = K1 + c
K2 −K1

L′ + 3M ′ (131)

and, as for the nonlinear elastic moduli, we have [98, 99]

Aeff = c
A

L′2
− 2c

N ′ (µ2 − µ1)

L′3
(132)

Beff = 2c
(N ′M ′ − L′P ′) (µ2 − µ1)

L′3 (L′ + 3M ′)
− c

(N ′ + 3P ′)
[
K2 −K1 − 2

3
(µ2 − µ1)

]

L′2 (L′ + 3M ′)
+ c

B

L′2
(133)
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Ceff =
1

9

c (9C + 3B + 3D + A)

(L′ + 3M ′)2 +
1

9

c (A− 3B)

L′2

− 4

9

N ′ (µ2 − µ1) c

L′3
− 1

9

c (3D + 2A)

L′ (L′ + 3M ′)
+

1

9

c(4N ′ + 6O′)(µ2 − µ1)

L′2 (L′ + 3M ′)
(134)

+
1

9

c(3N ′ + 9P ′)(K2 −K1)

L′2 (L′ + 3M ′)
− 1

3

c(9Q′ + 3O′ + 3P ′ + N ′)(K2 −K1)

(L′ + 3M ′)3

Deff = 2c
(2N ′M ′ − L′O′) (µ2 − µ1)

L′3 (L′ + 3M ′)
− 2c

M ′A
L′2 (L′ + 3M ′)

+ c
D

L′ (L′ + 3M ′)
(135)

If we use the definitions of the parameters L′ and M ′, given in Equations (120) and (121), we obtain for
the effective shear and bulk moduli the explicit expressions [98, 99]

µeff = µ1 + c
µ2 − µ1

c + (1− c)
[
1 + 6

5

(
µ2

µ1
− 1

)
K1+2µ1

3K1+4µ1

] (136)

Keff = K1 +
(3K1 + 4µ1) (K2 −K1) c

3K2 + 4µ1 − 3c(K2 −K1)
(137)

These two expressions are coincident with those obtained for a linear dispersion of elastic spheres [30].
However, they are completed by Equations (132)–(135) in order to characterize the nonlinear properties
of the mixture . This set of results fulfils a series of important general properties [98, 99]:

1. Equations (132)–(137) are also true for c = 1; in this case (very high volume fraction of spheres)
the procedure is not expected to be valid but nonetheless the results appears to be exact (if c = 1

then µeff = µ2, Keff = K2, Aeff = A, Beff = B, Ceff = C, Deff = D).

2. The nonlinear elastic moduli A, B, C and D influence the effective nonlinear moduli of the com-
posite material following the universal scheme showed in Figure 19. Therefore, there is a com-
plicated mixing of the nonlinear elastic modes induced by the heterogeneity of the structure. The
results for the nonlinear effective parameters, obtained with a single coefficient (A, B, C or D) dif-
ferent from zero, are reported in Appendix B, in form of series expansions in the volume fraction
up to the first order. They are coherent with the scheme shown in Figure 19.

Figure 19. Mixing scheme for the nonlinear modes.
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3. If the linear elastic moduli of the matrix and of the spheres are the very same (K1 = K2 and
µ1 = µ2), we simply obtain Keff = K1, µeff = µ1 and the following special set of results for the
nonlinear components

Aeff = cA (138)

Beff = cB (139)

Ceff = cC (140)

Deff = cD (141)

It means that the nonlinearity of the overall system is simply proportional to the nonlinearity of
the spheres.

4. We have developed our procedure under the hypothesis of Cauchy nonlinear elasticity for the
spheres embedded in the linear matrix. If we let D = 2B we move from the Cauchy elasticity to the
Green elasticity, assuming the existence of a strain energy function for the inhomogeneities. It is
important to remark that the following property holds: if D = 2B then the relation Deff = 2Beff

is true for the effective nonlinear moduli. It can be verified by direct calculation and it means that
our approach is perfectly consistent with the energy balance of the composite material. In other
words, we have verified that if a strain energy function exists for the embedded spheres, then an
overall strain energy function exists for the whole composite structure.

5. If we consider the special value of the Poisson ratio ν1 = ν2 = 1/5 (both for the matrix and the
spheres) and different values for the Young moduli E1 6= E2, we obtain another interesting result:
the effective Poisson ratio assume the same value νeff = 1/5, the effective Young modulus Eeff

assumes the value

Eeff =
E1 (1− c) + E2 (1 + c)

E1 (1 + c) + E2 (1− c)
E1 (142)

and the effective nonlinear elastic moduli can be calculated as follows

Xeff =
8E3

1c

[E1 (1 + c) + E2 (1− c)]3
X (143)

where the symbol X represents any modulus A, B, C or D (the four effective parameters exhibit
the same behavior). Therefore, we can say that the special value ν1 = ν2 = 1/5 uncouples the be-
havior of the nonlinear elastic modes (described at the point 2), generating a direct correspondence
among the nonlinear moduli of the spheres and the effective nonlinear moduli. Furthermore, if we
add the condition E1 = E2, we get back to the point 3. The special value 1/5 for the Poisson ratio
comes out in several issues considering a dispersion of spheres. For example, for linear porous
materials (with spherical pores) and for linear dispersions of rigid spheres the value 1/5 is a fixed
points for the Poisson ratio: if ν1 = 1/5, then we have νeff = 1/5 for all spheres concentrations
[33, 100]. Moreover, there is another interesting behavior of the effective Poisson ratio for high
volume fraction of pores or rigid spheres: in both cases for c → 1 the effective Poisson ratio
converges to the fixed value νeff = 1/5, irrespective of the matrix Poisson ratio [33, 100–102].
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6. Finally, we analyze the properties of the dispersion when incompressible material is utilized for the
embedded spheres: the constitutive relation Equation (102) describes an incompressible medium
in the limit λ2 → ∞ (or, equivalently, K2 → ∞ since K2 = λ2 + 2µ2/3); by inverting Equation
(102), writing the strain tensor in terms of the stress tensor and performing such a limit, we obtain
(up to the second order)

ε̂s =
1

2µ2

T̂ s − 1

6µ2

Tr
(
T̂ s

)
Î − A

8µ3
2

(
T̂ s

)2

(144)

+
A

24µ3
2

Tr
[(

T̂ s
)2

]
Î − A

36µ3
2

[
Tr

(
T̂ s

)]2

Î +
A

12µ3
2

T̂ sTr
(
T̂ s

)

which describes a nonlinear isotropic and incompressible material. We remark that only the nonlin-
ear modulus A intervenes in defining such a constitutive equation and that Equation (144) imposes
Tr (ε̂s) = 0, as requested by the incompressibility. In this limiting condition, as for the effective
linear moduli, we observe that Equation (136) for µeff remains unchanged and Equation (137)
leads to

Keff = K1 +

(
K1 +

4

3
µ1

)
c

1− c
(145)

On the other hand, the nonlinear elastic moduli have been eventually found as

Aeff = 125Aθ (146)

Beff = −125

3
Aθ (147)

Ceff =
250

9
Aθ (148)

Deff = −250

3
Aθ (149)

where

θ =
c (3K1 + 4µ1)

3 µ3
1

ψ3
(150)

ψ = 6 (K1 + 2µ1) [cµ1 + (1− c)µ2] + µ1 (9K1 + 8µ1) (151)

One can observe that, as expected, the effective nonlinear elastic moduli depend only on the modu-
lus A describing the nonlinearity of the spheres, as shown in Equation (144). Moreover, we remark
that a single modulus A for the spheres can generate four different effective nonlinear moduli, as
predicted by the scheme in Figure 19.

To conclude, we present some numerical results obtained by the implementation of Equations (132)–
(137). In Figure 20 we have considered Green nonlinear elasticity and the mixture parameters: µ1 =

1, µ2 = 4, K1 = 7, K2 = 1, A = 2, B = 3, C = 5, D = 2B in arbitrary units. In Figure 21 we have
considered Cauchy nonlinear elasticity and the mixture parameters: µ1 = 1, µ2 = 4, K1 = 10, K2 =

1, A = 2, B = −3, C = −5, D = 4 in arbitrary units. The results have been presented in terms of
the volume fraction c of the spheres. In both cases we may observe a consistent amplification of the
nonlinear effective modulus Ceff . We have verified that such a phenomenon is always exhibited when
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Figure 20. Linear and nonlinear effective elastic moduli of a dispersion of spheres in terms
of the volume fraction c. We have used the values µ1 = 1, µ2 = 4, K1 = 7, K2 = 1, A =

2, B = 3, C = 5, D = 2B in arbitrary units.
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Figure 21. Linear and nonlinear effective elastic moduli of a dispersion of spheres in terms
of the volume fraction c. We have used the values µ1 = 1, µ2 = 4, K1 = 10, K2 = 1, A =

2, B = −3, C = −5, D = 4 in arbitrary units.
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K1 À K2 (i.e., when the matrix is much more incompressible than the spheres) and that the higher
values of Ceff appear for small values of the volume fraction c, belonging to the range of applicability
of the present theory.

As it is well known, simple limitations for the values of the linear effective moduli are well established

1
1−c
K1

+ c
K2

5 Keff 5 (1− c) K1 + cK2 (152)

1
1−c
µ1

+ c
µ2

5 µeff 5 (1− c) µ1 + cµ2 (153)
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The lower bounds in Equations (152) and (153) are referred to as the Voigt bounds, and the upper bounds
are designated as the Reuss bounds [29]. Unfortunately, these bounds are of no practical value, but more
refined bounds, with realistic applications, have been derived by Hashin and Shtrikman [4]. From our
numerical results, shown in Figures 20 and 21, we may observe that the nonlinear properties, contrary
to the linear ones, are not bounded by some given values and in certain conditions exhibit a strong
amplification, which leads to nonlinear effective moduli much greater than those of the constituents.
This point is important in the topic of designing materials with desired properties and functions.

12. Elastic Dispersion of Parallel Nonlinear Cylindrical Inhomogeneities

We now take into consideration an assembly of parallel cylinders, as represented in Figure 22, de-
scribed by an arbitrary Cauchy constitutive relation [see Equation (102)]. As before, when needed, we
can easily move to the Green elasticity by assuming D = 2B. The cylindrical inhomogeneities are
randomly embedded in a linear matrix with elastic moduli K1 and µ1. This is a simple but complete
way for modeling a nonlinear fibrous material. In earlier works the linear analysis for a parallel distribu-
tion of fibers has been developed by means of the Eshelby methodology and of the differential effective
medium theory [32, 103]. Moreover, the mechanical response of elastic and inelastic fiber-strengthened
materials has been investigated, also with self-consistent models [104–106]. Here, in order to deal with
the nonlinear properties, we suppose that the volume fraction c of the embedded phase is small (dilute
dispersion). It means that each cylinder can be considered isolated in the space (not interacting with

Figure 22. Scheme of a dispersion of nonlinear parallel cylinders embedded in a linear
matrix.

K2, µ2

K1, µ1
1 − c

c

V

Ve

Vo

Keff , µeff , Aeff , Beff , Ceff , Deff

K2, µ2 A, B, C,D

K2, µ2 A, B, C,D

A, B, C,D

K2, µ2 A, B, C,D

π

other inhomogeneities) and subject to the same external loading. In order to simplify the modeling and
considering that the system shows a transverse isotropic symmetry (otherwise said uniaxial symmetry),
we assume the plane strain condition on an arbitrary plane π (see Figure 22) orthogonal to the cylinders.
It means that we are dealing with a problem belonging to the two-dimensional elasticity. Moreover, in
plain strain condition, it is a common choice to introduce the two dimensional elastic moduli µ2D = µ

and K2D = K+µ/3, where K and µ are the customarily used three-dimensional moduli [103]. Through-
out this section we indicate for brevity K and µ alluding to the two-dimensional version of the elastic
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moduli. It means that the linear matrix is described by

T̂ = 2µ1ε̂ + (K1 − µ1) Tr (ε̂) Î (154)

and the cylindrical inhomogeneities are described by the Cauchy constitutive relation

T̂ s = 2µ2ε̂
s + (K2 − µ2) Tr (ε̂s) Î + A (ε̂s)2 + BTr

[
(ε̂s)2] Î + C [Tr (ε̂s)]2 Î + Dε̂sTr (ε̂s) (155)

where any strain or stress tensor is represented by a square matrix of order two, working in the framework
of the two-dimensional elasticity. Now, we remark that Equation (99) or, equivalently, Equation (103) are
correct for any geometry and, therefore, they can be directly used in the present analysis. Nevertheless,
in order to use Equation (103) we need to consider some ingredients: the result of the application of the
compliance tensor of the matrix on the stress tensor T̂ s can be written as

(
Ĉ(1)

)−1

T̂ s =
1

2µ1

T̂ s − K1 − µ1

4µ1K1

Tr
(
T̂ s

)
Î (156)

Moreover, the effect of the Eshelby tensor Ŝ for a cylinder over an arbitrary strain tensor ε̂s is given by
[84]

Ŝ ε̂s =
1

2

K1 + 2µ1

K1 + µ1

ε̂s +
1

4

K1 − 2µ1

K1 + µ1

Tr (ε̂s) Î (157)

Now, in order to obtain a single equation for the internal strain ε̂s, we can substitute Equations (155),
(156) and (157) in the starting Equation (103). A tedious calculation leads to the equation [99]

Lε̂s + MTr (ε̂s) Î + N (ε̂s)2 + Oε̂sTr (ε̂s) + PTr
[
(ε̂s)2] Î + Q [Tr (ε̂s)]2 Î = ε̂∞ (158)

which completely defines the internal strain induced in a nonlinear cylinder by the uniform externally
applied deformation ε̂∞. The parameters L,M, N, O, P and Q have been defined as

L = 1 +
1

2

K1 + 2µ1

K1 + µ1

(
µ2

µ1

− 1

)
(159)

M =
1

4 (K1 + µ1)

[
2K2 −K1

(
1 +

µ2

µ1

)
− 2 (µ2 − µ1)

]
(160)

N =
A

4µ1

K1 + 2µ1

K1 + µ1

(161)

O =
D

4µ1

K1 + 2µ1

K1 + µ1

(162)

P =
1

8 (K1 + µ1)

(
4B − A

K1

µ1

)
(163)

Q =
1

8 (K1 + µ1)

(
4C −D

K1

µ1

)
(164)

We follow a procedure similar to that described in Section 4. We use again Equations (116) and (119)
for the average values of the stress and the strain over the whole composite material. At this point, start-
ing from Equation (119), we obtain the system given in Equation (126) (by using the two-dimensional
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relation Tr(Î) = 2). It is defined by the matrix Ũ where the elements depend on the parameters defined
in Equations (120)–(125) and calculated by means of Equations (159)–(164)

Ũ =




L′ M ′ N ′ O′ P ′ Q′

0 L′ + 2M ′ 0 0 N ′ + 2P ′ O′ + 2Q′

0 0 L′2 2L′M ′ 0 M ′2

0 0 0 L′ (L′ + 2M ′) 0 M ′ (L′ + 2M ′)

0 0 0 0 L′2 2M ′ (L′ + M ′)

0 0 0 0 0 (L′ + 2M ′)2




(165)

Finally, by inverting Equation (126), we may obtain the matrix form of the complete constitutive relation

〈T̂ 〉 =







2µ1

K1 − µ1

0

0

0

0




T

+ c




2(µ2 − µ1)

K2 −K1 − (µ2 − µ1)

A

D

B

C




T

Ũ−1







〈ε̂〉
Tr 〈ε̂〉 Î
〈ε̂〉2

〈ε̂〉Tr 〈ε̂〉
Tr

(〈ε̂〉2) Î

[Tr 〈ε̂〉]2 Î




(166)

12.1. Results

The constitutive equation in the form of Equation (166) can be written in terms of the effective linear
and nonlinear elastic moduli as follows

〈T̂ 〉 = 2µeff〈ε̂〉+ (Keff − µeff ) Tr〈ε̂〉Î (167)

+ Aeff〈ε̂〉2 + BeffTr
[〈ε̂〉2] Î + Ceff [Tr〈ε̂〉]2 Î + Deff〈ε̂〉Tr〈ε̂〉

As for the linear elastic moduli, we obtain [99]

µeff = µ1 + c
µ2 − µ1

L′
= µ1 + c

µ2 − µ1

c + (1− c)
[
1 + 1

2

(
µ2

µ1
− 1

)
K1+2µ1

K1+µ1

] (168)

Keff = K1 + c
K2 −K1

L′ + 2M ′ = K1 + c
K2 −K1

c + (1− c)µ1+K2

µ1+K1

(169)

It is important to remember that the bulk modulus Keff represents the two-dimensional version, as above
defined. Moreover, the two linear results given in Equations (168) and (169) are perfectly coincident with
earlier literature [107]. As for the effective nonlinear elastic moduli, we have the following final results
[99]

Aeff =
Ac

L′2
− 2c

N ′ (µ2 − µ1)

L′3
(170)

Beff =
c [N ′ (µ2 − µ1) + BL′]

L′3
− c (2P ′ + N ′) (K2 −K1)

L′2 (L′ + 2M ′)
(171)
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Ceff = c
4C + 2B + 2D + A

4 (L′ + 2M ′)2 + c
A− 2B

4L′2
+ c

2 (O′ + N ′) (µ2 − µ1) + (2P ′ + N ′) (K2 −K1)

2L′2 (L′ + 2M ′)

− c (2P ′ + N ′ + 4Q′ + 2O′) (K2 −K1)

2 (L′ + 2M ′)3 − cN ′ (µ2 − µ1)

L′3
− c

A + D

2L′ (L′ + 2M ′)
(172)

Deff = 2
(2N ′M ′ − L′O′) (µ2 − µ1) c

L′3 (L′ + 2M ′)
− 2c

M ′A
L′2 (L′ + 2M ′)

+
cD

L′ (L′ + 2M ′)
(173)

They represent the complete nonlinear characterization of the random dispersion of parallel cylinders.
It is interesting to observe that all the properties described in the previous section for the dispersion
of spheres (points 1–6) can be easily verified also for the present case [99]. In particular, the scheme
represented in Figure 19 remains valid. In Appendix C we have reported the explicit results giving the
first order expansions of the nonlinear elastic moduli with respect to the volume fraction, corresponding
to the simple cases where only one nonlinear parameter of the cylinders is different from zero. We
analyze the case corresponding to the point 5 of the previous section: we consider the special value
of the three-dimensional Poisson ratio ν1 = ν2 = 1/4 (corresponding to the two-dimensional Poisson
ratio ν2D = ν3D/(1 − ν3D) = 1/3 [103]) and different values for the three-dimensional Young moduli
E1 6= E2. In this case, the effective 3D Poisson ratio assume the value νeff = 1/4 and the effective 3D
Young modulus Eeff assumes the value

Eeff =
E1 (1− c) + E2 (2 + c)

E1 (1 + 2c) + 2E2 (1− c)
E1 (174)

Moreover, the effective nonlinear elastic moduli can be calculated as follows

Xeff =
27E3

1c

[E1 (1 + 2c) + 2E2 (1− c)]3
X (175)

where the symbol X represents any modulus A, B, C or D (the four effective parameters exhibit the
same behavior). Therefore, as before, we can say that the special value ν1 = ν2 = 1/4 uncouples the
behavior of the nonlinear elastic modes, generating a direct correspondence among the nonlinear moduli
of the spheres and the effective nonlinear moduli.

Finally, we have numerically implemented Equations (168)–(173) in order to show some explicit
results. In Figure 23 we have considered Green nonlinear elasticity and the mixture parameters: µ1 =

1, µ2 = 5, K1 = 10, K2 = 1, A = −8, B = −2, C = −1, D = 2B in arbitrary units. In Figure 24
we have considered Cauchy nonlinear elasticity and the mixture parameters: µ1 = 1, µ2 = 5, K1 =

10, K2 = 1, A = 8, B = −2, C = −1, D = 6 in arbitrary units. As in the previous section, we may
observe a consistent amplification of the nonlinear effective modulus Ceff . We have also verified that
such a phenomenon is exhibited when K1 À K2 (i.e., when the matrix is much more incompressible
than the spheres) and that the higher values of Ceff appear for small values of the volume fraction c,
belonging to the range of applicability of the present theory.

13. Conclusions

In the previous sections we have considered the linear and nonlinear elastic behavior of a composite
material. In particular we have taken into account a dispersion of isotropic nonlinear inhomogeneities
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Figure 23. Linear and nonlinear effective elastic moduli for a dispersion of cylinders in
terms of the volume fraction c. We have used the values µ1 = 1, µ2 = 5, K1 = 10, K2 =

1, A = −8, B = −2, C = −1, D = 2B in arbitrary units.
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(spheres or parallel cylinders) embedded into a linear isotropic host matrix. The nonlinearity of the
inhomogeneities has been described either by the Cauchy model (four parameters) or by the energy-
based Green approach (three parameters).

We have introduced two simplifying hypotheses: the small volume fraction of the embedded particles
and the small deformations of the whole solid body. Nevertheless, we have described useful results both
for analyzing the mechanical properties of a given heterogeneous structure and for designing a composite
material with a desired linear and nonlinear elastic behavior.

The main concept introduced to homogenize the heterogeneous structures is a generalization of the
linear Eshelby methodology developed for extending its applicability to nonlinear materials. This ap-
proach has been analytically applied to perform a linear and nonlinear micromechanical averaging in the
composite structure and, therefore, to develop a complete homogenizing procedure yielding the mechan-
ical behavior of the solid body at the macro-scale.

As for the linear properties, we have obtained a series of results in perfect agreement with earlier
researches on this subject. This point can be considered as a check of the mathematical procedure.
As for the nonlinear properties, firstly, we have obtained the expressions of the four effective elastic
moduli of the composite medium with inhomogeneities described by the Cauchy constitutive equations,
which represent the less restrictive way to model the nonlinear elasticity. Then, we have considered, as
a particular case, the Green elasticity to describe the nonlinear behavior of the particles. In this case we
have verified that if a strain energy function exists for the inhomogeneities, then an overall strain energy
function exists for the whole composite structure. This point confirms the perfect coherence between our
micromechanical averaging procedure and the thermodynamics of the composite material.

Moreover, we have observed that the nonlinear effective elastic moduli, contrary to the linear ones,
are not subject to specific bounds that limit their values when the behaviors of the constituents are
chosen. We have indeed found some strong amplifications of the nonlinear behavior in certain given
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Figure 24. Linear and nonlinear effective elastic moduli for a dispersion of cylinders in
terms of the volume fraction c. We have used the values µ1 = 1, µ2 = 5, K1 = 10, K2 =

1, A = 8, B = −2, C = −1, D = 6 in arbitrary units.
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conditions. More specifically, for example, we have observed that the nonlinear modulus Ceff can
assume values much greater than C if the matrix is much more incompressible than the inhomogeneities.
This is a crucial point that can be applied in analyzing and designing composite materials with a given
microstructure.

Finally, some special values of the Poisson ratio of the materials have been found in order to obtain
a direct correspondence among the nonlinear moduli of the inhomogeneities and the effective moduli of
the composite structure. It means that, under the above conditions, we can realize a perfect scaling of
the nonlinear properties (see Equation (143) or (175)) modulated by the ratio E1/E2 between the Young
moduli of the constituents.

Appendix A Symmetry and Positive Definiteness of the Tensor Ĉ(1)
[
Ŝ−1 − Î

]

We briefly outline the concepts of inclusion and linear inhomogeneity in order to present the adopted
notation and to recall the most important equations of the Eshelby theory [84, 93, 94].

Concept of inclusion

We consider an infinite medium with stiffness tensor Ĉ(1); moreover, we consider an embedded el-
lipsoidal inclusion V described by the constitutive equation T̂ = Ĉ(1) (ε̂− ε̂∗). The strain ε̂∗ is called
eigenstrain (or stress-free strain). In these conditions the following relations describe the strain inside
and outside the inclusion [84]

ε̂ (~x) =

{
Ŝ ε̂∗ if ~x ∈ V

Ŝ∞ (~x) ε̂∗ if ~x /∈ V
(176)

where Ŝ is the internal Eshelby tensor and Ŝ∞ is the external Eshelby tensor.
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Concept of inhomogeneity

We now consider an infinite medium with stiffness tensor Ĉ(1) in <3�V (matrix) and Ĉ(2) in the ellip-
soidal region V (inhomogeneity). We remotely load the system with a uniform strain ε̂∞ or, equivalently,
with the uniform stress T̂∞. Of course we have T̂∞ = Ĉ(1)ε̂∞. This configuration can be analyzed by
means of the Eshelby equivalence principle [93]. The system can be described by the superimposition
of two simpler cases (see Figure 25) [84]. The first situation A concerns a medium with stiffness Ĉ(1)

Figure 25. Scheme of an ellipsoidal inhomogeneity and the Eshelby equivalence principle.

Tij = C1
ijkhεkh

Tij = C1
ijkhεkh

Tij = C2
ijkhεkh

+

T∞
ij , ε∞kh

A) B)

T∞
ij , ε∞kh

Tij = C1
ijkhεkh

Tij = C1
ijkh(εkh − ε∗kh)Tij = C1

ijkhεkh

(without inclusions or inhomogeneities) uniformly deformed by means of the remote loads ε̂∞ or T∞.
The second situation B is represented by an inclusion embedded in a medium, characterized everywhere
by Ĉ(1) and having an eigenstrain ε̂∗ in V. The situation B is without remote loads. The eigenstrain
must be imposed searching for the equivalence between the original inhomogeneity problem and the
superimposition A + B. The following relation hold on inside the region V (s means inside V)

ε̂s = ε̂A,s + ε̂B,s = ε̂∞ + Ŝ ε̂∗

T̂ s = T̂A,s + T̂B,s = Ĉ(1)ε̂∞ + Ĉ(1)
(
ε̂B,s − ε̂∗

)
= Ĉ(1)ε̂∞ + Ĉ(1)

(
Ŝ ε̂∗ − ε̂∗

)
(177)

In the inhomogeneity we have T̂ s = Ĉ(2)ε̂s and therefore

Ĉ(1)ε̂∞ + Ĉ(1)
(
Ŝ ε̂∗ − ε̂∗

)

︸ ︷︷ ︸
T̂ s

= Ĉ(2)
(
ε̂∞ + Ŝ ε̂∗

)

︸ ︷︷ ︸
ε̂s

(178)
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The following relations can be finally obtained for the eigenstrain and for the actual strain in V

ε̂∗ =

[(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)−1

− Ŝ
]−1

ε̂∞ (179)

ε̂s =

(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)−1

ε̂∗ (180)

ε̂s =

[
Î − Ŝ

(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)]−1

ε̂∞ (181)

If Ĉ(2) = 0 (void) we obtain

ε̂∗ = ε̂s =
[
Î − Ŝ

]−1

ε̂∞ (182)

Lemma: The tensor Ĉ(1)
[
Ŝ−1 − Î

]
is symmetric

We consider the same inclusion V with two different values for the eigenstrain ε̂∗ and ε̂∗∗ embedded
in the material defined by Ĉ(1). The symmetry of the tensor can be established by means of a revised
version of the Betti’s reciprocal theorem [85]. We define T̂ ∗ = Ĉ(1)ε̂∗ and T̂ ∗∗ = Ĉ(1)ε̂∗∗. The first
situation is described by the fields T̂ ′, ε̂′, ~u′ and the second one by T̂ ′′, ε̂′′, ~u′′ everywhere in the space.

The preliminary symmetry of the tensor Ŝ
[
Ĉ(1)

]−1

is proved. We begin by considering the following
relation (V is the inclusion volume , Σ its boundary and ~n its external normal unit vector)

VT̂ ∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗∗ = VT̂ ∗Ŝ ε̂∗∗ = VT̂ ∗ε̂′′ (183)

= T̂ ∗
∫

V

ε̂′′dv = T̂ ∗
∫

V

∂~u′′

∂~x
dv

= T̂ ∗
∫

Σ

~u′′~ndS = Ĉ(1)ε̂∗
∫

Σ

~u′′~ndS

At the interface Σ we have T̂ ′~n|Σ− = T̂ ′~n|Σ+ (sign + indicates the external side of Σ and sign− indicates
its internal side). Recalling the definition of inclusion we simply obtain Ĉ(1) (ε̂′ − ε̂∗)~n|Σ− = Ĉ(1)ε̂′~n|Σ+

and finally we get Ĉ(1)ε̂′~n|Σ− − Ĉ(1)ε̂′~n|Σ+ = Ĉ(1)ε̂∗~n. We use it in Equation (183), obtaining

VT̂ ∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗∗ =

∫

Σ

[
Ĉ(1)ε̂′~n|Σ− − Ĉ(1)ε̂′~n|Σ+

]
~u′′dS (184)
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On Σ− we have T̂ ′ = Ĉ(1) (ε̂′ − ε̂∗) and on Σ+ we have T̂ ′ = Ĉ(1)ε̂′, therefore

VT̂ ∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗∗ (185)

=

∫

Σ−

(
T̂ ′ + T̂ ∗

)
~n~u′′dS −

∫

Σ+

T̂ ′~n~u′′dS

=

∫

V

∂

∂~x

[(
T̂ ′ + T̂ ∗

)
~u′′

]
dv +

∫

<3\V

∂

∂~x

[
T̂ ′~u′′

]
dv

=

∫

V

(
T̂ ′ + T̂ ∗

)
ε̂′′dv +

∫

<3\V
T̂ ′ε̂′′dv

=

∫

V

[
Ĉ(1) (ε̂′ − ε̂∗) + T̂ ∗

]
ε̂′′dv +

∫

<3\V
T̂ ′ε̂′′dv

=

∫

V

ε̂′Ĉ(1)ε̂′′dv +

∫

<3\V
ε̂′Ĉ(1)ε̂′′dv

=

∫

<3

ε̂′Ĉ(1)ε̂′′dv

We have now obtained a symmetric form (since Ĉ(1) is symmetric). Therefore, the following dual relation
is valid and it can be verified as above

VT̂ ∗∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗ =

∫

<3

ε̂′Ĉ(1)ε̂′′dv (186)

By comparison of Equations (185) and (186) we obtain

VT̂ ∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗∗ = VT̂ ∗∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗ (187)

which establishes the symmetry of Ŝ
[
Ĉ(1)

]−1

. The inverse tensor
{
Ŝ

[
Ĉ(1)

]−1
}−1

= Ĉ(1)Ŝ−1 is again

symmetric and, finally, the quantity Ĉ(1)
[
Ŝ−1 − Î

]
is symmetric since it is a sum of symmetric tensors.

Lemma: The tensor Ĉ(1)
[
Ŝ−1 − Î

]
is positive definite

. We consider two similar situations as described in Figure 26. The first deals with an homogeneous
medium with displacement prescribed on the boundary, while the second case considers the addition of
an inhomogeneity without changing the fixed displacements on the external surface. No body forces are
present in both schemes. We begin searching for the difference between the elastic energy stored in the
two cases

∆E =
1

2

∫

Ω

(
ε̂bT̂b − ε̂aT̂a

)
dv (188)

We simply verify that
∫

Ω

ε̂aT̂adv =

∫

Ω

ε̂bT̂adv (189)
∫

Ω

ε̂aT̂bdv =

∫

Ω

ε̂bT̂bdv (190)
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Figure 26. Schemes of an homogeneous region and an heterogeneous one with an inhomo-
geneity V. The boundary conditions prescribe the same displacement on the external surface.

Σ Σ

Ω Ω

Ĉ(1)Ĉ(1)

Ĉ(2)

n nua = ub = u fixed on Σ

ua, T̂a, ε̂a
ub, T̂b, ε̂b

V

In order to verify Equation (189) we write the relation
∫

Ω

(ε̂a − ε̂b) T̂adv =

∫

Ω

(
∂~ua

∂~x
T̂a − ∂~ub

∂~x
T̂a

)
dv (191)

where ∂~ua

∂~x
T̂a = ∂~uaT̂a

∂~x
since ∂T̂a

∂~x
= 0 at equilibrium and similarly ∂~ub

∂~x
T̂a = ∂~ubT̂a

∂~x
. Therefore, we obtain

∫

Ω

(ε̂a − ε̂b) T̂adv =

∫

Ω

(
∂~uaT̂a

∂~x
− ∂~ubT̂a

∂~x

)
dv =

∫

Σ

(
~uaT̂a − ~ubT̂a

)
~ndS = 0 (192)

since ~ua = ~ub on Σ. The dual relation given in Equation (190) can be verified with the same method.
By inserting Equations (189) and (190) into Equation (188) we obtain

∆E =
1

2

∫

Ω

(
ε̂bT̂b − ε̂aT̂a

)
dv

=
1

2

∫

Ω

(
ε̂aT̂b − ε̂bT̂a

)
dv

=
1

2

∫

Ω�V

(
ε̂aT̂b − ε̂bT̂a

)
dv +

1

2

∫

V

(
ε̂aT̂b − ε̂bT̂a

)
dv

=
1

2

∫

Ω�V

(
ε̂aĈ(1)ε̂b − ε̂bĈ(1)ε̂a

)
dv +

1

2

∫

V

(
ε̂aT̂b − ε̂bT̂a

)
dv (193)

Since the stiffness tensor Ĉ(1) is symmetric, we obtain the following general expression for the energy
difference

∆E =
1

2

∫

V

(
ε̂aT̂b − ε̂bT̂a

)
dv (194)

We now suppose that the prescribed displacement on Σ imposes a uniform strain in the first case of
Figure 26; therefore, the second situation can be described by the Eshelby solution. With this additional
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hypothesis the energy difference can be rearranged as follows

∆E = −1

2

∫

V

(
T̂aε̂b − ε̂aT̂b

)
dv

= −1

2

∫

V

(
T̂aε̂b − T̂a

(
Ĉ(1)

)−1

Ĉ(2)ε̂b

)
dv

= −1

2

∫

V

T̂a

(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)
ε̂bdv

= −1

2

∫

V

T̂aε̂
∗dv (195)

having used Equation (180). Utilizing Equation (179) we obtain

∆E = −1

2

∫

V

ε̂aĈ(1)

[(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)−1

− Ŝ
]−1

ε̂adv (196)

From now on we suppose that the embedded inhomogeneity is a void (Ĉ(2) = 0) and, therefore, we obtain

∆E = Eb (ε̂b)− Ea (ε̂a) = −1

2

∫

V

ε̂aĈ(1)
[
Î − Ŝ

]−1

ε̂adv (197)

We may now consider the variational formulation of the elasticity theory [85, 86]. If we take into account
a body without body forces and with prescribed displacements on the whole external surface, then the
variational formulation leads to the minimum potential energy principle. We may apply this principle
to the second case of Figure 26 (with a void). If the fields ~ub, ε̂b, T̂b correspond of the actual elastic
fields in such a case, we have Eb

(
~ub, ε̂b, T̂b

)
6 Eb

(
~u, ε̂, T̂

)
where the fields ~u, ε̂, T̂ correspond to any

displacement ~u matching the prescribed boundary. In particular we have Eb (ε̂b) 6 Eb (ε̂a), where ε̂a is
the strain in the first case of Figure 26. Moreover, we may write

Eb (ε̂a) =
1

2

∫

Ω�V

ε̂aĈ(1)ε̂adv +
1

2

∫

V

ε̂aĈ(2)ε̂adv

=
1

2

∫

Ω�V

ε̂aĈ(1)ε̂adv

= Ea (ε̂a)− 1

2

∫

V

ε̂aĈ(1)ε̂adv (198)

Summing up

Eb (ε̂b) 6 Eb (ε̂a)

Eb (ε̂b) 6 Ea (ε̂a)− 1

2

∫

V

ε̂aĈ(1)ε̂adv

Eb (ε̂b)− Ea (ε̂a) 6 −1

2

∫

V

ε̂aĈ(1)ε̂adv (199)

Since ε̂a is uniform, combining Equations (197) and (199), we obtain

ε̂aĈ(1)
[
Î − Ŝ

]−1

ε̂a − ε̂aĈ(1)ε̂a > 0 (200)
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or

T̂a

[
Î − Ŝ

]−1 [
Ĉ(1)

]−1

T̂a − T̂a

[
Ĉ(1)

]−1

T̂a > 0 (201)

So, the tensor
[
Î − Ŝ

]−1 [
Ĉ(1)

]−1

−
[
Ĉ(1)

]−1

is positive definite.

For any tensor it is true that [I − A]−1 = I + [A−1 − I]
−1 and therefore we obtain

[
Î − Ŝ

]−1 [
Ĉ(1)

]−1

−
[
Ĉ(1)

]−1

=
[
Ŝ−1 − Î

]−1 [
Ĉ(1)

]−1

(202)

Finally, the tensor
[
Ŝ−1 − Î

]−1 [
Ĉ(1)

]−1

and its inverse Ĉ(1)
[
Ŝ−1 − Î

]
are symmetric and positive defi-

nite.
It is interesting to observe that all the results given in Appendix A can also be exactly applied to an

anisotropic and homogeneous ellipsoidal inhomogeneity embedded in an anisotropic and homogeneous
matrix. In this case, the Eshelby tensor Ŝ depends on the geometry and on Ĉ(1) [84, 98, 99].

Appendix B First Order Expansions for a Dispersion of Spheres

In this Appendix we present the first order expansions in the volume fraction of the effective nonlinear
moduli Aeff , Beff , Ceff , and Deff for a dispersion of spheres. In particular we consider four different
cases where only one nonlinear modulus of the spheres (A, B, C or D) is different from zero. These
solutions are coherent with the scheme represented in Figure 19. If C 6= 0 we obtain





CC
eff = (3K1+4µ1)3

(4µ1+3K2)3
Cc + O (c2)

AC
eff = BC

eff = DC
eff = 0

(203)

If B 6= 0 we have 



BB
eff = 25 µ1

2

(6µ2K1+12µ2µ1+9µ1K1+8µ1
2)2

× (3K1+4µ1)3

4µ1+3K2
Bc + O (c2)

CB
eff = 6µ2K1+12µ2µ1+9µ1K1+28µ1

2+15K2µ1

(6µ2K1+12µ2µ1+9µ1K1+8µ1
2)2

× 3µ1K1−5K2µ1+2µ2K1+4µ2µ1−4µ1
2

(4µ1+3K2)3

× (3K1 + 4µ1)
3 Bc + O (c2)

AB
eff = DB

eff = 0

(204)

If D 6= 0 we obtain 



CD
eff = 3µ1K1−5K2µ1+2µ2K1+4µ2µ1−4µ1

2

(9µ1K1+8µ1
2+6µ2K1+12µ2µ1)2

× 6µ2K1+12µ2µ1+28µ1
2+9µ1K1+15K2µ1

(4µ1+3K2)3

× (3K1 + 4µ1)
3 Dc + O (c2)

DD
eff = 25 µ1

2

(9µ1K1+8µ1
2+6µ2K1+12µ2µ1)2

× (3K1+4µ1)3

4µ1+3K2
Dc + O (c2)

AD
eff = BD

eff = 0

(205)
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Finally, if A 6= 0 all the effective nonlinear moduli are different from zero and they can be eventually
written as 




AA
eff = 125(3K1+4µ1)3µ1

3Ac

(9K1µ1+8µ1
2+6K1µ2+12µ2µ1)3

+ O (c2)

BA
eff = 253K1µ1−5K2µ1+2K1µ2+4µ2µ1−4µ1

2

(9K1µ1+8µ1
2+6K1µ2+12µ2µ1)3

× (3K1+4µ1)3µ1
2Ac

4µ1+3K2
+ O (c2)

CA
eff = 3

(3K1µ1−5K2µ1+2K1µ2+4µ2µ1−4µ1
2)

2

(9K1µ1+8µ1
2+6K1µ2+12µ2µ1)3

× 10K2µ1+2K1µ2+3K1µ1+4µ2µ1+16µ1
2

(4µ1+3K2)3

× (3K1 + 4µ1)
3 Ac + O (c2)

DA
eff = 50 µ1

2

(9K1µ1+8µ1
2+6K1µ2+12µ2µ1)3

× 3K1µ1−5K2µ1+2K1µ2+4µ2µ1−4µ1
2

4µ1+3K2

× (3K1 + 4µ1)
3 Ac + O (c2)

(206)

It is interesting to remark that the more complicated cases, with all the nonlinear moduli of the spheres
different form zero, can be simply handled by means of the superimposition of the four cases above
considered.

Appendix C First Order Expansions for a Dispersion of Cylinders

Here we present the first order expansions in the volume fraction of the effective nonlinear moduli
Aeff , Beff , Ceff , and Deff for a dispersion of cylinders. In particular we consider four different cases
where only one nonlinear modulus of the cylinders (A, B, C or D) is different from zero. If C 6= 0 we
have 




CC
eff = (K1+µ1)3

(K2+µ1)3
Cc + O (c2)

AC
eff = BC

eff = DC
eff = 0

(207)

If B 6= 0 we obtain 



BB
eff = 4(K1+µ1)3µ1

2B

(K2+µ1)(µ1K1+µ2K1+2µ2µ1)2
c + O (c2)

CB
eff = 1

2

2K2µ1+µ1K1+µ2K1+2µ2µ1+2µ2
1

(µ1K1+µ2K1+2µ2µ1)2

× µ1K1−2K2µ1+µ2K1+2µ2µ1−2µ2
1

(K2+µ1)3

× (K1 + µ1)
3 Bc + O (c2)

AB
eff = DB

eff = 0

(208)
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If D 6= 0 we have 



CD
eff = 1

2

K1µ1−2K2µ1+K1µ2+2µ2µ1−2µ2
1

(K1µ1+K1µ2+2µ2µ1)2

× K1µ2+K1µ1+2µ2µ1+2K2µ1+2µ2
1

(K2+µ1)3

× (K1 + µ1)
3 Dc + O (c2)

DD
eff = 4(K1+µ1)3µ1

2Dc

(K2+µ1)(K1µ1+K1µ2+2µ2µ1)2
+ O (c2)

AD
eff = BD

eff = 0

(209)

Finally, if A 6= 0, as predicted by the scheme represented in Figure 19, all the effective nonlinear moduli
are different from zero and the final expressions are given below





AA
eff = 8 (K1+µ1)3µ1

3

(K1µ1+K1µ2+2µ2µ1)3
Ac + O (c2)

BA
eff = 2 µ1

2

(K1µ1+K1µ2+2µ2µ1)3

× K1µ1−2K2µ1+K1µ2+2µ2µ1−2µ2
1

K2+µ1

× (K1 + µ1)
3 Ac + O (c2)

CA
eff = 1

4

(K1µ1−2K2µ1+K1µ2+2µ2µ1−2µ2
1)

2

(K1µ1+K1µ2+2µ2µ1)3

× K1µ2+2µ2µ1+K1µ1+4K2µ1+4µ2
1

(K2+µ1)3

× (K1 + µ1)
3 Ac + O (c2)

DA
eff = 4 µ1

2

(K1µ1+K1µ2+2µ2µ1)3

× K1µ1−2K2µ1+K1µ2+2µ2µ1−2µ2
1

(K2+µ1)

× (K1 + µ1)
3 Ac + O (c2)

(210)

Acknowledgements

The author is grateful to Alessandra Pesce for the preliminary reading and the revision of this work.
He also acknowledges the financial support by MiUR under project PON -“CyberSar” (OR 7).

References and Notes

1. Torquato, S. Exact expression for the effective elastic tensor of disordered composites. Phys. Rev.
Lett. 1997, 79, 681-684.

2. Stroud, D.; Hui, P.M. Nonlinear susceptibilities of granular matter. Phys. Rev. B 1988, 37,
8719-8724.

3. Hashin, Z.; Shtrikman, S. A variational approach to the theory of the effective magnetic permeabil-
ity of multiphase materials. J. Appl. Phys. 1962, 33, 3125-3131.

4. Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behaviour of multi-
phase materials. J. Mech. Phys. Solids. 1963, 11, 127-140.

5. Brown, W.F. Solid mixture permittivities. J. Chem. Phys. 1955, 23, 1514-1517.



Materials 2009, 2 1474

6. Torquato, S. Effective stiffness tensor of composite media-I. Exact series expansions. J. Mech.
Phys. Solids 1997, 45,1421-1448.

7. Torquato, S. Effective stiffness tensor of composite media-II. Applications to isotropic dispersions.
J. Mech. Phys. Solids 1998, 46, 1411-1440.

8. Bianco, B.; Parodi, M. A unifying approach for obtaining closed-form expressions of mixtures
permittivities. J. Electrostat. 1984, 15,183-195.

9. Maxwell, J.C. A Treatise on Electricity and Magnetism; Clarendon: Oxford, UK, 1881.
10. Brosseau, C. Modelling and simulation of dielectric heterostructures: A physical survey from an

historical perspective. J. Phys. D: Appl. Phys. 2006, 39, 1277-1294.
11. Fricke, H. The Maxwell-Wagner dispersion in a suspension of ellipsoids. J. Phys. Chem. 1953,

57, 934-937.
12. Fricke, H. A mathematical treatment of the electric conductivity and capacity of disperse systems.

Phys. Rev. 1924, 24, 575-587.
13. Sihvola, A.; Kong, J.A. Effective permittivity of dielectric mixtures. IEEE Trans. Geosci. Remo.

Sen. 1988, 26, 420-429.
14. Sihvola, A. Electromagnetic Mixing Formulas and Applications; The Institution of Electrical En-

gineers: London, UK, 1999.
15. Van Beek, L.K.H. Dielectric behaviour of heterogeneous systems. In Progress in Dielectric; Hey-

wood: London, UK 1967, 7, 71-114.
16. Bruggeman, D.A.G. Dielektrizitatskonstanten und Leitfahigkeiten der Mishkorper aus isotropen

Substanzen. Ann. Phys. (Leipzig) 1935, 24, 636-664.
17. Giordano, S. Effective medium theory for dispersions of dielectric ellipsoids. J. Electrostat. 2003,

58, 59-76.
18. Bianco, B.; Chiabrera, A.; Giordano, S.D.C.-E.L.F. Characterization of random mixtures of piece-

wise non-linear media. Bioelectromagnetics 2000, 21, 145-149.
19. Bianco, B.; Giordano, S. Electrical characterization of linear and non-linear random networks and

mixtures. Int. J. Circuit Theor. Appl. 2003, 31, 199-218.
20. Giordano, S. Disordered lattice networks: General theory and simulations. Int. J. Circuit Theor.

Appl. 2005, 33, 519-540.
21. Giordano, S. Two-dimensional disordered lattice networks with substrate. Physica A 2007, 375,

726-740.
22. Giordano, S. Relation between microscopic and macroscopic mechanical properties in random

mixtures of elastic media. J. Eng. Mater. Technol. ASME 2007, 129, 453-461.
23. Goncharenko, A.V.; Popelnukh, V.V.; Venger, E.F. Effect of weak nonsphericity on linear and

nonlinear optical properties of small particle composites. J. Phys. D: Appl. Phys. 2002, 35,
1833-1838.

24. Lakhtakia, A.; Mackay, T.G. Size–dependent Bruggeman approach for dielectric–magnetic com-
posite materials. AEU Int. J. Electron. Commun. 2005, 59, 348-351.

25. Mackay, T.G. Homogenization giving rise to unusual metamaterials. In Proc. SPIE; Denver, CO,
USA, 12 August 2004; Lakhtakia, A., Maksimenko, S.A., Eds.; Vol. 5509, pp. 34-45.



Materials 2009, 2 1475

26. Zharov, A.A. ; Shadrivov, I.V.; Kivshar, Y.S. Nonlinear properties of left-handed metamaterials.
Phys. Rev. Lett. 2003, 91, 37401:1-37401:4.

27. Giordano, S.; Rocchia, W. Shape dependent effects of dielectrically nonlinear inclusions in hetero-
geneous media. J. Appl. Phys. 2005, 98, 104101:1-104101:10.

28. Walpole, L.J. Elastic behaviour of composite materials: theoretical foundations. Adv. Appl. Mech.
1981, 11, 169-242.

29. Christensen, R.M. Mechanics of Composite Materials; Dover Publication Inc.: New York, NY,
USA, 2005.

30. Hashin, Z. Analysis of composite materials–A survey. J. Appl. Mech. 1983, 50, 481-505.
31. Norris, N. A differential scheme for the effective moduli of composites. Mech. Mater. 1985, 4,

1-16.
32. McLaughlin, R. A study of the differential scheme for composite materials. Int. J. Eng. Sci. 1977,

15, 237-244.
33. Giordano, S. Differential schemes for the elastic characterisation of dispersions of randomly ori-

ented ellipsoids. Eur. J. Mech. A-Solid. 2003, 22, 885-902.
34. Kachanov, M.; Sevostianov, I. On quantitative characterization of microstructures and effective

properties. Int. J. Solids Struct. 2005, 42, 309-336.
35. Markov, K.Z., Preziozi, L., Eds. Heterogeneous Media: Micromechanics Modeling Methods and

Simulations; Birkhauser: Boston, MA, USA, 2000.
36. Kachanov, M. Effective elastic properties of cracked solids: critical review of some basic concepts.

Appl. Mech. Rev. 1992, 45, 305-336.
37. Giordano, S.; Colombo, L. Effects of the orientational distribution of cracks in solids. Phys. Rev.

Lett. 2007, 98, 055503:1-055503:4.
38. Giordano, S.; Colombo, L. Effects of the orientational distribution of cracks in isotropic solids.

Eng. Frac. Mech. 2007, 74, 1983-2003.
39. Zanda, G. Electromagnetic Properties of Linear and Nonlinear Composite Materials. Master De-

gree Thesis, University of Cagliari, Italy, 2008.
40. Leung, K.M. Optical bistability in the scattering and absorption of light from nonlinear micropar-

ticles. Phys. Rev. A 1986, 33, 2461-2464.
41. Haus, J.W.; Inguva, R.; Bowden, C.M. Effective-medium theory for nonlinear ellipsoidal compos-

ites. Phys. Rev. A 1989, 40, 5729-5734.
42. Agarwal, G.S.; Gupta, S.D. T-Matrix approach to the nonlinear susceptibilities of heterogeneous

media. Phys. Rev. A 1988, 38, 5678-5687.
43. Stratton, J.A. Electromagnetic Theory; Mc Graw Hill: New York, NY, USA, 1941.
44. Giordano, S.; Palla, P.L.; Colombo, L. Effective permittivity of materials containing graded ellip-

soidal inclusions. Eur. Phys. J. B 2008, 66, 29-35.
45. Goncharenko, A.V. Optical properties of core-shell particle composites. I. Linear response. Chem.

Phys. Lett. 2004, 386, 25-31.
46. Goncharenko, A.V. Optical properties of core-shell particle composites. II. Nonlinear response.

Chem. Phys. Lett. 2007, 439, 121-126.



Materials 2009, 2 1476

47. Chen, G.Q.; Wu, Y.M. Effective dielectric response of nonlinear composites of coated metal inclu-
sions. Chin. Phys. Lett. 2007, 24, 1724-1728.

48. Pinchuk, A. Optical bistability in nonlinear composites with coated ellipsoidal nanoparticles. J.
Phys. D: Appl. Phys. 2003, 36, 460-464.

49. Gu, L.; Gao, L. Optical bistability of a nondilute suspension of nonlinear coated particles. Physica
B 2005, 368, 279-286.

50. Park, J.; Lu, W. Orientation of core-shell nanoparticles in an electric field. Appl. Phys. Lett. 2007,
91, 053113:1-053113:3.

51. Yu, K.W.; Hui, P.M.; Stroud, D. Effective dielectric response of nonlinear composites. Phys. Rev.
B 1993, 47, 14150-14156.

52. Bergman, D.J.; Levy, O.; Stroud, D. Theory of optical bistability in a weakly nonlinear composite
medium. Phys. Rev. B 1994, 49, 129-134.

53. Levy, O.; Bergman, D.J.; Stroud, D. Harmonic generation, induced nonlinearity, and optical bista-
bility in nonlinear composites. Phys. Rev. E 1995, 52, 3184-3194.

54. Hui, P.M.; Cheung, P.; Stroud, D. Theory of third harmonic generation in random composites of
nonlinear dielectrics. J. Appl. Phys. 1998, 84, 3451-3458.

55. Hui, P.M.; Xu, C.; Stroud, D. Second-harmonic generation for a dilute suspension of coated parti-
cles. Phys. Rev. B 2004, 69, 014203:1-014203:7.

56. Wei, E.B.; Wu, Z.K. The Nonlinear effective dielectric response of graded composites. J. Phys.:
Condens. Matter 2004, 16, 5377-5386.

57. De Gennes, P.G. The Physics of Liquid Crystals; Clarendon: Oxford, UK, 1974.
58. Chandrasekhar, S. Liquid Crystals; Cambridge University Press: Cambridge, UK, 1977.
59. Nagatani, T. Effective permittivity in random anisotropic media. J. Appl. Phys. 1980, 51,

4944-4949.
60. Shafiro, B.; Kachanov, M. Anisotropic effective conductivity of materials with nonrandomly ori-

ented inclusions of diverse ellipsoidal shapes. J. Appl. Phys. 2000, 87, 8561-8569.
61. Giordano, S. Order and disorder in heterogeneous material microstructure: electric and elastic char-

acterization of dispersions of pseudo oriented spheroids. Int. J. Eng. Sci. 2005, 43,
1033-1058.

62. Giordano, S. Equivalent permittivity tensor in anisotropic random media. J. Electrostat. 2006, 64,
655-663.

63. Landau, L.D.; Lifshitz, E.M. Electrodynamics of Continuous Media; Pergamon: Oxford, UK,
1960.
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