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Abstract: Ultra-high-performance concrete (UHPC) is a cementitious composite combining high-
strength concrete matrix and fiber reinforcement. Standing out for its excellent mechanical properties
and durability, this material has been widely recognized as a viable choice for highly complex
engineering projects. This paper proposes (i) the review of the influence exerted by the constituent
materials on the mechanical properties of compressive strength, flexural tensile strength, and elastic
modulus of UHPC and (ii) the determination of optimal quantities of the constituent materials
based on simplified statistical analyses of the developed database. The data search was restricted to
papers that produced UHPC with straight steel fibers at a content of 2% by volume. UHPC mixture
models were proposed based on graphical analyses of the relationship of constituent materials versus
mechanical properties, aiming to optimize the material’s performance for each mechanical property.
The results proved to be in accordance with the specifications present in the literature, characterized
by high cement consumption, significant presence of fine materials, and low water-to-binder ratio.
The divergences identified between the mixtures reflect how the constituent materials uniquely
impact each mechanical property of the concrete. In general, fine materials were shown to play a
significant role in increasing the compressive strength and flexural tensile strength of UHPC, while
water and superplasticizers stood out for their influence on the material’s workability.

Keywords: ultra-high-performance concrete; materials; mechanical properties; statistical analyses

1. Introduction

Ultra-high-performance concrete (UHPC), developed to overcome the limitations of
conventional concrete, has been increasingly used in highly complex engineering projects
that require better mechanical and durability properties. The construction of prestressed
bridges with reduced cross-section and large spans is among these projects [1–4]. It has
also been applied as a filling material in the connection region of precast concrete structures
at the construction site, playing a significant role in achieving the monolithic behavior
of the elements [5]. Furthermore, existing technologies in precast concrete factories have
facilitated UHPC production and application as a filling material in connections subject to
high stress [6].

High mechanical strength, durability, ductility, and ability to adhere to other concretes
differentiate UHPC from conventional concrete. Ultra-high-performance concrete is an
excellent material for connecting due to its strength, adhesion to hardened concrete, and
small particle size that can fill congested regions [7].

These characteristics are achieved by the high amount of cement, mineral additions
(silica fume, quartz powder or quartz filler, and fly ash), fine aggregate, and low water-
to-binder ratio, increasing the consumption of superplasticizers. Thus, it maximizes the
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relative density and reduces capillary pore size and volume, leading to a more durable
microstructure [8–15].

Ultra-high-performance concrete is distinct from conventional concrete due to the
inclusion of ultrafine granular components with a maximum diameter of less than 2 mm.
These materials include Portland cement, fine sand, silica fume, and quartz powder [7,16].
If the concrete contains granular materials with particles larger than 2 mm, such as coarse
aggregate, it can cause heterogeneity. This can lead to cracks forming in the transition zone
at the paste/aggregate interface, reducing the material’s compressive strength [17].

Incorporating Supplementary Cementitious Materials (SCMs) in the UHPC mixture
can improve the sustainability of the concrete without compromising its performance.
Materials such as quartz powder and silica fume, which were not extensively used in
conventional concrete, now play a crucial role in enhancing the mechanical and durability
properties of UHPC. Quartz powder and silica fume stand out among the mineral ad-
ditions used in mixing ultra-high-performance concrete as fundamental components for
gaining strength and fluidity. Quartz powder addition aims to optimize the UHPC particle
size, providing a uniform distribution between the grains of fine sand and cement [16].
Furthermore, studies have indicated the possibility of replacing up to 30% of the cement
volume with quartz powder without reducing compressive strength [18]. In turn, silica
fume incorporation promotes the formation of a dense and low-porosity cementitious
matrix, allowing better packing of particles and increasing the plasticizing effect, filling
the empty spaces between the cement and the quartz powder that would be occupied by
water particles, allowing them to be redistributed throughout the concrete structure, and
improving fluidity [19].

As a result of the substantial presence of fine materials in the concrete composition,
the enhancement of its fluidity is attained through the incorporation of superplasticizer
additives. These additives are frequently integrated into the mixture to reduce the water-
to-binder ratio to values ranging from 0.10 to 0.20 by mass. This meticulous adjustment
aims to optimize the mechanical properties of concrete [20].

This set of specifications results in a cementitious composite whose compressive strength
is higher than 130 MPa [16,21–31], the flexural strength is higher than 20 MPa [23–28,30–34],
and the elastic modulus is higher than 30 GPa [16,21,24,29,32,34–38].

The high gain in strength in ultra-high-performance concrete causes the material to
exhibit stiff behavior, characterized by small strain relative to the achieved level of strength.
Steel fibers are commonly incorporated into the mixture to prevent the occurrence of
brittle failure and promote higher strain capacity [7]. Fibers act as stress transfer bridges,
distributing stress in the cracks and preventing their unstable propagation, giving the
concrete a higher capacity to withstand stress and strain after reaching strength, and
preventing brittle rupture [39,40]. However, the peak resistance and corresponding strain
up to the formation of the first crack do not undergo significant changes compared to
conventional concrete [41].

Despite being considered one of the most promising materials in construction, the fea-
sibility of ultra-high-performance concrete is compromised due to its high production cost
and the associated environmental impact. Therefore, in pursuit of a more affordable and
sustainable material, researchers have devoted efforts to developing alternative UHPC for-
mulations using locally available materials [42–44]. One of the most promising alternatives
is partially replacing silica fume with rice husk ash. In addition to reducing the production
cost of UHPC, the incorporation of rice husk ash enhances the hydration of cement and pro-
vides the concrete with compressive strength values exceeding 150 MPa [45,46]. Another
effective option is substituting a portion of fine sand and cement with recycled waste glass,
which has reduced concrete permeability and increased workability [47]. In addition to the
adjustments made to the fine materials, another notable aspect in UHPC improvement stud-
ies is integrating a hybrid fiber system into the concrete composition, combining steel fibers
of different dimensions and geometries. Studies indicate that macrofibers perform better in
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post-cracking strength, deformation capacity, and multiple cracking behaviors. At the same
time, microfibers enhance tensile strength and reduce the occurrence of microcracks [48].

Other studies have also investigated the optimal design of the mixture based on
advanced statistical analyses, for instance, considering the interaction of the different raw
materials on the mechanical properties of the UHPC [49,50]. Machine learning methods
can be used to correlate mechanical qualities or durability with material proportions to
achieve the optimal concrete mix, particularly for UHPC [51–55]. In practice, this allows
a comprehensive understanding of the effect of various materials on the mix. However,
the requirement for a larger database and a more complex set of operations can hinder the
widespread adoption of these methods.

This research was aimed at evaluating how each individual material affects the me-
chanical properties of UHPC. It proposed theoretical mixture models to assist in creating
compositions that better match the actual material conditions. The objective is to enhance
the material’s compressive strength, flexural tensile strength, and elastic modulus to achieve
peak performance. Finally, we intend to verify the consistency of the theoretical results by
comparing them with experimental studies available in the literature, identifying possible
divergences that could guide future studies. This paper addresses a knowledge gap in
the field of UHPC by suggesting a reference mixture for ultra-high-performance concrete
based on a review of numerous UHPC mixtures, making a vital contribution to the re-
search community. Developing a UHPC mixture with the desired mechanical properties
is difficult, and determining a reference mixture can minimize the amount of laboratory
testing required. The proposed method has a limitation in that it only considers the effect
of individual materials and does not account for how these materials interact to affect the
material’s mechanical properties.

2. Methodology

Electronic platforms commonly used in academic research, such as Scopus and Sci-
ence Direct, both in national and international literature, were searched to develop this
bibliographic review. In addition, university repositories were also used.

The selection of research sources was guided by specific keywords related to the
review topic, namely:

• Ultra-high-performance concrete (UHPC);
• Steel fiber;
• Compressive strength;
• Flexural tensile strength;
• Elastic modulus;
• Proportion of materials.

Inclusion and exclusion criteria were established to provide higher control over the
results and ensure the selectivity of data relevant to the research (Table 1).

Table 1. Criteria for including and excluding data in the collection process.

Inclusion Criteria Exclusion Criteria

Experimental research paper Analytical paper or numerical investigation
Mechanical properties of compressive and flexural strength,

elastic modulus Other types of mechanical properties (shear, fatigue, impact)

Moist curing Heat curing
Age of rupture of the specimens equal to 28 days Age of rupture of the specimens other than 28 days

Reinforcement with steel fibers Reinforcement with fibers of materials other than steel
Fibers with a length of 13–20 mm Fiber with a length less than 13 mm or greater than 20 mm

Straight fiber Fiber other than straight (corrugated, with anchoring at the ends)
Fiber content equal to 2% Fiber content other than 2%

Consumption of materials expressed in mass per volume
(kg/m3) Material consumption expressed in unit trace
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Twenty-one studies were selected to integrate the literature review, from which infor-
mation was extracted about the constituent materials of UHPC and experimental results of
mechanical properties. The constituent materials in the studies were grouped into cement,
fine aggregate, silica, quartz powder, mineral additions from waste (fly ashes and GGSB),
water, and superplasticizer. The information collected corresponded to the mechanical
properties comprising compressive strength, flexural tensile strength, and elastic modulus
(Table 2).

Table 2. Mechanical properties of concrete in selected studies.

Reference Compressive
Strength (MPa)

Flexural Strength
(MPa)

Elastic Modulus
(GPa)

Feng et al. [35] 127.61 - 49.70
Gesoglu et al. [21] 162.00 10.15 45.00

Jiang et al. [56] 121.20 - -
Kang et al. [22] 167.00 - -

159.00 - -
160.00 - -
158.00 - -
155.00 - -

Li et al. [32] 128.90 30.00 51.50
Li and Rangaraju [23] 158.20 32.10 -

Máca et al. [24] 151.70 29.70 47.50
Meng and Khayat [25] 153.00 21.30 -

Oliveira [16] 145.70 15.60 46.22
Poncetti et al. [36] 102.00 - 41.85

Prado [7] 128.60 - -
Ren et al. [37] 119.20 17.00 42.00

Tafraoui et al. [26] 155.00 29.00 -
146.00 30.00 -

Valikhani et al. [38] 126.00 - 52.00
Wu et al. [27] 149.84 27.80 -
Wu et al. [33] - 37.90 -
Wu et al. [28] 142.20 39.70 -
You et al. [29] 130.13 17.69 43.13
Yu et al. [30] 150.00 28.00 -

135.00 21.00 -
140.00 28.00 -

Zhang et al. [34] 120.40 22.60 44.80
123.60 22.50 45.70

Zhong et al. [31] 176.00 32.00 -
Khaled et al. [57] 160.00 57.00

Guo et al. [58] 135.00 24.00

Information regarding the consumption of constituent materials and mechanical
properties of UHPC was extracted from the dataset defined with the studies presented in
Table 2, which were subsequently subjected to three analyses. Scatterplots representing
the relationships between each component’s consumption and the ultra-high-performance
concrete mechanical properties were created in the first analysis. Boxplots were made
for the second analysis, offering a detailed view of the average trends and variations in
the consumption of UHPC constituent materials in each mechanical property. The third
analysis was developed in the software MINITAB® 21.2. It consisted of creating block
scatterplots that related the proportions of two constituent materials with a mechanical
property of UHPC, as exemplified in Figure 1.
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Figure 1. Relationship between cement and silica fume consumptions with the compressive strength.

With the block scatterplots, it was possible to evaluate the combined relationship
of two materials with the mechanical properties and, using the mode, to infer which
were the combined proportions most used in the literature to generate UHPC. Once the
most used proportions had been defined, it was possible to infer the average value of the
mechanical properties of the concretes generated with these proportions and then define
the ideal theoretical UHPC proportioning mixture with the most frequently used material
consumptions (Figure 2). This procedure was adopted for analyses related to compressive
strength, flexural strength, and modulus of elasticity properties.
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In Figure 1, we can see the analysis conducted to determine the most commonly
used amounts of silica fume and Portland cement for making concrete. It was found
that 180 kg/m3 of silica fume and 725 kg/m3 of cement was the most commonly used
consumption combination (5 concretes were produced with these values), as shown in the
reddest block scatter. This combination resulted in ultra-high-performance concrete with
an average compressive strength of 159.80 MPa.

Figure 2 shows the most used consumptions and their association with the concrete
compressive strength. Furthermore, to generate the ideal theoretical proportion, consid-
ering the database, the most frequent value of each material was determined, where the
results are presented in the last line of the block of information shown in Figure 2. Thus, it
was observed that the most frequent consumptions are 725 kg/m3 of cement, 1150 kg/m3

of fine aggregate, 180 kg/m3 of silica fume, 25 kg/m3 of quartz powder, 50 kg/m3 of
mineral additions from waste, 190 kg/m3 of water, and 5 kg/m3 of superplasticizers. With
these theoretical UHPC mix design proportions, the compressive strength would fluctuate
between 151.26 MPa and 163.85 MPa.

This work’s established approach provides a representative mechanical property value
for the mixture as a whole, considering each component’s unique properties.

3. Results and Discussion

Sections 3.1–3.7 describe the results and discussions regarding the effect of different
constituent materials on the mechanical properties of the UHPC mixture. Section 3.8
proposes a reference mixture for UHPC. In Section 3.9, the reference mixture proportions
are compared to those studied by researchers in terms of mechanical properties. Lastly,
Section 3.10 presents a study on the relationship between UHPC’s compressive strength
and other properties such as modulus of elasticity and flexure tensile strength.

3.1. Influence of Cement on the UHPC Mixture

Figure 3 shows the relationship between the amount of cement used in the UHPC mix-
tures in the consulted studies and the respective obtained mechanical properties. Cement
consumption tends to converge between 550 and 950 kg/m3, as presented by most authors.
In this range, the compressive strength varied between 120 and 180 MPa, flexural strength
between 10 and 40 MPa, and elastic modulus between 40 and 50 GPa.
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Figure 4 displays the distribution trends in cement consumption in the UHPC mixtures
of the data regarding compressive strength, flexural strength, and elastic modulus.

Regarding compressive strength, the mean trend in the amount of cement among
the concrete mixtures was 757 kg/m3, the lowest value recorded among the analyzed
properties. It shows that cement content significantly influences the compressive strength
of UHPC, not requiring excessive consumption of the material to achieve satisfactory
results. Moreover, the reduced box width stands out, indicating higher uniformity between
the amounts of cement used in the mixtures, which suggests strict standardization relative
to the proportion of this material.
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Regarding flexural strength, the mean trend in cement consumption among concrete
mixtures was 780 kg/m3, an intermediate value between the studied properties. It reveals
that flexural strength is not influenced as significantly by cement content as compressive
strength. Also, the median range displayed by the box suggests a moderate uniformity
between the proportions of cement used in the mixtures, demonstrating a slightly rigorous
standardization relative to the consumption of this component.

Regarding elastic modulus, the mean trend in the proportion of cement among the
concrete mixtures was 786 kg/m3, the highest value recorded among the examined proper-
ties. It establishes that cement content does not significantly influence the elastic modulus
of UHPC. The high box range also stands out, representing a higher dispersion between
quantities of cement incorporated in the mixtures, which indicates a more flexible standard-
ization relative to the proportion of this constituent.

3.2. Influence of Fine Aggregate on the UHPC Mixture

Figure 5 shows the relationship between the amount of fine aggregate used in the
UHPC mixtures of the examined studies and the corresponding mechanical properties. As
presented by most authors, the consumption of fine aggregate tends to converge between
750 and 1250 kg/m3. In this range, the compressive strength varied between 120 and
180 MPa, flexural strength between 10 and 40 MPa, and elastic modulus between 40 and
50 GPa.
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Figure 6 illustrates the distribution trends of fine aggregate consumption in UHPC
mixtures in the explored data with respect to compressive strength, flexural strength, and
elastic modulus.
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Regarding compressive strength, the mean trend in the fine aggregate consumption
among the concrete mixtures was 955 kg/m3, the lowest value recorded among the analyzed
properties. It shows that the fine aggregate content significantly influences the flexure of
UHPC, not requiring an exorbitant consumption of material for a satisfactory performance
to be achieved. However, a high box amplitude is noted, which indicates higher variability
between the proportions of fine aggregate used in the mixtures, suggesting a more flexible
standardization relative to the quantity of this component.

Regarding flexural strength, the mean trend in fine aggregate consumption among
concrete mixtures was 1035 kg/m3, the highest value recorded among the studied prop-
erties. It shows that the fine aggregate content has no relevant influence on the flexural
strength of UHPC, with a considerable proportion of material being required to achieve
satisfactory results. Despite this, the box has a reduced range, revealing a high uniformity
between the amounts of fine aggregate used in the mixtures, which represents a rigorous
standardization relative to the consumption of this constituent.

The mean trend in the proportion of fine aggregate among the concrete mixtures was
978 kg/m3 for the elastic modulus, an intermediate value recorded between the examined
properties. It demonstrates that the influence exerted by fine aggregate on the elastic
modulus of UHPC is not as noticeable as on compressive strength, requiring a high amount
of material to provide satisfactory performance. However, a medium range is noted for
the box, which suggests a moderate uniformity between the proportions of fine aggregate
incorporated in the mixtures, establishing a slightly strict standardization relative to the
consumption of this material.

3.3. Influence of Silica Fume on the UHPC Mixture

Figure 7 shows the relationship between the amount of silica fume used in the UHPC
mixtures of the analyzed studies and the respective mechanical properties. As presented
by most authors, silica fume consumption tends to converge between 100 and 300 kg/m3.
In this range, the compressive strength varied between 120 and 180 MPa, flexural strength
between 10 and 40 MPa, and elastic modulus between 40 and 50 GPa.
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Figure 8 shows the distribution trends of silica fume consumption in UHPC mix-
tures from the consulted studies regarding compressive strength, flexural strength, and
elastic modulus.
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Regarding compressive strength, the mean trend in the amount of silica fume among
the concrete mixtures was 185 kg/m3, an intermediate value recorded between the analyzed
properties. It suggests a significant moderate influence of the silica fume content on the
compressive strength of UHPC, requiring a higher consumption of material to obtain
satisfactory results. Furthermore, the box shows a low range, representing considerable
uniformity between the amounts of silica fume used in the mixtures, which indicates a
rigorous standardization relative to the proportion of this material.

Regarding flexural strength, the mean trend in silica fume consumption among con-
crete mixtures was 166 kg/m3, the lowest value recorded among the studied properties.
It proposes that the silica content significantly influences the flexural strength of UHPC,
not requiring an exorbitant amount of material to achieve satisfactory performance. How-
ever, a relatively high range of the box is observed, which establishes higher variability
between the proportions of silica fume used in the mixtures, revealing a more flexible
standardization relative to the consumption of this component.

Regarding elastic modulus, the mean trend in the proportion of silica fume among
the concrete mixtures was 204 kg/m3, the highest value recorded among the examined
properties. It shows a low influence of silica fume on the elastic modulus of UHPC,
requiring a high consumption of material to obtain satisfactory results. Another important
point is the box with a medium range, demonstrating a moderate uniformity between the
proportions of silica fume incorporated in the mixtures, which indicates a slightly rigorous
standardization relative to the amount of this constituent in the different studies.

3.4. Influence of Quartz Powder on the UHPC Mixture

Figure 9 shows the relationship between the amount of quartz powder used in the
UHPC mixtures in the examined studies and the corresponding mechanical properties. As
presented by most authors, quartz powder was not incorporated into concrete mixtures.
However, additions in research that used the material occurred between 100 and 300 kg/m3.
In this range, the compressive strength ranged between 120 and 180 MPa, flexural strength
between 10 and 30 MPa, and elastic modulus between 40 and 45 GPa.
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Figure 10 displays the distribution trends in quartz powder consumption in the UHPC
mixtures based on the studied data regarding compressive strength, flexural strength, and
elastic modulus.
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The mean trend in quartz powder consumption among the ultra-high-performance
concrete mixtures was 0 kg/m3 for the three analyzed mechanical properties. This shows
that quartz powder is not commonly investigated due to its influences on UHPC properties.

However, the box range for compressive strength appears to be medium relative to
the others, indicating a balanced uniformity between the quantities of quartz powder used
in the UHPC mixtures, which suggests a moderately rigorous standardization relative to
the proportion of this component.

Regarding flexural strength, the box shows a reduced range, representing higher
uniformity in the proportions of quartz powder used in UHPC mixtures, which indicates a
more rigorous standardization relative to the consumption of this material.

Regarding elastic modulus, the box range increases compared to the previous case,
suggesting higher variability between the quantities of quartz powder used in the UHPC
mixtures. This represents a more flexible standardization relative to the consumption of
this constituent material.

3.5. Influence of Mineral Additions from Waste on the UHPC Mixture

Figure 11 shows the relationship between the consumption of mineral additions
derived from waste in the UHPC mixtures of the analyzed data and the respective material’s
mechanical properties. As presented by most authors, waste was not used in concrete
mixtures. However, additions were limited to 400 kg/m3 in studies that used the material.
In this range, the compressive strength varied between 120 and 180 MPa, flexural strength
between 10 and 40 MPa, and elastic modulus between 40 and 50 GPa.
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Figure 12 shows the trends in the consumption of mineral additions derived from
waste in the UHPC mixtures in the examined research regarding compressive strength,
flexural strength, and elastic modulus.
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Figure 12. Tendency of mineral additions from waste consumption distribution × mechanical
properties of UHPC.

The mean trend in the amount of waste among the ultra-high-performance concrete
mixtures was 0 kg/m3 in the three analyzed mechanical properties. It shows that mineral
additions from waste are not materials commonly used in research regarding the properties
of UHPC.

However, the box range for compressive strength is higher compared to the others,
indicating higher variability between the amounts of waste used in UHPC mixtures, which
suggests a more flexible standardization relative to the proportion of this component.

Regarding flexural strength, the box shows a reduced range, representing higher
uniformity in the proportions of waste used in UHPC mixtures, which indicates a more
rigorous standardization relative to the consumption of this material.

Regarding elastic modulus, the box range shows the same size as the previous case,
suggesting higher uniformity between the amounts of waste used in UHPC mixtures, which
represents a rigorous standardization relative to the consumption of this constituent material.

3.6. Influence of Water on the UHPC Mixture

Figure 13 shows the relationship between the amount of water used in the UHPC mix-
tures in the consulted studies and the corresponding mechanical properties. As presented
by most authors, water consumption tends to converge between 150 and 250 kg/m3. In
this range, the compressive strength varied between 120 and 180 MPa, flexural strength
between 10 and 40 MPa, and elastic modulus between 40 and 50 GPa.
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Figure 14 shows the distribution trends of water consumption in UHPC mixtures in the
analyzed studies regarding compressive strength, flexural strength, and elastic modulus.
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Unlike fine materials, the relationship between water content and concrete’s me-
chanical properties can be inversely proportional. Water incorporation aims to guarantee
concrete workability, and therefore, the content is maintained at minimum values so that
the material does not compromise the strength gain.

Regarding compressive strength, the mean trend in the amount of water among
the concrete mixtures was 185 kg/m3, the highest value recorded among the analyzed
properties. The increase in water content can be justified by the need to guarantee more
significant homogeneity and compactness in UHPC, which are fundamental factors for the
material to efficiently support the application of compressive loads. Another important
factor is the reduced width of the box, which reveals a significant uniformity between the
proportions of water used in the mixtures, establishing a rigorous standardization relative
to the quantity of this material.

Regarding flexural strength, the mean trend in water consumption among concrete
mixtures was 185 kg/m3. Similar to the previous case, the efficiency of UHPC in terms of
flexural strength can be achieved by ensuring the homogeneity and compactness of the
material, which can be obtained by increasing the water content. However, the box shows
an increase in its range, indicating a moderate uniformity between the amounts of water in
the mixtures, which reveals a slightly strict standardization relative to the consumption of
this constituent.

The mean trend in the proportion of water between the concrete mixtures for the
elastic modulus was 178 kg/m3, the lowest value recorded among the examined properties.
It demonstrates that, unlike previous cases, the effectiveness of UHPC in terms of elastic
modulus is not related to homogeneity or compactness but to the stiffness of the cementi-
tious matrix. The material becomes more rigid by reducing water content and supporting
higher loads without excessive deformation. Moreover, the high box range shows higher
variability between the water consumption incorporated in the mixtures, suggesting a more
flexible standardization relative to the quantity of this component.
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3.7. Influence of Superplasticizer on the UHPC Mixture

Figure 15 shows the relationship between the amount of superplasticizer used in the
UHPC mixtures in the analyzed studies and the corresponding mechanical properties.
As presented by most authors, the consumption of superplasticizers tends to be limited
to 80 kg/m3. In this range, the compressive strength varied between 120 and 180 MPa,
flexural strength between 10 and 40 MPa, and elastic modulus between 40 and 50 GPa.
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Figure 16 shows the distribution trends of superplasticizer consumption in UHPC
mixtures in the consulted studies regarding compressive strength, flexural strength, and
elastic modulus.
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Regarding compressive strength, the mean trend in the amount of superplasticizer
among the concrete mixtures was 22 kg/m3, the lowest value recorded among the ana-
lyzed properties. It shows that the superplasticizer content considerably influences the
compressive strength of UHPC, meaning that excessive consumption of the material is not
necessary to achieve satisfactory results. However, the box has a high range, suggesting a
significant dispersion between the amounts of superplasticizer used in the mixtures, which
indicates a more flexible standardization relative to the proportion of this material.

Regarding flexural strength, the mean trend in superplasticizer consumption among
concrete mixtures was 22 kg/m3, a value similar to that described in the previous case. It
establishes that the influence of superplasticizer content on flexural strength is similar to
that of compressive strength, not requiring a high amount of material to achieve satisfactory
performance. Furthermore, the median range of the box demonstrates a moderate uni-
formity between the proportions of superplasticizers in the mixtures, revealing a slightly
rigorous standardization relative to the consumption of this component.

Regarding elastic modulus, the mean trend in the proportion of superplasticizer among
the concrete mixtures was 31 kg/m3, the highest value recorded among the examined
properties. It indicates that the superplasticizer content does not significantly influence the
elastic modulus of UHPC, requiring a higher consumption of the material to achieve
satisfactory results. However, the box has a reduced range, suggesting considerable
uniformity between the amounts of superplasticizer used in the mixtures, which suggests a
rigorous standardization relative to the proportion of this constituent.
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3.8. UHPC Mixture Proposal

Table 3 shows the mean values of the constituent materials of UHPC determined
through the best results of compressive strength (157 MPa), flexural tensile strength
(30 MPa), and elastic modulus (47 GPa). The results obtained for the dosage and me-
chanical properties of UHPC are in line with those proposed in the literature [59,60], which
characterize ultra-high-performance concrete by its high cement consumption, predomi-
nance of fine aggregates, and low water-to-binder ratio, which suggests the existence of a
pattern of values relative to the UHPC trace.

Table 3. Mixtures obtained for UHPC as a function of mechanical properties.

Material (kg/m3)

Influence Mechanical Property

Compressive Strength
(157 MPa)

Flexural Tensile Strength
(30 MPa) Elastic Modulus (47 GPa)

Cement 725 875 825
Fine Aggregate 1150 950 1050

Silica Fume 180 225 210
Quartz Powder 25 25 50

Mineral Additions from Waste 50 25 10
Water 190 185 190

Superplasticizer 5 25 35
Water-to-binder ratio 0.21 0.17 0.18

The water-to-binder ratio remained close to the limits between 0.10 and 0.20 despite
small divergences between the mixtures, as recommended in the literature [20]. Further-
more, the amount of water remained constant among the three proposed formulations,
suggesting that variations in the mechanical properties of UHPC are predominantly influ-
enced by changes in the proportions of fine materials such as cement, fine aggregate, and
silica fume.

3.9. Relationship between Theoretical and Experimental Results
3.9.1. Compressive Strength

Figure 17 shows a comparative analysis between three mixtures used to determine
the compressive strength of UHPC. One of these mixtures represents the theoretical results
obtained in this research, while the others correspond to experimental studies carried out
by Oliveira [16] and Zhang [34].
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The graphs show notable similarities in the proportions of cement, silica fume, and
water between the analyzed UHPC mixtures. On average, the quantities were 800 kg/m3 of
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cement, 200 kg/m3 of silica fume, and 200 kg/m3 of water. On the other hand, significant
divergences could be identified in the proportions of fine aggregate and quartz powder.
The amount of fine aggregate for the mixture prepared in this study was established
at 1150 kg/m3, representing an increase of 35% relative to data from Oliveira [16] and
Zhang [34], who used 833 and 848 kg/m3, respectively. Oliveira [16] added 380 kg/m3 of
quartz powder to the mixture, Zhang [34] used only 40% of this value (154 kg/m3), and 7%
(25 kg/m3) was used in this research.

Discrepancies recorded between mixtures generated variations in the compressive
strength values, as shown in Figure 18.
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Zhang [34].

The mixture formulated in this study presented the highest compressive strength
value among the analyses, reaching 157 MPa. The superior performance of concrete
can be attributed to the significantly higher consumption of fine aggregate compared to
the other mixtures. Despite having the lowest proportion of fine aggregate among the
studies, Oliveira [16] compensated for this limitation through a substantial consumption
of quartz powder, resulting in an intermediate strength of 146 MPa. In contrast, the
concrete developed by Zhang [34] had the lowest compressive strength among the mixtures,
reaching only 124 MPa. This drop in resistance can be justified by the intermediate amount
of fine aggregate and quartz powder used in the composition of UHPC. The absence of a
substantial consumption of fine materials can hinder the performance of concrete, especially
regarding strength gains.

The final results corroborate previous studies on the relevance of particle packing
on concrete performance [61,62]. The efficiency and compactness in the arrangement of
particles in the cement matrix can optimize the use of constituent materials, improving
cohesion and interaction between them. It results in the formation of a dense matrix,
contributing to a significant gain in compressive strength.

3.9.2. Flexural Tensile Strength

Figure 19 shows a comparative analysis between three mixtures used to determine the
flexural strength of UHPC. One of these mixtures corresponds to the results obtained in
this study, while the others refer to the research developed experimentally by Oliveira [16]
and Zhang [34].
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Figure 19. UHPC mixture for flexural tensile strength based on Oliveira [16] and Zhang [34].

The graphs reveal notable similarities regarding the amounts of silica fume and water
incorporated into the analyzed UHPC mixtures. On average, consumption was 200 kg/m3

of silica fume and 200 kg/m3 of water. However, discrepancies could be observed in the
cement, fine aggregate, and quartz powder consumptions. The cement consumption for the
mixture prepared in this research was determined to be 875 kg/m3, a value 15% higher than
the quantity used by Oliveira [16] (757 kg/m3) and 13% higher than that used by Zhang [34]
(771 kg/m3). The proportion of fine aggregate was established to be 950 kg/m3 in this
study, which corresponds to an increase of 14% compared to the study by Oliveira [16]
and 12% by Zhang [34], who used 833 and 848 kg/m3 of fine aggregate in the mixtures,
respectively. Regarding quartz powder consumption, Oliveira [16] used 380 kg/m3 in the
concrete mixture, Zhang [34] used only 40% of this value (154 kg/m3), and 7% (25 kg/m3)
was used in this research.

The variations identified between the mixture compositions had a variation in the
flexural tensile strength of UHPC, as shown in Figure 20.
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The mixture proposed in this study had the highest flexural strength value, reaching
30 MPa. The excellence shown in concrete performance can be justified by the significantly
higher consumption of cement and fine aggregate compared to other mixtures. Zhang [34]
used intermediate amounts of cement, fine aggregate, and quartz powder in the mixture
and obtained an intermediate strength of 23 MPa. Despite compensating for the disparity in
the proportions of cement and fine aggregate with a significant quartz powder consumption,
Oliveira [16] recorded the lowest flexural strength, reaching only 16 MPa. It suggests that,
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unlike the behavior recorded for compressive strength, in which quartz powder exerted a
notable influence, its effect on flexural strength is less significant.

Given that the conditions relating to steel fibers were the same for the three analyzed
mixtures (straight fibers at a content of 2% of the volume), the distinction in flexural strength
results is mainly due to variations in cement and fine aggregate proportions. Although
quartz powder is relevant in the context of UHPC, it has not been shown to have such a
significant impact on the gain in flexural strength.

3.9.3. Elastic Modulus

Figure 21 shows a comparative analysis between three mixtures used to determine
the elastic modulus of UHPC. One of these mixtures reflects the theoretical results of this
research, while the others represent experimental studies conducted by Oliveira [16] and
Zhang [34]. Figure 21 indicates significant similarities in the proportions of cement, silica
fume, and water between the analyzed UHPC mixtures. On average, the quantities used
were 800 kg/m3 of cement, 200 kg/m3 of silica fume, and 200 kg/m3 of water. However,
divergences could be identified in the proportions of fine aggregate and quartz powder. A
fine aggregate consumption of 1050 kg/m2 was determined for the mixture prepared in
this study, corresponding to an increase of 26% relative to the research by Oliveira [16] and
24% relative to that of Zhang [34], which used 833 and 848 kg/m3 of material, respectively.
As for quartz powder, Oliveira [16] added 380 kg/m3, Zhang [34] used only 40% of this
value (154 kg/m3), and 13% (50 kg/m3) was used in this study.
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The three analyzed mixtures generated no significant impacts on the elastic modulus
of UHPC despite the discrepancies identified between them, as shown in Figure 22.
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Even with a considerably higher consumption of fine aggregate compared to the other
mixtures, this study obtained an elastic modulus of 47 GPa, corresponding to an increase
of 2% relative to the research by Oliveira [16] and Zhang [34], who recorded values close to
46 GPa.

The final results corroborate previous studies [63], which found that the elastic mod-
ulus of ultra-high-performance concrete is considerably influenced by the reduction in
the water-to-binder ratio and the addition of coarse aggregate. Given that the analyzed
mixtures had similar water-to-binder ratios and included no coarse aggregate in their com-
position, it is consistent that the modulus of elasticity remains similar despite the variations
identified between compositions.

3.10. Relationship between the Mechanical Properties of UHPC

Figure 23 graphically shows the relationships between compressive strength, flexural
tensile strength, and elastic modulus of UHPC. The results show that the relationship be-
tween compressive strength and flexural strength has a behavior contrary to that presented
by the relationship between compressive strength and elastic modulus, although both are
characterized as non-deterministic.
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The relationship between the compressive strength and flexural strength of UHPC
reveals that, for a compressive strength of 150 MPa, the flexural strength can vary be-
tween 10 and 40 MPa. This indicates that the differences between the components of each
author’s UHPC mixtures significantly impact the flexural tensile properties of ultra-high-
performance concrete.

Regarding the relationship between the compressive strength and the elastic modulus
of UHPC, the elastic modulus remains consistently between 40 and 50 GPa for the com-
pressive strength varying between 100 and 175 MPa. This behavior shows that variations
in the proportions of UHPC components do not generate notable impacts on the elastic
modulus, as long as the water-to-binder ratio is maintained at similar rates, as well as the
proportions of coarse aggregate.

4. Conclusions

The following conclusions can be drawn considering the comprehensive review of the
literature and the results obtained in this study:

• The theoretical mixtures developed in this study based on each mechanical property
demonstrated compliance with the standards identified in the literature review for
ultra-high-performance concrete, which characterize the material by a significant con-
sumption of cement, high presence of fine aggregates, and low water-to-binder ratio.

• The mixtures prepared in this study based on each mechanical property showed
significant similarities despite small variations, suggesting a standardization in the
composition of UHPC.
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• The small variations seen in the mixes examined in this study for each mechanical
attribute confirm that fine materials are the primary factors enhancing the strength
of UHPC.

• The water-to-binder ratio remained constant between the three mixtures prepared
in this research for each mechanical property despite the small variations in the
proportions of fine materials, proving the importance of the role played by water
relative to the workability of concrete.

• The theoretical mixtures developed in this study performed superiorly to the experi-
mental mixtures proposed by other authors in terms of compressive strength, flexural
tensile strength, and elastic modulus.

• Fine aggregate plays a significant role in gaining compressive and flexural strength
of UHPC. On the other hand, quartz powder has a higher influence on compressive
strength than on flexural strength.

• Elastic modulus is not influenced by the proportion of constituent materials of UHPC,
as there is no coarse aggregate, which is considered the main factor determining
this property.

• The relationship between the mechanical properties of UHPC exhibits non-deterministic
behavior. Flexural strength can vary for the same compressive strength value. How-
ever, elastic modulus remains relatively constant, regardless of variations in compres-
sive strength values.

These conclusions make it evident that particle packing is the main factor in ensuring
the high performance of UHPC in terms of strength and durability. However, to ensure the
optimal packing of particles, the future recommendation of this study is that the proposed
reference mixture for the UHPC be experimentally studied to verify the influence of local
materials on their mechanical properties. This includes the availability of materials, granu-
lometry, and mineralogical composition. Furthermore, it is recommended that alternative
aggregates be explored in producing UHPC, such as rice husk ash and recycled concrete
aggregate, from a sustainability perspective. Laboratory tests are essential for evaluating
the particle distribution, mixture compactness, and material microstructure. By analyzing
these aspects, it becomes possible to verify how the particles of the constituent materials
are organized and interact in the mixture.

However, the theoretical mixtures developed in this work exhibited characteristics
and performances that make them suitable for assisting in the initial stages of UHPC mix
design in experimental programs.

Finally, the work offers an in-depth insight into the complexity presented by the
interactions of the constituent materials and the mechanical properties of UHPC, providing
relevant information for the development and optimization of this high-performance
material in various engineering applications.
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