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Figure 10. Susceptibility amplification Log10

(
χ//,///α

)
versus a and Log10 (e) for ε1 = 1,

ε2 = 10 and c = 0.25.

Figure 11. Permittivity ε⊥ versus a and Log10 (e) for ε1 = 1, ε2 = 0.1 and c = 0.25.



Materials 2009, 2 1443

Figure 12. Permittivity ε// versus a and Log10 (e) for ε1 = 1, ε2 = 0.1 and c = 0.25.

Figure 13. Susceptibility amplification Log10 (χ⊥,⊥/α) versus a and Log10 (e) for ε1 = 1, ε2

= 0.1 and c = 0.25.
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Figure 14. Susceptibility amplification Log10

(
χ⊥,///α

)
versus a and Log10 (e) for ε1 = 1,

ε2 = 0.1 and c = 0.25.

Figure 15. Susceptibility amplification Log10

(
χ//,⊥/α

)
versus a and Log10 (e) for ε1 = 1,

ε2 = 0.1 and c = 0.25.
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Figure 16. Susceptibility amplification Log10

(
χ//,///α

)
versus a and Log10 (e) for ε1 = 1,

ε2 = 0.1 and c = 0.25.

8. Nonlinear Elastic Homogenization

The theoretical approaches utilized to analyze nonlinear elastic composite materials are typically
based on rigorous variational principles which, in addition to possessing mathematical rigor, have the
advantage of leading to bounds and relatively accurate estimates for the mechanical properties. Such
variational principles allow one to obtain estimates of the effective energy densities of nonlinear materi-
als in terms of the corresponding information for linear composites with the same microstructure. These
methodologies can be found on an excellent review by Ponte Castañeda and Suquet [64]. From the his-
torical point of view, the variational procedure of Hashin and Shtrikman [3, 4] is the first important result
concerning the linear behavior of electric and elastic heterogeneous materials. This variational proce-
dure provides lower and upper bounds on the elastic moduli and elastic tensors for isotropic composites
(reinforced by randomly positioned particles). A generalization of the Hashin-Shtrikman variational
principles, suitable for nonlinear materials, was developed by Talbot and Willis [65, 66]. This extension
can be used to obtain improved bounds (depending on a two-point statistical information) for nonlinear
composites. Variational methods for deriving improved bounds and estimates for the effective properties
of nonlinear materials, utilizing the effective modulus tensor of suitably selected linear-elastic compar-
ison materials, were introduced by Ponte Castañeda [67–70] for materials with isotropic phases and by
Suquet [71] for composites with power-law phases. Moreover, a hybrid of the Talbot-Willis and Ponte
Castañeda procedures, using a linear thermoelastic comparison material, was proposed by Talbot and
Willis [72]. An important advantage of the variational procedures that involve linear comparison mate-
rials is that, they can not only produce the nonlinear Hashin-Shtrikman-type bounds of the Talbot-Willis
procedure directly from the corresponding linear Hashin-Shtrikman bounds, but also yield higher-order
nonlinear bounds, such as Beran-type bounds [73], as well as other types of estimates.
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The general nonlinear elastic features are relevant in many materials science problems. For example,
in biomechanics, transient elastography has shown its efficiency to map the nonlinear properties of soft
tissues and it can be used as diagnostic technique [74, 75]. In material science the linear theory is
incapable of fully capturing all fracture phenomena and hyperelasticity plays a governing role in the
dynamics of fracture [76, 77]. The quantum dots growth, ordering and orientation (occurring during
processing) are largely affected by elastic phenomena, even beyond the linear regime [78, 79]. Finally,
many problems of fracture mechanics in composite materials do contain nonlinear features like, e.g., the
interaction between a crack and a fiber (or, more generally, an inclusion) [80].

The aim of the remaining part of the present work is to review the elastic properties of dispersions of
nonlinear elastic inclusions embedded in a linear elastic hosting matrix. Here, we do not apply method-
ologies based on variational principles since we can obtain, in this particular case, the estimate of the
effective elastic behavior by means of the direct calculations of the elastic fields. Therefore, we describe
a procedure similar to that utilized, in the previous sections, for the dielectric homogenization. In partic-
ular, we will study the elastic fields induced in a single nonlinear particle and then we use such results to
homogenize complex dispersions. It is known that the concept of nonlinearity can be introduced in the
theory of elasticity in two different ways [81]. A first nonlinearity can be taken into account by means of
the exact relation for the strain (not limited for small deformation) and the exact equilibrium equations
for a volume element of the body (this first aspect is referred to as geometrical nonlinearity since it is
related to the equations not depending on the material under consideration). Secondly, another nonlinear
effect can be considered through the arbitrariness of the (generically not Hookean) stress-strain consti-
tutive relation (this aspect is referred to as physical nonlinearity since it is related to properties of the
material under consideration). Therefore, by combining the two previous contributions, it follows that
there are four different types of problems in the theory of elasticity [82]

• those having both physical and geometrical linearity;

• those which are physically nonlinear but geometrically linear;

• those linear physically but nonlinear geometrically;

• those nonlinear both physically and geometrically.

The problems of the first type are the subject of the (classical) theory of elasticity (small deforma-
tion in Hookean materials). In this review, we adopt the second conceptual framework. The angles of
rotation can be neglected in determining changes in dimensions in the line elements and in formulating
the conditions of equilibrium of a volume elements: therefore, the balance equations are based on the
standard small-strain tensor and on the Cauchy stress tensor (typically introduced in the problem of the
first type). However, the elongations exceed the Hookean limit of proportionality (between stress and
strain) and this requires a nonlinear stress-strain relationship. This conceptual framework is sometimes
referred to as hypoelasticity: it is intended to model perfectly reversible nonlinear stress-strain behavior
but restricted to infinitesimal strains. Such a description has been already adopted in the past in order to
model nonlinear cubic polycrystals with perturbative and self-consistent methods [83].

In the following we outline a complete homogenizing procedure for two nonlinear composite materi-
als that paradigmatically represent most features of the above described examples. Firstly, we consider



Materials 2009, 2 1447

a dispersion of nonlinear (but isotropic, i.e., amorphous or polycrystalline) spheres embedded in a lin-
ear homogeneous and isotropic matrix. The nonlinearity of the spheres can be described, at most, by
four parameters (the so-called Landau coefficients) measuring the deviation from the linearity. Since the
overall behavior of the heterogeneous structure will be elastically nonlinear, the key point is the evalu-
ation of the effective nonlinear properties of the composite material. Secondly, a similar procedure has
been developed for a distribution of parallel (nonlinear) cylinders embedded in a (linear) matrix. In both
geometries, the most important methodological aspect is given by a useful generalization of the Eshelby
theory [84] to nonlinear inhomogeneities.

9. Nonlinear Elastic Constitutive Equations

In geometrically linear elasticity, the balance of linear and angular momentum hold for all materials,
regardless of their constitution.

The balance of the linear momentum leads to the equation of motion in the form ∂Tij

∂xj
+ bj = ρ∂2ui

∂t2

where the Tij are the components of the Cauchy stress tensor T̂ , bj are the components of the externally
applied body force ~b, ρ is the mass density and ui are the components of the displacement ~u [81]. The
balance of the angular momentum leads to the symmetry of the stress tensor (Tij = Tji). However,
these relations are generally insufficient to determine the elastic fields produced by given boundary
conditions and body forces. They need to be supplemented by a further set of relations, referred to as
constitutive equations, which characterize the constitution of the body. The convenient starting point is
a set of relations in which the stress components are regarded as single-valued functions of the strain
components

Tij = fij (ε̂) or T̂ = f (ε̂) (85)

where the functions fij are chosen so that fij = fji in order to satisfy the stress symmetry and ε̂ is the
small-strain tensor with components εij = 1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
[81].

For example, in physically linear elasticity the tensor relationship

Tij = Cijkhεkh (86)

is taken into consideration in order to describe any kind of anisotropy. The stiffness tensor Cijkh must
fulfill the following constraints:

• Cijkh = Cjikh and Cijkh = Cijhk, in order to preserve the symmetry of the stress tensor and of the
strain tensor;

• Cijkh = Ckhij , derived by the existence of an elastic energy density (Green hypothesis).

For isotropic materials the previous considerations lead to the notable stress-strain relation T̂ = 2µε̂ +

λTr (ε̂) Î , which is based on the two independent Lamè constants λ and µ [85, 86].
When considering nonlinear elastic material, Equation (86) can be generalized by means of higher

order elastic moduli taking into account the deviation from the stress-strain proportionality [87, 88]

Tij = Cijkhεkh +
1

2
Lijkhnmεkhεnm + ... =

[
Cijkh +

1

2
Lijkhnmεnm + ...

]
εkh = CNL

ijkh (ε̂) εkh (87)
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where ĈNL (ε̂) is the nonlinear (strain dependent) stiffness tensor. It can be noticed that the tensor Ĉ
has 21 independent entries, while the second order tensor L̂ has 56 independent components. Tables
for the values of Cijkh and Lijkhnm can be found in literature [83]. These values can be obtained by
experimental procedure [89, 90] and by computational techniques (e.g., molecular dynamics [91] or
first-principles calculations [92]).

For the following purposes we are interested in the isotropic nonlinear constitutive equations ex-
panded up to the second order in the strain components. In order to introduce these forms of physical
nonlinearities we can take into account two different approaches, as described below.

9.1. Cauchy elasticity

The Cauchy approach to the constitutive equations is the less restrictive starting point for the elasticity
theory since it does not consider the strain energy function. It is simply based on the Equation (85). To
develop this approach in an isotropic context an assumption must be made concerning the behavior of
Equation (85) under rigid-body rotations. The function f (ε̂) must satisfy the identity [81]

R̂T f (ε̂) R̂ = f
(
R̂T ε̂R̂

)
(88)

for all proper orthogonal tensor R̂ representing the rotation. A function satisfying the previous identity
is known as an isotropic tensor function, and it can be represented in the form [81]

T̂ = f (ε̂) = q1Î + q2ε̂ + q3ε̂
2 (89)

where Î is the identity operator and q1, q2 and q3 are scalar functions of the invariants Tr(ε̂), Tr(ε̂2) e
Tr(ε̂3) of the strain tensor ε̂

qα = qα

(
Tr(ε̂), Tr(ε̂2), Tr(ε̂3)

)
(90)

The development of Equation (89), up to the second order in the powers of ε̂, provides the following
constitutive equation

T̂ = 2µε̂ + λTr (ε̂) Î + Aε̂2 + BTr
(
ε̂2

)
Î + C [Tr (ε̂)]2 Î + Dε̂Tr (ε̂) (91)

where µ and λ are the standard Lamè moduli concerning the linear contribution and A,B,C and D are
the coefficients describing the nonlinear behavior of the material.

9.2. Green elasticity

The Green elasticity is based on Equation (85) with an additional hypothesis: we suppose that the
stress power, in a given deformation, is absorbed into a strain energy function U(ε̂), representing the
density of elastic potential energy. The existence of such a function and the consideration of energy
balance in the continuum, lead to the evolution equation [85]

dU(ε̂)

dt
= Tij(ε̂)

dεij

dt
(92)

affirming that the function U(ε̂) is an exact differential form such that

Tij(ε̂) =
∂U(ε̂)

∂εij

(93)
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So, if a function U(ε̂) exists, the (arbitrarily nonlinear) constitutive equation for a given material can
be determined by Equation (93) [85, 86]. From the thermodynamics point of view, the strain energy
function can be identified with the internal energy per unit volume in an isentropic process, or with
the Helmholtz free energy per unit volume in an isothermal process. Such an approach can be further
developed for isotropic media: in this case, the function U(ε̂) must satisfy the relation [81]

U(ε̂) = U
(
R̂T ε̂R̂

)
(94)

for any rotation tensor R̂. Equation (94) represents the scalar counterpart of the tensor relation Equation
(88). If Equation (94) is true then it follows that the function U(ε̂) can depend only on the principal
invariants of the strain tensor

U = U
(
Tr(ε̂), Tr(ε̂2), Tr(ε̂3)

)
(95)

We may expand Equation (95) up to the third order in the strain components, obtaining [86]

U(ε̂) = µTr
(
ε̂2

)
+

λ

2
[Tr (ε̂)]2 +

A

3
Tr

(
ε̂3

)
+ BTr (ε̂) Tr

(
ε̂2

)
+

C

3
[Tr (ε̂)]3 (96)

Finally, performing the derivatives indicated in Equation (93), we obtain the nonlinear isotropic consti-
tutive equation (within the Green approach) expanded up to the second order in the strain tensor

T̂ = 2µε̂ + λTr (ε̂) Î + Aε̂2 + B
{

Tr
(
ε̂2

)
Î + 2ε̂Tr (ε̂)

}
+ C [Tr (ε̂)]2 Î (97)

It is evident by comparison of Equation (91) and Equation (97) that the Green elasticity is more re-
strictive than the Cauchy elasticity: we obtain the Green formulation from the Cauchy formulation by
imposing D = 2B. We use four independent parameters (A,B, C and D) in the Cauchy elasticity and
three independent parameters (A,B and C) in the Green elasticity. These parameters are called Landau
coefficients [86].

10. Eshelby Theory for Nonlinear Inhomogeneities

A nonlinear isotropic and homogenous ellipsoid can be generically described by the relation T̂ =

Ĉ(2) (ε̂) ε̂ (see Equation (87)). Let us now place this inhomogeneity in a linear matrix characterized by a
stiffness tensor Ĉ(1) (see Figure 17) and let us calculate the strain field inside the particle when a uniform
field T̂∞ = Ĉ(1)ε̂∞ is remotely applied to the system.

If the particle were linear, with Ĉ(2) independent from the strain, we would have, inside the ellipsoid,
a uniform strain field ε̂s given by the Eshelby theory [93, 94]

ε̂s =

[
Î − Ŝ

(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)]−1

ε̂∞ (98)

where, we have introduced the Eshelby tensor Ŝ , which depends only on geometrical factors of the
ellipsoid (the semi-axes a1, a2 and a3) and on the Poisson ratio of the host matrix [84]. Conversely, if
the ellipsoid were nonlinear, it is easy to prove that the internal uniform field must satisfy the equation

ε̂s =

[
Î − Ŝ

(
Î −

(
Ĉ(1)

)−1

Ĉ(2) (ε̂s)

)]−1

ε̂∞ (99)
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Figure 17. Scheme of an ellipsoidal inhomogeneity.
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obtained form Equation (98) through the substitution Ĉ(2) → Ĉ(2) (ε̂s). If a solution ε̂s∗ exists for a given
ε̂∞, it means that the nonlinear inhomogeneity could be replaced by a linear one with constant stiffness
Ĉ(2) = Ĉ(2) (ε̂s∗), without modifications of the elastic fields at any point. Therefore, if a solution exists,
then Equation (99) exactly describes, through self-consistency, the elastic behavior of the nonlinear
anisotropic inclusion. This is not a trivial result: for instance, such a generalization of Equation (98)
is not valid if a nonlinear behavior is assumed for material 1 (matrix). The calculation of the internal
strain field from Equation (99) is very complicated and it strongly depends on the kind of nonlinearity
T̂ = Ĉ(2) (ε̂) ε̂. This task will be accomplished in the following, dealing with a sphere or a cylinder
described by physical nonlinearities as those in Equation (91) (Cauchy) or Equation (97) (Green).

To conclude, we have proved the following general statement: if the linear elastic space with a single
inhomogeneity of ellipsoidal shape is subjected to remote uniform loading, the stress field inside the
inhomogeneity will be uniform independent of the constitutive law for the inhomogeneity, provided that
both the matrix and the particle are homogeneous bodies. Some similar properties can be found in earlier
literature [95–97].

When the Green approach is considered it is also possible to verify the existence and the uniqueness
for the solution of Equation (99) [98, 99]. The proof follows.

10.1. Nonlinear Eshelby theory within green elasticity

We adopt here, from the energetic point of view, the Green formulation of the elasticity theory. A
strain energy function U(ε̂) defines the constitutive equation T̂ (ε̂) = ∂U(ε̂)

∂ε̂
of the inhomogeneity, which

is equivalent to T̂ (ε̂) = Ĉ(2) (ε̂) ε̂. In these conditions, the existence and uniqueness of a solution for
Equation (99) can be exactly proved under the sole hypothesis of convexity for the strain energy function
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U(ε̂) [98, 99]. To prove this statement, we rearrange Equation (99) as follows
{

Î − Ŝ
[
Î −

(
Ĉ(1)

)−1

Ĉ(2) (ε̂s)

]}
ε̂s = ε̂∞

ε̂s − Ŝ
[
Î −

(
Ĉ(1)

)−1

Ĉ(2) (ε̂s)

]
ε̂s = ε̂∞

ε̂s − Ŝ ε̂s + Ŝ
(
Ĉ(1)

)−1

Ĉ(2) (ε̂s) ε̂s = ε̂∞

[
Î − Ŝ

]
ε̂s + Ŝ

(
Ĉ(1)

)−1 ∂U(ε̂s)

∂ε̂s
= ε̂∞

Ĉ(1)
[
Ŝ−1 − Î

]
ε̂s − Ĉ(1)Ŝ−1ε̂∞ +

∂U(ε̂s)

∂ε̂s
= 0 (100)

Now, the first linear term can be converted to the gradient of a quadratic form and the second constant
term can be converted to the gradient of a linear form. At the end we observe that the internal strain field
must satisfy the following relation [98, 99]

∂

∂ε̂

{
1

2
ε̂Ĉ(1)

[
Ŝ−1 − Î

]
ε̂− ε̂Ĉ(1)Ŝ−1ε̂∞ + U(ε̂)

}
= 0 (101)

which is exactly equivalent to Equation (99). The first term represents a symmetric and positive definite
quadratic form in ε̂ (see Appendix A) while the second term is a linear function of ε̂. Therefore, the sum
of these two terms is a convex functional with relative minimum at

[
Î − Ŝ

]
ε̂∞. This value represents

the strain field in a void (Ĉ(2) (ε̂) = 0 in Equation (99) or U(ε̂) = 0 in Equation (101)) embedded in the
matrix with stiffness Ĉ(1). If U(ε̂) is a convex functional (with U(0) = 0) the brackets in Equation (101)
contain the sum of two convex terms: they result in an overall convex functional with a unique minimal
extremum at ε̂s.

11. Elastic Dispersion of Nonlinear Spherical Inhomogeneities

We consider an assembly of spherical inhomogeneities (see Figure 18) described by a Cauchy consti-
tutive relation

T̂ s = 2µ2ε̂
s + λ2Tr (ε̂s) Î + A (ε̂s)2 + BTr

[
(ε̂s)2] Î + C [Tr (ε̂s)]2 Î + Dε̂sTr (ε̂s) (102)

randomly embedded in a linear matrix with stiffness tensor Ĉ(1) (moduli λ1 and µ1). We also introduce
the bulk moduli K1 = λ1 + 2

3
µ1 and K2 = λ2 + 2

3
µ2. If needed, we can easily move to the Green

elasticity by assuming D = 2B. We suppose that the volume fraction c of the embedded phase is small
(dilute dispersion). Since the elastic interactions can be neglected, each sphere behaves as an isolated
one under the effect of a remote load T̂∞ = Ĉ(1)ε̂∞. The starting point for the evaluation of the induced
internal strain ε̂s is Equation (99), which can be usefully rearranged as follows

ε̂s − Ŝ ε̂s + Ŝ
(
Ĉ(1)

)−1

T̂ s = ε̂∞ (103)

Here, we have introduced the internal stress given by the relation T̂ s = Ĉ(2) (ε̂s) ε̂s. The result of the

application of
(
Ĉ(1)

)−1

over the stress tensor T̂ s can be easily written in explicit form

(
Ĉ(1)

)−1

T̂ s =
1

2µ1

T̂ s − λ1

2µ1 (2µ1 + 3λ1)
Tr

(
T̂ s

)
Î (104)
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Figure 18. Scheme of a dispersion of nonlinear spheres embedded in a linear matrix.
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Moreover, the explicit expression of the Eshelby tensor for a sphere is reported in literature [28, 84]

Sijkh =
1

15(1− ν1)
[(δikδjh + δihδjk) (4− 5ν1) + δkhδij(5ν1 − 1)] (105)

We can evaluate the effect of Sijkh over an arbitrary strain εs
kh, getting

Sijkhε
s
kh =

2(4− 5ν1)

15(1− ν1)
εs
ij +

5ν1 − 1

15(1− ν1)
εs
kkδij (106)

Now, the Poisson ratio ν1 of the matrix can be written in terms of the bulk modulus K1 and the shear
modulus µ1 through the standard relation ν1 = 3K1−2µ1

2(3K1+µ1)
, obtaining

Ŝ ε̂s =
6

5

K1 + 2µ1

3K1 + 4µ1

ε̂s +
1

5

3K1 − 4µ1

3K1 + 4µ1

Tr (ε̂s) Î (107)

In order to find a single equation for the internal strain ε̂s, we can substitute Equations (102), (104) and
(107) in Equation (103). A long algebraic calculation leads to the important equation [98, 99].

Lε̂s + MTr (ε̂s) Î + N (ε̂s)2 + Oε̂sTr (ε̂s) + PTr
[
(ε̂s)2] Î + Q [Tr (ε̂s)]2 Î = ε̂∞ (108)

which completely defines the internal strain induced in a nonlinear sphere by the uniform remote defor-
mation ε̂∞. The parameters L,M, N, O, P and Q have been written in terms of the shear moduli, bulk
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moduli and nonlinear coefficients as follows

L = 1 +
6

5

K1 + 2µ1

3K1 + 4µ1

(
µ2

µ1

− 1

)
(109)

M =
1

5 (3K1 + 4µ1)

[
5K2 −K1

(
3 + 2

µ2

µ1

)
− 4 (µ2 − µ1)

]
(110)

N =
3

5

A

µ1

K1 + 2µ1

3K1 + 4µ1

(111)

O =
3

5

D

µ1

K1 + 2µ1

3K1 + 4µ1

(112)

P =
1

15 (3K1 + 4µ1)

[
15B − A

(
1 + 3

K1

µ1

)]
(113)

Q =
1

15 (3K1 + 4µ1)

[
15C −D

(
1 + 3

K1

µ1

)]
(114)

At this point we take into consideration the actual dispersion of spheres. We define V as the total volume
of the composite material, Ve as the volume corresponding to the spheres and Vo as the volume of the
matrix (V = Vo∪Ve, see Figure 18). Since we are working under the hypothesis of small volume fraction
c, we can consider the average value of the strain in the matrix equal to the externally applied strain ε̂∞.
Therefore, the average value of the strain in the overall system is given by

〈ε̂〉 = cε̂s + (1− c)ε̂∞ (115)

On the other hand, the average value of the stress over the entire structure can be calculated as follows

〈T̂ 〉 =
1

V

∫

V

T̂dv =
1

V
Ĉ(1)

∫

Vo

ε̂dv +
1

V

∫

Ve

T̂dv

=
1

V
Ĉ(1)

∫

Vo

ε̂dv +
1

V

∫

Ve

T̂dv +
1

V
Ĉ(1)

∫

Ve

ε̂dv − 1

V
Ĉ(1)

∫

Ve

ε̂dv (116)

=
1

V
Ĉ(1)

∫

V

ε̂dv +
1

V

[∫

Ve

T̂dv + Ĉ(1)

∫

Ve

ε̂dv

]

= Ĉ(1) 〈ε̂〉+ c
[
T̂ s − Ĉ(1)ε̂s

]

In order to obtain the macroscopic characterization of the material, we search for the relationship between
〈T̂ 〉 and 〈ε̂〉, given in Equations (115) and (116), respectively.

By substituting Equation (108) in Equation (115), we obtain the average strain 〈ε̂〉 in terms of the
internal strain ε̂s

〈ε̂〉 = [c + (1− c)L] ε̂s

+ (1− c)
{

MTr (ε̂s) Î + N (ε̂s)2 (117)

+ Oε̂sTr (ε̂s) + PTr
[
(ε̂s)2] Î + Q [Tr (ε̂s)]2 Î

}

and by substituting the constitutive relations in Equation (116), we obtain the average stress 〈T̂ 〉 in terms
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of ε̂s

〈T̂ 〉 = 2µ1〈ε̂〉+

(
K1 − 2

3
µ1

)
Tr〈ε̂〉Î

+ c

{
2 (µ2 − µ1) ε̂s +

[
K2 −K1 − 2

3
(µ2 − µ1)

]
Tr (ε̂s) Î (118)

+ A (ε̂s)2 + BTr
[
(ε̂s)2] Î + C [Tr (ε̂s)]2 Î + Dε̂sTr (ε̂s)

}

The last two expressions, although in implicit form, define the macroscopic constitutive equation relating
〈T̂ 〉 and 〈ε̂〉. In fact, we may obtain ε̂s in terms of 〈ε̂〉 from Equation (117) and this result can be replaced
in Equation (118), leading to the final characterization. In order to follow this scheme, we rewrite
Equation (117) in a simpler form

〈ε̂〉 = L′ε̂s + M ′Tr (ε̂s) Î + N ′ (ε̂s)2 + O′ε̂sTr (ε̂s) + P ′Tr
[
(ε̂s)2] Î + Q′ [Tr (ε̂s)]2 Î (119)

where we have used the definitions

L′ = c + (1− c) L (120)

M ′ = (1− c)M (121)

N ′ = (1− c)N (122)

O′ = (1− c)O (123)

P ′ = (1− c)P (124)

Q′ = (1− c)Q (125)

Starting from Equation (119), we can straightforwardly calculate the quantities Tr 〈ε̂〉, 〈ε̂〉2, 〈ε̂〉Tr 〈ε̂〉,
Tr

(〈ε̂〉2) and [Tr 〈ε̂〉]2 in terms of the internal strain ε̂s (by using the relation Tr(Î) = 3). These set of
relations can be written neglecting the terms of order greater than two in ε̂s, since we are interested in the
characterization of the nonlinear elastic properties of the dispersion up to the second order. Therefore,
this set of equations can be arranged in a matrix form, as follows

Ũ




ε̂s

Tr (ε̂s) Î

(ε̂s)2

ε̂sTr (ε̂s)

Tr
[
(ε̂s)2] Î

[Tr (ε̂s)]2 Î




=




〈ε̂〉
Tr 〈ε̂〉 Î
〈ε̂〉2

〈ε̂〉Tr〈ε̂〉
Tr

[〈ε̂〉2] Î

[Tr 〈ε̂〉]2 Î




(126)

The elements of the matrix Ũ have been written in terms of the parameters defined in
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Equations (120)–(125)

Ũ =




L′ M ′ N ′ O′ P ′ Q′

0 L′ + 3M ′ 0 0 N ′ + 3P ′ O′ + 3Q′

0 0 L′2 2L′M ′ 0 M ′2

0 0 0 L′ (L′ + 3M ′) 0 M ′ (L′ + 3M ′)

0 0 0 0 L′2 M ′ (2L′ + 3M ′)

0 0 0 0 0 (L′ + 3M ′)2




(127)

Finally, by using Equation (118) and by inverting Equation (126), we may obtain the matrix form of the
complete constitutive relation

〈T̂ 〉 =







2µ1

K1 − 2
3
µ1

0

0

0

0




T

+ c




2(µ2 − µ1)

K2 −K1 − 2
3
(µ2 − µ1)

A

D

B

C




T

Ũ−1







〈ε̂〉
Tr 〈ε̂〉 Î
〈ε̂〉2

〈ε̂〉Tr 〈ε̂〉
Tr

(〈ε̂〉2) Î

[Tr 〈ε̂〉]2 Î




(128)

11.1. Results

The constitutive equation in the form of Equation (128) can be written in terms of the effective linear
and nonlinear elastic moduli as follows

〈T̂ 〉 = 2µeff〈ε̂〉+

(
Keff − 2

3
µeff

)
Tr〈ε̂〉Î (129)

+ Aeff〈ε̂〉2 + BeffTr
[〈ε̂〉2] Î + Ceff [Tr〈ε̂〉]2 Î + Deff〈ε̂〉Tr〈ε̂〉

As for the linear elastic moduli, we obtain

µeff = µ1 + c
µ2 − µ1

L′
(130)

Keff = K1 + c
K2 −K1

L′ + 3M ′ (131)

and, as for the nonlinear elastic moduli, we have [98, 99]

Aeff = c
A

L′2
− 2c

N ′ (µ2 − µ1)

L′3
(132)

Beff = 2c
(N ′M ′ − L′P ′) (µ2 − µ1)

L′3 (L′ + 3M ′)
− c

(N ′ + 3P ′)
[
K2 −K1 − 2

3
(µ2 − µ1)

]

L′2 (L′ + 3M ′)
+ c

B

L′2
(133)
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Ceff =
1

9

c (9C + 3B + 3D + A)

(L′ + 3M ′)2 +
1

9

c (A− 3B)

L′2

− 4

9

N ′ (µ2 − µ1) c

L′3
− 1

9

c (3D + 2A)

L′ (L′ + 3M ′)
+

1

9

c(4N ′ + 6O′)(µ2 − µ1)

L′2 (L′ + 3M ′)
(134)

+
1

9

c(3N ′ + 9P ′)(K2 −K1)

L′2 (L′ + 3M ′)
− 1

3

c(9Q′ + 3O′ + 3P ′ + N ′)(K2 −K1)

(L′ + 3M ′)3

Deff = 2c
(2N ′M ′ − L′O′) (µ2 − µ1)

L′3 (L′ + 3M ′)
− 2c

M ′A
L′2 (L′ + 3M ′)

+ c
D

L′ (L′ + 3M ′)
(135)

If we use the definitions of the parameters L′ and M ′, given in Equations (120) and (121), we obtain for
the effective shear and bulk moduli the explicit expressions [98, 99]

µeff = µ1 + c
µ2 − µ1

c + (1− c)
[
1 + 6

5

(
µ2

µ1
− 1

)
K1+2µ1

3K1+4µ1

] (136)

Keff = K1 +
(3K1 + 4µ1) (K2 −K1) c

3K2 + 4µ1 − 3c(K2 −K1)
(137)

These two expressions are coincident with those obtained for a linear dispersion of elastic spheres [30].
However, they are completed by Equations (132)–(135) in order to characterize the nonlinear properties
of the mixture . This set of results fulfils a series of important general properties [98, 99]:

1. Equations (132)–(137) are also true for c = 1; in this case (very high volume fraction of spheres)
the procedure is not expected to be valid but nonetheless the results appears to be exact (if c = 1

then µeff = µ2, Keff = K2, Aeff = A, Beff = B, Ceff = C, Deff = D).

2. The nonlinear elastic moduli A, B, C and D influence the effective nonlinear moduli of the com-
posite material following the universal scheme showed in Figure 19. Therefore, there is a com-
plicated mixing of the nonlinear elastic modes induced by the heterogeneity of the structure. The
results for the nonlinear effective parameters, obtained with a single coefficient (A, B, C or D) dif-
ferent from zero, are reported in Appendix B, in form of series expansions in the volume fraction
up to the first order. They are coherent with the scheme shown in Figure 19.

Figure 19. Mixing scheme for the nonlinear modes.

A

B

Ceff

D

Aeff

Beff

C

Deff
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3. If the linear elastic moduli of the matrix and of the spheres are the very same (K1 = K2 and
µ1 = µ2), we simply obtain Keff = K1, µeff = µ1 and the following special set of results for the
nonlinear components

Aeff = cA (138)

Beff = cB (139)

Ceff = cC (140)

Deff = cD (141)

It means that the nonlinearity of the overall system is simply proportional to the nonlinearity of
the spheres.

4. We have developed our procedure under the hypothesis of Cauchy nonlinear elasticity for the
spheres embedded in the linear matrix. If we let D = 2B we move from the Cauchy elasticity to the
Green elasticity, assuming the existence of a strain energy function for the inhomogeneities. It is
important to remark that the following property holds: if D = 2B then the relation Deff = 2Beff

is true for the effective nonlinear moduli. It can be verified by direct calculation and it means that
our approach is perfectly consistent with the energy balance of the composite material. In other
words, we have verified that if a strain energy function exists for the embedded spheres, then an
overall strain energy function exists for the whole composite structure.

5. If we consider the special value of the Poisson ratio ν1 = ν2 = 1/5 (both for the matrix and the
spheres) and different values for the Young moduli E1 6= E2, we obtain another interesting result:
the effective Poisson ratio assume the same value νeff = 1/5, the effective Young modulus Eeff

assumes the value

Eeff =
E1 (1− c) + E2 (1 + c)

E1 (1 + c) + E2 (1− c)
E1 (142)

and the effective nonlinear elastic moduli can be calculated as follows

Xeff =
8E3

1c

[E1 (1 + c) + E2 (1− c)]3
X (143)

where the symbol X represents any modulus A, B, C or D (the four effective parameters exhibit
the same behavior). Therefore, we can say that the special value ν1 = ν2 = 1/5 uncouples the be-
havior of the nonlinear elastic modes (described at the point 2), generating a direct correspondence
among the nonlinear moduli of the spheres and the effective nonlinear moduli. Furthermore, if we
add the condition E1 = E2, we get back to the point 3. The special value 1/5 for the Poisson ratio
comes out in several issues considering a dispersion of spheres. For example, for linear porous
materials (with spherical pores) and for linear dispersions of rigid spheres the value 1/5 is a fixed
points for the Poisson ratio: if ν1 = 1/5, then we have νeff = 1/5 for all spheres concentrations
[33, 100]. Moreover, there is another interesting behavior of the effective Poisson ratio for high
volume fraction of pores or rigid spheres: in both cases for c → 1 the effective Poisson ratio
converges to the fixed value νeff = 1/5, irrespective of the matrix Poisson ratio [33, 100–102].
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6. Finally, we analyze the properties of the dispersion when incompressible material is utilized for the
embedded spheres: the constitutive relation Equation (102) describes an incompressible medium
in the limit λ2 → ∞ (or, equivalently, K2 → ∞ since K2 = λ2 + 2µ2/3); by inverting Equation
(102), writing the strain tensor in terms of the stress tensor and performing such a limit, we obtain
(up to the second order)

ε̂s =
1

2µ2

T̂ s − 1

6µ2

Tr
(
T̂ s

)
Î − A

8µ3
2

(
T̂ s

)2

(144)

+
A

24µ3
2

Tr
[(

T̂ s
)2

]
Î − A

36µ3
2

[
Tr

(
T̂ s

)]2

Î +
A

12µ3
2

T̂ sTr
(
T̂ s

)

which describes a nonlinear isotropic and incompressible material. We remark that only the nonlin-
ear modulus A intervenes in defining such a constitutive equation and that Equation (144) imposes
Tr (ε̂s) = 0, as requested by the incompressibility. In this limiting condition, as for the effective
linear moduli, we observe that Equation (136) for µeff remains unchanged and Equation (137)
leads to

Keff = K1 +

(
K1 +

4

3
µ1

)
c

1− c
(145)

On the other hand, the nonlinear elastic moduli have been eventually found as

Aeff = 125Aθ (146)

Beff = −125

3
Aθ (147)

Ceff =
250

9
Aθ (148)

Deff = −250

3
Aθ (149)

where

θ =
c (3K1 + 4µ1)

3 µ3
1

ψ3
(150)

ψ = 6 (K1 + 2µ1) [cµ1 + (1− c)µ2] + µ1 (9K1 + 8µ1) (151)

One can observe that, as expected, the effective nonlinear elastic moduli depend only on the modu-
lus A describing the nonlinearity of the spheres, as shown in Equation (144). Moreover, we remark
that a single modulus A for the spheres can generate four different effective nonlinear moduli, as
predicted by the scheme in Figure 19.

To conclude, we present some numerical results obtained by the implementation of Equations (132)–
(137). In Figure 20 we have considered Green nonlinear elasticity and the mixture parameters: µ1 =

1, µ2 = 4, K1 = 7, K2 = 1, A = 2, B = 3, C = 5, D = 2B in arbitrary units. In Figure 21 we have
considered Cauchy nonlinear elasticity and the mixture parameters: µ1 = 1, µ2 = 4, K1 = 10, K2 =

1, A = 2, B = −3, C = −5, D = 4 in arbitrary units. The results have been presented in terms of
the volume fraction c of the spheres. In both cases we may observe a consistent amplification of the
nonlinear effective modulus Ceff . We have verified that such a phenomenon is always exhibited when
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Figure 20. Linear and nonlinear effective elastic moduli of a dispersion of spheres in terms
of the volume fraction c. We have used the values µ1 = 1, µ2 = 4, K1 = 7, K2 = 1, A =

2, B = 3, C = 5, D = 2B in arbitrary units.
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Figure 21. Linear and nonlinear effective elastic moduli of a dispersion of spheres in terms
of the volume fraction c. We have used the values µ1 = 1, µ2 = 4, K1 = 10, K2 = 1, A =

2, B = −3, C = −5, D = 4 in arbitrary units.
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K1 À K2 (i.e., when the matrix is much more incompressible than the spheres) and that the higher
values of Ceff appear for small values of the volume fraction c, belonging to the range of applicability
of the present theory.

As it is well known, simple limitations for the values of the linear effective moduli are well established

1
1−c
K1

+ c
K2

5 Keff 5 (1− c) K1 + cK2 (152)

1
1−c
µ1

+ c
µ2

5 µeff 5 (1− c) µ1 + cµ2 (153)
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The lower bounds in Equations (152) and (153) are referred to as the Voigt bounds, and the upper bounds
are designated as the Reuss bounds [29]. Unfortunately, these bounds are of no practical value, but more
refined bounds, with realistic applications, have been derived by Hashin and Shtrikman [4]. From our
numerical results, shown in Figures 20 and 21, we may observe that the nonlinear properties, contrary
to the linear ones, are not bounded by some given values and in certain conditions exhibit a strong
amplification, which leads to nonlinear effective moduli much greater than those of the constituents.
This point is important in the topic of designing materials with desired properties and functions.

12. Elastic Dispersion of Parallel Nonlinear Cylindrical Inhomogeneities

We now take into consideration an assembly of parallel cylinders, as represented in Figure 22, de-
scribed by an arbitrary Cauchy constitutive relation [see Equation (102)]. As before, when needed, we
can easily move to the Green elasticity by assuming D = 2B. The cylindrical inhomogeneities are
randomly embedded in a linear matrix with elastic moduli K1 and µ1. This is a simple but complete
way for modeling a nonlinear fibrous material. In earlier works the linear analysis for a parallel distribu-
tion of fibers has been developed by means of the Eshelby methodology and of the differential effective
medium theory [32, 103]. Moreover, the mechanical response of elastic and inelastic fiber-strengthened
materials has been investigated, also with self-consistent models [104–106]. Here, in order to deal with
the nonlinear properties, we suppose that the volume fraction c of the embedded phase is small (dilute
dispersion). It means that each cylinder can be considered isolated in the space (not interacting with

Figure 22. Scheme of a dispersion of nonlinear parallel cylinders embedded in a linear
matrix.

K2, µ2

K1, µ1
1 − c
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V
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Keff , µeff , Aeff , Beff , Ceff , Deff
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K2, µ2 A, B, C,D

A, B, C,D

K2, µ2 A, B, C,D

π

other inhomogeneities) and subject to the same external loading. In order to simplify the modeling and
considering that the system shows a transverse isotropic symmetry (otherwise said uniaxial symmetry),
we assume the plane strain condition on an arbitrary plane π (see Figure 22) orthogonal to the cylinders.
It means that we are dealing with a problem belonging to the two-dimensional elasticity. Moreover, in
plain strain condition, it is a common choice to introduce the two dimensional elastic moduli µ2D = µ

and K2D = K+µ/3, where K and µ are the customarily used three-dimensional moduli [103]. Through-
out this section we indicate for brevity K and µ alluding to the two-dimensional version of the elastic
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moduli. It means that the linear matrix is described by

T̂ = 2µ1ε̂ + (K1 − µ1) Tr (ε̂) Î (154)

and the cylindrical inhomogeneities are described by the Cauchy constitutive relation

T̂ s = 2µ2ε̂
s + (K2 − µ2) Tr (ε̂s) Î + A (ε̂s)2 + BTr

[
(ε̂s)2] Î + C [Tr (ε̂s)]2 Î + Dε̂sTr (ε̂s) (155)

where any strain or stress tensor is represented by a square matrix of order two, working in the framework
of the two-dimensional elasticity. Now, we remark that Equation (99) or, equivalently, Equation (103) are
correct for any geometry and, therefore, they can be directly used in the present analysis. Nevertheless,
in order to use Equation (103) we need to consider some ingredients: the result of the application of the
compliance tensor of the matrix on the stress tensor T̂ s can be written as

(
Ĉ(1)

)−1

T̂ s =
1

2µ1

T̂ s − K1 − µ1

4µ1K1

Tr
(
T̂ s

)
Î (156)

Moreover, the effect of the Eshelby tensor Ŝ for a cylinder over an arbitrary strain tensor ε̂s is given by
[84]

Ŝ ε̂s =
1

2

K1 + 2µ1

K1 + µ1

ε̂s +
1

4

K1 − 2µ1

K1 + µ1

Tr (ε̂s) Î (157)

Now, in order to obtain a single equation for the internal strain ε̂s, we can substitute Equations (155),
(156) and (157) in the starting Equation (103). A tedious calculation leads to the equation [99]

Lε̂s + MTr (ε̂s) Î + N (ε̂s)2 + Oε̂sTr (ε̂s) + PTr
[
(ε̂s)2] Î + Q [Tr (ε̂s)]2 Î = ε̂∞ (158)

which completely defines the internal strain induced in a nonlinear cylinder by the uniform externally
applied deformation ε̂∞. The parameters L,M, N, O, P and Q have been defined as

L = 1 +
1

2

K1 + 2µ1

K1 + µ1

(
µ2

µ1

− 1

)
(159)

M =
1

4 (K1 + µ1)

[
2K2 −K1

(
1 +

µ2

µ1

)
− 2 (µ2 − µ1)

]
(160)

N =
A

4µ1

K1 + 2µ1

K1 + µ1

(161)

O =
D

4µ1

K1 + 2µ1

K1 + µ1

(162)

P =
1

8 (K1 + µ1)

(
4B − A

K1

µ1

)
(163)

Q =
1

8 (K1 + µ1)

(
4C −D

K1

µ1

)
(164)

We follow a procedure similar to that described in Section 4. We use again Equations (116) and (119)
for the average values of the stress and the strain over the whole composite material. At this point, start-
ing from Equation (119), we obtain the system given in Equation (126) (by using the two-dimensional
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relation Tr(Î) = 2). It is defined by the matrix Ũ where the elements depend on the parameters defined
in Equations (120)–(125) and calculated by means of Equations (159)–(164)

Ũ =




L′ M ′ N ′ O′ P ′ Q′

0 L′ + 2M ′ 0 0 N ′ + 2P ′ O′ + 2Q′

0 0 L′2 2L′M ′ 0 M ′2

0 0 0 L′ (L′ + 2M ′) 0 M ′ (L′ + 2M ′)

0 0 0 0 L′2 2M ′ (L′ + M ′)

0 0 0 0 0 (L′ + 2M ′)2




(165)

Finally, by inverting Equation (126), we may obtain the matrix form of the complete constitutive relation

〈T̂ 〉 =







2µ1

K1 − µ1

0

0

0

0




T

+ c




2(µ2 − µ1)

K2 −K1 − (µ2 − µ1)

A

D

B

C




T

Ũ−1







〈ε̂〉
Tr 〈ε̂〉 Î
〈ε̂〉2

〈ε̂〉Tr 〈ε̂〉
Tr

(〈ε̂〉2) Î

[Tr 〈ε̂〉]2 Î




(166)

12.1. Results

The constitutive equation in the form of Equation (166) can be written in terms of the effective linear
and nonlinear elastic moduli as follows

〈T̂ 〉 = 2µeff〈ε̂〉+ (Keff − µeff ) Tr〈ε̂〉Î (167)

+ Aeff〈ε̂〉2 + BeffTr
[〈ε̂〉2] Î + Ceff [Tr〈ε̂〉]2 Î + Deff〈ε̂〉Tr〈ε̂〉

As for the linear elastic moduli, we obtain [99]

µeff = µ1 + c
µ2 − µ1

L′
= µ1 + c

µ2 − µ1

c + (1− c)
[
1 + 1

2

(
µ2

µ1
− 1

)
K1+2µ1

K1+µ1

] (168)

Keff = K1 + c
K2 −K1

L′ + 2M ′ = K1 + c
K2 −K1

c + (1− c)µ1+K2

µ1+K1

(169)

It is important to remember that the bulk modulus Keff represents the two-dimensional version, as above
defined. Moreover, the two linear results given in Equations (168) and (169) are perfectly coincident with
earlier literature [107]. As for the effective nonlinear elastic moduli, we have the following final results
[99]

Aeff =
Ac

L′2
− 2c

N ′ (µ2 − µ1)

L′3
(170)

Beff =
c [N ′ (µ2 − µ1) + BL′]

L′3
− c (2P ′ + N ′) (K2 −K1)

L′2 (L′ + 2M ′)
(171)
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Ceff = c
4C + 2B + 2D + A

4 (L′ + 2M ′)2 + c
A− 2B

4L′2
+ c

2 (O′ + N ′) (µ2 − µ1) + (2P ′ + N ′) (K2 −K1)

2L′2 (L′ + 2M ′)

− c (2P ′ + N ′ + 4Q′ + 2O′) (K2 −K1)

2 (L′ + 2M ′)3 − cN ′ (µ2 − µ1)

L′3
− c

A + D

2L′ (L′ + 2M ′)
(172)

Deff = 2
(2N ′M ′ − L′O′) (µ2 − µ1) c

L′3 (L′ + 2M ′)
− 2c

M ′A
L′2 (L′ + 2M ′)

+
cD

L′ (L′ + 2M ′)
(173)

They represent the complete nonlinear characterization of the random dispersion of parallel cylinders.
It is interesting to observe that all the properties described in the previous section for the dispersion
of spheres (points 1–6) can be easily verified also for the present case [99]. In particular, the scheme
represented in Figure 19 remains valid. In Appendix C we have reported the explicit results giving the
first order expansions of the nonlinear elastic moduli with respect to the volume fraction, corresponding
to the simple cases where only one nonlinear parameter of the cylinders is different from zero. We
analyze the case corresponding to the point 5 of the previous section: we consider the special value
of the three-dimensional Poisson ratio ν1 = ν2 = 1/4 (corresponding to the two-dimensional Poisson
ratio ν2D = ν3D/(1 − ν3D) = 1/3 [103]) and different values for the three-dimensional Young moduli
E1 6= E2. In this case, the effective 3D Poisson ratio assume the value νeff = 1/4 and the effective 3D
Young modulus Eeff assumes the value

Eeff =
E1 (1− c) + E2 (2 + c)

E1 (1 + 2c) + 2E2 (1− c)
E1 (174)

Moreover, the effective nonlinear elastic moduli can be calculated as follows

Xeff =
27E3

1c

[E1 (1 + 2c) + 2E2 (1− c)]3
X (175)

where the symbol X represents any modulus A, B, C or D (the four effective parameters exhibit the
same behavior). Therefore, as before, we can say that the special value ν1 = ν2 = 1/4 uncouples the
behavior of the nonlinear elastic modes, generating a direct correspondence among the nonlinear moduli
of the spheres and the effective nonlinear moduli.

Finally, we have numerically implemented Equations (168)–(173) in order to show some explicit
results. In Figure 23 we have considered Green nonlinear elasticity and the mixture parameters: µ1 =

1, µ2 = 5, K1 = 10, K2 = 1, A = −8, B = −2, C = −1, D = 2B in arbitrary units. In Figure 24
we have considered Cauchy nonlinear elasticity and the mixture parameters: µ1 = 1, µ2 = 5, K1 =

10, K2 = 1, A = 8, B = −2, C = −1, D = 6 in arbitrary units. As in the previous section, we may
observe a consistent amplification of the nonlinear effective modulus Ceff . We have also verified that
such a phenomenon is exhibited when K1 À K2 (i.e., when the matrix is much more incompressible
than the spheres) and that the higher values of Ceff appear for small values of the volume fraction c,
belonging to the range of applicability of the present theory.

13. Conclusions

In the previous sections we have considered the linear and nonlinear elastic behavior of a composite
material. In particular we have taken into account a dispersion of isotropic nonlinear inhomogeneities
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Figure 23. Linear and nonlinear effective elastic moduli for a dispersion of cylinders in
terms of the volume fraction c. We have used the values µ1 = 1, µ2 = 5, K1 = 10, K2 =

1, A = −8, B = −2, C = −1, D = 2B in arbitrary units.
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(spheres or parallel cylinders) embedded into a linear isotropic host matrix. The nonlinearity of the
inhomogeneities has been described either by the Cauchy model (four parameters) or by the energy-
based Green approach (three parameters).

We have introduced two simplifying hypotheses: the small volume fraction of the embedded particles
and the small deformations of the whole solid body. Nevertheless, we have described useful results both
for analyzing the mechanical properties of a given heterogeneous structure and for designing a composite
material with a desired linear and nonlinear elastic behavior.

The main concept introduced to homogenize the heterogeneous structures is a generalization of the
linear Eshelby methodology developed for extending its applicability to nonlinear materials. This ap-
proach has been analytically applied to perform a linear and nonlinear micromechanical averaging in the
composite structure and, therefore, to develop a complete homogenizing procedure yielding the mechan-
ical behavior of the solid body at the macro-scale.

As for the linear properties, we have obtained a series of results in perfect agreement with earlier
researches on this subject. This point can be considered as a check of the mathematical procedure.
As for the nonlinear properties, firstly, we have obtained the expressions of the four effective elastic
moduli of the composite medium with inhomogeneities described by the Cauchy constitutive equations,
which represent the less restrictive way to model the nonlinear elasticity. Then, we have considered, as
a particular case, the Green elasticity to describe the nonlinear behavior of the particles. In this case we
have verified that if a strain energy function exists for the inhomogeneities, then an overall strain energy
function exists for the whole composite structure. This point confirms the perfect coherence between our
micromechanical averaging procedure and the thermodynamics of the composite material.

Moreover, we have observed that the nonlinear effective elastic moduli, contrary to the linear ones,
are not subject to specific bounds that limit their values when the behaviors of the constituents are
chosen. We have indeed found some strong amplifications of the nonlinear behavior in certain given
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Figure 24. Linear and nonlinear effective elastic moduli for a dispersion of cylinders in
terms of the volume fraction c. We have used the values µ1 = 1, µ2 = 5, K1 = 10, K2 =

1, A = 8, B = −2, C = −1, D = 6 in arbitrary units.
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conditions. More specifically, for example, we have observed that the nonlinear modulus Ceff can
assume values much greater than C if the matrix is much more incompressible than the inhomogeneities.
This is a crucial point that can be applied in analyzing and designing composite materials with a given
microstructure.

Finally, some special values of the Poisson ratio of the materials have been found in order to obtain
a direct correspondence among the nonlinear moduli of the inhomogeneities and the effective moduli of
the composite structure. It means that, under the above conditions, we can realize a perfect scaling of
the nonlinear properties (see Equation (143) or (175)) modulated by the ratio E1/E2 between the Young
moduli of the constituents.

Appendix A Symmetry and Positive Definiteness of the Tensor Ĉ(1)
[
Ŝ−1 − Î

]

We briefly outline the concepts of inclusion and linear inhomogeneity in order to present the adopted
notation and to recall the most important equations of the Eshelby theory [84, 93, 94].

Concept of inclusion

We consider an infinite medium with stiffness tensor Ĉ(1); moreover, we consider an embedded el-
lipsoidal inclusion V described by the constitutive equation T̂ = Ĉ(1) (ε̂− ε̂∗). The strain ε̂∗ is called
eigenstrain (or stress-free strain). In these conditions the following relations describe the strain inside
and outside the inclusion [84]

ε̂ (~x) =

{
Ŝ ε̂∗ if ~x ∈ V

Ŝ∞ (~x) ε̂∗ if ~x /∈ V
(176)

where Ŝ is the internal Eshelby tensor and Ŝ∞ is the external Eshelby tensor.
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Concept of inhomogeneity

We now consider an infinite medium with stiffness tensor Ĉ(1) in <3�V (matrix) and Ĉ(2) in the ellip-
soidal region V (inhomogeneity). We remotely load the system with a uniform strain ε̂∞ or, equivalently,
with the uniform stress T̂∞. Of course we have T̂∞ = Ĉ(1)ε̂∞. This configuration can be analyzed by
means of the Eshelby equivalence principle [93]. The system can be described by the superimposition
of two simpler cases (see Figure 25) [84]. The first situation A concerns a medium with stiffness Ĉ(1)

Figure 25. Scheme of an ellipsoidal inhomogeneity and the Eshelby equivalence principle.

Tij = C1
ijkhεkh

Tij = C1
ijkhεkh

Tij = C2
ijkhεkh

+

T∞
ij , ε∞kh

A) B)

T∞
ij , ε∞kh

Tij = C1
ijkhεkh

Tij = C1
ijkh(εkh − ε∗kh)Tij = C1

ijkhεkh

(without inclusions or inhomogeneities) uniformly deformed by means of the remote loads ε̂∞ or T∞.
The second situation B is represented by an inclusion embedded in a medium, characterized everywhere
by Ĉ(1) and having an eigenstrain ε̂∗ in V. The situation B is without remote loads. The eigenstrain
must be imposed searching for the equivalence between the original inhomogeneity problem and the
superimposition A + B. The following relation hold on inside the region V (s means inside V)

ε̂s = ε̂A,s + ε̂B,s = ε̂∞ + Ŝ ε̂∗

T̂ s = T̂A,s + T̂B,s = Ĉ(1)ε̂∞ + Ĉ(1)
(
ε̂B,s − ε̂∗

)
= Ĉ(1)ε̂∞ + Ĉ(1)

(
Ŝ ε̂∗ − ε̂∗

)
(177)

In the inhomogeneity we have T̂ s = Ĉ(2)ε̂s and therefore

Ĉ(1)ε̂∞ + Ĉ(1)
(
Ŝ ε̂∗ − ε̂∗

)

︸ ︷︷ ︸
T̂ s

= Ĉ(2)
(
ε̂∞ + Ŝ ε̂∗

)

︸ ︷︷ ︸
ε̂s

(178)
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The following relations can be finally obtained for the eigenstrain and for the actual strain in V

ε̂∗ =

[(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)−1

− Ŝ
]−1

ε̂∞ (179)

ε̂s =

(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)−1

ε̂∗ (180)

ε̂s =

[
Î − Ŝ

(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)]−1

ε̂∞ (181)

If Ĉ(2) = 0 (void) we obtain

ε̂∗ = ε̂s =
[
Î − Ŝ

]−1

ε̂∞ (182)

Lemma: The tensor Ĉ(1)
[
Ŝ−1 − Î

]
is symmetric

We consider the same inclusion V with two different values for the eigenstrain ε̂∗ and ε̂∗∗ embedded
in the material defined by Ĉ(1). The symmetry of the tensor can be established by means of a revised
version of the Betti’s reciprocal theorem [85]. We define T̂ ∗ = Ĉ(1)ε̂∗ and T̂ ∗∗ = Ĉ(1)ε̂∗∗. The first
situation is described by the fields T̂ ′, ε̂′, ~u′ and the second one by T̂ ′′, ε̂′′, ~u′′ everywhere in the space.

The preliminary symmetry of the tensor Ŝ
[
Ĉ(1)

]−1

is proved. We begin by considering the following
relation (V is the inclusion volume , Σ its boundary and ~n its external normal unit vector)

VT̂ ∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗∗ = VT̂ ∗Ŝ ε̂∗∗ = VT̂ ∗ε̂′′ (183)

= T̂ ∗
∫

V

ε̂′′dv = T̂ ∗
∫

V

∂~u′′

∂~x
dv

= T̂ ∗
∫

Σ

~u′′~ndS = Ĉ(1)ε̂∗
∫

Σ

~u′′~ndS

At the interface Σ we have T̂ ′~n|Σ− = T̂ ′~n|Σ+ (sign + indicates the external side of Σ and sign− indicates
its internal side). Recalling the definition of inclusion we simply obtain Ĉ(1) (ε̂′ − ε̂∗)~n|Σ− = Ĉ(1)ε̂′~n|Σ+

and finally we get Ĉ(1)ε̂′~n|Σ− − Ĉ(1)ε̂′~n|Σ+ = Ĉ(1)ε̂∗~n. We use it in Equation (183), obtaining

VT̂ ∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗∗ =

∫

Σ

[
Ĉ(1)ε̂′~n|Σ− − Ĉ(1)ε̂′~n|Σ+

]
~u′′dS (184)
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On Σ− we have T̂ ′ = Ĉ(1) (ε̂′ − ε̂∗) and on Σ+ we have T̂ ′ = Ĉ(1)ε̂′, therefore

VT̂ ∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗∗ (185)

=

∫

Σ−

(
T̂ ′ + T̂ ∗

)
~n~u′′dS −

∫

Σ+

T̂ ′~n~u′′dS

=

∫

V

∂

∂~x

[(
T̂ ′ + T̂ ∗

)
~u′′

]
dv +

∫

<3\V

∂

∂~x

[
T̂ ′~u′′

]
dv

=

∫

V

(
T̂ ′ + T̂ ∗

)
ε̂′′dv +

∫

<3\V
T̂ ′ε̂′′dv

=

∫

V

[
Ĉ(1) (ε̂′ − ε̂∗) + T̂ ∗

]
ε̂′′dv +

∫

<3\V
T̂ ′ε̂′′dv

=

∫

V

ε̂′Ĉ(1)ε̂′′dv +

∫

<3\V
ε̂′Ĉ(1)ε̂′′dv

=

∫

<3

ε̂′Ĉ(1)ε̂′′dv

We have now obtained a symmetric form (since Ĉ(1) is symmetric). Therefore, the following dual relation
is valid and it can be verified as above

VT̂ ∗∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗ =

∫

<3

ε̂′Ĉ(1)ε̂′′dv (186)

By comparison of Equations (185) and (186) we obtain

VT̂ ∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗∗ = VT̂ ∗∗Ŝ
[
Ĉ(1)

]−1

T̂ ∗ (187)

which establishes the symmetry of Ŝ
[
Ĉ(1)

]−1

. The inverse tensor
{
Ŝ

[
Ĉ(1)

]−1
}−1

= Ĉ(1)Ŝ−1 is again

symmetric and, finally, the quantity Ĉ(1)
[
Ŝ−1 − Î

]
is symmetric since it is a sum of symmetric tensors.

Lemma: The tensor Ĉ(1)
[
Ŝ−1 − Î

]
is positive definite

. We consider two similar situations as described in Figure 26. The first deals with an homogeneous
medium with displacement prescribed on the boundary, while the second case considers the addition of
an inhomogeneity without changing the fixed displacements on the external surface. No body forces are
present in both schemes. We begin searching for the difference between the elastic energy stored in the
two cases

∆E =
1

2

∫

Ω

(
ε̂bT̂b − ε̂aT̂a

)
dv (188)

We simply verify that
∫

Ω

ε̂aT̂adv =

∫

Ω

ε̂bT̂adv (189)
∫

Ω

ε̂aT̂bdv =

∫

Ω

ε̂bT̂bdv (190)
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Figure 26. Schemes of an homogeneous region and an heterogeneous one with an inhomo-
geneity V. The boundary conditions prescribe the same displacement on the external surface.

Σ Σ

Ω Ω

Ĉ(1)Ĉ(1)

Ĉ(2)

n nua = ub = u fixed on Σ

ua, T̂a, ε̂a
ub, T̂b, ε̂b

V

In order to verify Equation (189) we write the relation
∫

Ω

(ε̂a − ε̂b) T̂adv =

∫

Ω

(
∂~ua

∂~x
T̂a − ∂~ub

∂~x
T̂a

)
dv (191)

where ∂~ua

∂~x
T̂a = ∂~uaT̂a

∂~x
since ∂T̂a

∂~x
= 0 at equilibrium and similarly ∂~ub

∂~x
T̂a = ∂~ubT̂a

∂~x
. Therefore, we obtain

∫

Ω

(ε̂a − ε̂b) T̂adv =

∫

Ω

(
∂~uaT̂a

∂~x
− ∂~ubT̂a

∂~x

)
dv =

∫

Σ

(
~uaT̂a − ~ubT̂a

)
~ndS = 0 (192)

since ~ua = ~ub on Σ. The dual relation given in Equation (190) can be verified with the same method.
By inserting Equations (189) and (190) into Equation (188) we obtain

∆E =
1

2

∫

Ω

(
ε̂bT̂b − ε̂aT̂a

)
dv

=
1

2

∫

Ω

(
ε̂aT̂b − ε̂bT̂a

)
dv

=
1

2

∫

Ω�V

(
ε̂aT̂b − ε̂bT̂a

)
dv +

1

2

∫

V

(
ε̂aT̂b − ε̂bT̂a

)
dv

=
1

2

∫

Ω�V

(
ε̂aĈ(1)ε̂b − ε̂bĈ(1)ε̂a

)
dv +

1

2

∫

V

(
ε̂aT̂b − ε̂bT̂a

)
dv (193)

Since the stiffness tensor Ĉ(1) is symmetric, we obtain the following general expression for the energy
difference

∆E =
1

2

∫

V

(
ε̂aT̂b − ε̂bT̂a

)
dv (194)

We now suppose that the prescribed displacement on Σ imposes a uniform strain in the first case of
Figure 26; therefore, the second situation can be described by the Eshelby solution. With this additional
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hypothesis the energy difference can be rearranged as follows

∆E = −1

2

∫

V

(
T̂aε̂b − ε̂aT̂b

)
dv

= −1

2

∫

V

(
T̂aε̂b − T̂a

(
Ĉ(1)

)−1

Ĉ(2)ε̂b

)
dv

= −1

2

∫

V

T̂a

(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)
ε̂bdv

= −1

2

∫

V

T̂aε̂
∗dv (195)

having used Equation (180). Utilizing Equation (179) we obtain

∆E = −1

2

∫

V

ε̂aĈ(1)

[(
Î −

(
Ĉ(1)

)−1

Ĉ(2)

)−1

− Ŝ
]−1

ε̂adv (196)

From now on we suppose that the embedded inhomogeneity is a void (Ĉ(2) = 0) and, therefore, we obtain

∆E = Eb (ε̂b)− Ea (ε̂a) = −1

2

∫

V

ε̂aĈ(1)
[
Î − Ŝ

]−1

ε̂adv (197)

We may now consider the variational formulation of the elasticity theory [85, 86]. If we take into account
a body without body forces and with prescribed displacements on the whole external surface, then the
variational formulation leads to the minimum potential energy principle. We may apply this principle
to the second case of Figure 26 (with a void). If the fields ~ub, ε̂b, T̂b correspond of the actual elastic
fields in such a case, we have Eb

(
~ub, ε̂b, T̂b

)
6 Eb

(
~u, ε̂, T̂

)
where the fields ~u, ε̂, T̂ correspond to any

displacement ~u matching the prescribed boundary. In particular we have Eb (ε̂b) 6 Eb (ε̂a), where ε̂a is
the strain in the first case of Figure 26. Moreover, we may write

Eb (ε̂a) =
1

2

∫

Ω�V

ε̂aĈ(1)ε̂adv +
1

2

∫

V

ε̂aĈ(2)ε̂adv

=
1

2

∫

Ω�V

ε̂aĈ(1)ε̂adv

= Ea (ε̂a)− 1

2

∫

V

ε̂aĈ(1)ε̂adv (198)

Summing up

Eb (ε̂b) 6 Eb (ε̂a)

Eb (ε̂b) 6 Ea (ε̂a)− 1

2

∫

V

ε̂aĈ(1)ε̂adv

Eb (ε̂b)− Ea (ε̂a) 6 −1

2

∫

V

ε̂aĈ(1)ε̂adv (199)

Since ε̂a is uniform, combining Equations (197) and (199), we obtain

ε̂aĈ(1)
[
Î − Ŝ

]−1

ε̂a − ε̂aĈ(1)ε̂a > 0 (200)
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or

T̂a

[
Î − Ŝ

]−1 [
Ĉ(1)

]−1

T̂a − T̂a

[
Ĉ(1)

]−1

T̂a > 0 (201)

So, the tensor
[
Î − Ŝ

]−1 [
Ĉ(1)

]−1

−
[
Ĉ(1)

]−1

is positive definite.

For any tensor it is true that [I − A]−1 = I + [A−1 − I]
−1 and therefore we obtain

[
Î − Ŝ

]−1 [
Ĉ(1)

]−1

−
[
Ĉ(1)

]−1

=
[
Ŝ−1 − Î

]−1 [
Ĉ(1)

]−1

(202)

Finally, the tensor
[
Ŝ−1 − Î

]−1 [
Ĉ(1)

]−1

and its inverse Ĉ(1)
[
Ŝ−1 − Î

]
are symmetric and positive defi-

nite.
It is interesting to observe that all the results given in Appendix A can also be exactly applied to an

anisotropic and homogeneous ellipsoidal inhomogeneity embedded in an anisotropic and homogeneous
matrix. In this case, the Eshelby tensor Ŝ depends on the geometry and on Ĉ(1) [84, 98, 99].

Appendix B First Order Expansions for a Dispersion of Spheres

In this Appendix we present the first order expansions in the volume fraction of the effective nonlinear
moduli Aeff , Beff , Ceff , and Deff for a dispersion of spheres. In particular we consider four different
cases where only one nonlinear modulus of the spheres (A, B, C or D) is different from zero. These
solutions are coherent with the scheme represented in Figure 19. If C 6= 0 we obtain





CC
eff = (3K1+4µ1)3

(4µ1+3K2)3
Cc + O (c2)

AC
eff = BC

eff = DC
eff = 0

(203)

If B 6= 0 we have 



BB
eff = 25 µ1

2

(6µ2K1+12µ2µ1+9µ1K1+8µ1
2)2

× (3K1+4µ1)3

4µ1+3K2
Bc + O (c2)

CB
eff = 6µ2K1+12µ2µ1+9µ1K1+28µ1

2+15K2µ1

(6µ2K1+12µ2µ1+9µ1K1+8µ1
2)2

× 3µ1K1−5K2µ1+2µ2K1+4µ2µ1−4µ1
2

(4µ1+3K2)3

× (3K1 + 4µ1)
3 Bc + O (c2)

AB
eff = DB

eff = 0

(204)

If D 6= 0 we obtain 



CD
eff = 3µ1K1−5K2µ1+2µ2K1+4µ2µ1−4µ1

2

(9µ1K1+8µ1
2+6µ2K1+12µ2µ1)2

× 6µ2K1+12µ2µ1+28µ1
2+9µ1K1+15K2µ1

(4µ1+3K2)3

× (3K1 + 4µ1)
3 Dc + O (c2)

DD
eff = 25 µ1

2

(9µ1K1+8µ1
2+6µ2K1+12µ2µ1)2

× (3K1+4µ1)3

4µ1+3K2
Dc + O (c2)

AD
eff = BD

eff = 0

(205)
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Finally, if A 6= 0 all the effective nonlinear moduli are different from zero and they can be eventually
written as 




AA
eff = 125(3K1+4µ1)3µ1

3Ac

(9K1µ1+8µ1
2+6K1µ2+12µ2µ1)3

+ O (c2)

BA
eff = 253K1µ1−5K2µ1+2K1µ2+4µ2µ1−4µ1

2

(9K1µ1+8µ1
2+6K1µ2+12µ2µ1)3

× (3K1+4µ1)3µ1
2Ac

4µ1+3K2
+ O (c2)

CA
eff = 3

(3K1µ1−5K2µ1+2K1µ2+4µ2µ1−4µ1
2)

2

(9K1µ1+8µ1
2+6K1µ2+12µ2µ1)3

× 10K2µ1+2K1µ2+3K1µ1+4µ2µ1+16µ1
2

(4µ1+3K2)3

× (3K1 + 4µ1)
3 Ac + O (c2)

DA
eff = 50 µ1

2

(9K1µ1+8µ1
2+6K1µ2+12µ2µ1)3

× 3K1µ1−5K2µ1+2K1µ2+4µ2µ1−4µ1
2

4µ1+3K2

× (3K1 + 4µ1)
3 Ac + O (c2)

(206)

It is interesting to remark that the more complicated cases, with all the nonlinear moduli of the spheres
different form zero, can be simply handled by means of the superimposition of the four cases above
considered.

Appendix C First Order Expansions for a Dispersion of Cylinders

Here we present the first order expansions in the volume fraction of the effective nonlinear moduli
Aeff , Beff , Ceff , and Deff for a dispersion of cylinders. In particular we consider four different cases
where only one nonlinear modulus of the cylinders (A, B, C or D) is different from zero. If C 6= 0 we
have 




CC
eff = (K1+µ1)3

(K2+µ1)3
Cc + O (c2)

AC
eff = BC

eff = DC
eff = 0

(207)

If B 6= 0 we obtain 



BB
eff = 4(K1+µ1)3µ1

2B

(K2+µ1)(µ1K1+µ2K1+2µ2µ1)2
c + O (c2)

CB
eff = 1

2

2K2µ1+µ1K1+µ2K1+2µ2µ1+2µ2
1

(µ1K1+µ2K1+2µ2µ1)2

× µ1K1−2K2µ1+µ2K1+2µ2µ1−2µ2
1

(K2+µ1)3

× (K1 + µ1)
3 Bc + O (c2)

AB
eff = DB

eff = 0

(208)
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If D 6= 0 we have 



CD
eff = 1

2

K1µ1−2K2µ1+K1µ2+2µ2µ1−2µ2
1

(K1µ1+K1µ2+2µ2µ1)2

× K1µ2+K1µ1+2µ2µ1+2K2µ1+2µ2
1

(K2+µ1)3

× (K1 + µ1)
3 Dc + O (c2)

DD
eff = 4(K1+µ1)3µ1

2Dc

(K2+µ1)(K1µ1+K1µ2+2µ2µ1)2
+ O (c2)

AD
eff = BD

eff = 0

(209)

Finally, if A 6= 0, as predicted by the scheme represented in Figure 19, all the effective nonlinear moduli
are different from zero and the final expressions are given below





AA
eff = 8 (K1+µ1)3µ1

3

(K1µ1+K1µ2+2µ2µ1)3
Ac + O (c2)

BA
eff = 2 µ1

2

(K1µ1+K1µ2+2µ2µ1)3

× K1µ1−2K2µ1+K1µ2+2µ2µ1−2µ2
1

K2+µ1

× (K1 + µ1)
3 Ac + O (c2)

CA
eff = 1

4

(K1µ1−2K2µ1+K1µ2+2µ2µ1−2µ2
1)

2

(K1µ1+K1µ2+2µ2µ1)3

× K1µ2+2µ2µ1+K1µ1+4K2µ1+4µ2
1

(K2+µ1)3

× (K1 + µ1)
3 Ac + O (c2)

DA
eff = 4 µ1

2

(K1µ1+K1µ2+2µ2µ1)3

× K1µ1−2K2µ1+K1µ2+2µ2µ1−2µ2
1

(K2+µ1)

× (K1 + µ1)
3 Ac + O (c2)

(210)
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