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Abstract: To calculate and analyze the equivalent resilient modulus of a submerged subgrade, a
constitutive model considering the effect of saturation and matrix suction was introduced using
ABAQUS’s user-defined material (UMAT)subroutine. The pavement response under falling weight
deflectometer (FWD) load was simulated at various water levels based on the derived distribution
of the resilient modulus within the subgrade. The equivalent resilient modulus of the subgrade
was then calculated using the equivalent iteration and weighted average methods. Based on this,
the influence of the material and structural parameters of the subgrade was analyzed. The results
indicate that the effect of water level rise on the tensile strain at the bottom of the asphalt layer and
the compressive strain at the top of the subgrade is obvious, and its trend is similar to an exponential
change. The equivalent resilient modulus of the subgrade basically decreases linearly with the rise in
the water level, and there is high consistency between the equivalent iteration and weighted average
methods. The saturated permeability coefficient and subgrade height have the most significant effect
on the resilient modulus of the subgrade, which should be emphasized in the design of submerged
subgrades, and the suggested values of the resilient modulus of the subgrade should be proposed
according to the relevant construction conditions.

Keywords: submerged subgrade; equivalent resilient modulus; constitutive model; finite element
method; fluid–solid coupling

1. Introduction

Abundant rainfall in tropical regions like Africa and Southeast Asia causes the seasonal
submersion of the subgrade. Variations in moisture greatly affect the subgrade’s resilient
modulus, which, in turn, reduces soil stiffness and increases structural reactivity under
pavement loads [1–3]. A large number of studies have been carried out to discuss the effects
of moisture content [4,5], matrix suction [6,7], loading frequency [8,9], confining stress [10],
and soil type [11–13] on the resilient modulus. In practice, it is difficult to take into account
the influence of so many factors at the same time. The most important ones are stress state
and moisture state [14]. Through a large number of laboratory dynamic resilient modulus
tests, the resilient modulus prediction equation was established to quantitatively describe
the relationship between the resilient modulus and physical property parameters, state
variables and environmental variables [15–17]. The mechanistic-empirical pavement design
guide (MEPDG) design method incorporates the resilient modulus prediction equation
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as an intrinsic model of the subgrade and the granular layer to carry out the structural
nonlinear analysis of pavement [18–21], as shown in Equation (1):

Mr = k1 pa

(
θ

pa

)k2
(

τoct

pa
+ 1

)k3

(1)

where Mr is the resilient modulus, MPa; θ is the bulk stress, kPa; τoct is the octahedral shear
stress, kPa; pa is the atmospheric pressure, usually taken as 100 kPa; and k1, k2, and k3 are
material parameters.

On this basis, state variables characterizing moisture are added to the equation, and
equations that consider both the stress and moisture states of the material were devel-
oped [22]. Liang et al. [23] proposed a moisture-dependent prediction equation based on
the Bishop effective stress. Similarly, Qian et al. [24] replaced the parameter reflecting
the contribution of matrix suction with a saturation-related parameter. Gu et al. [25], on
the other hand, introduced volumetric moisture content to capture the effect of humidity,
while adding an adjustable saturation factor for error reduction. Furthermore, Zhang
et al. [26] proposed a new resilient modulus model to incorporate relative compaction in
addition to matrix suction and the stress state. Liu et al. [27] collected and analyzed the
existing resilient modulus models of subgrade unsaturated soils, and summarized the
characteristics and scope of application of each model.

Due to the stress and moisture dependence of the resilience modulus, its spatial dis-
tribution is inhomogeneous [28,29]. Determining the equivalent resilient modulus entails
replacing a series of resilient modulus values with a representative value based on the equiv-
alence principle. In the design of pavement structures, the commonly chosen equivalence
metric is the mechanical response or the service life of the structure in question [30]. Among
the available mechanical response metrics, the most widely used one is deflection [31]. The
equivalent resilient modulus is determined using the iterative inverse calculation method
according to the principle of deflection equivalence [32,33]. In AASHTO, the current ser-
vice index of pavement is used as an index to determine the empirical equation for the
relative loss coefficient for different subgrade moduli, and the effective resilient modulus
of the subgrade is back-calculated based on the average relative loss coefficient [34]. By
referring to this idea, researchers predicted the attenuation of the resilient modulus of a
subgrade using easily measured indicators, such as the compressive strain at the top of the
subgrade, the number of load repetitions, etc., and established corresponding empirical
models [35,36]. These empirical methods facilitate the determination of the modulus, but
their accuracy depends on a large number of field tests and is highly dependent on the
region in question.

In summary, although many moisture-dependent soil resilient modulus constitutive
models have been proposed and verified using triaxial tests, most of them stay in the theo-
retical research stage, and there are few studies incorporating the finite element method
to study the distribution of the modulus field and the structural mechanical response of
the subgrade structure. Meanwhile, the methods for calculating the equivalent resilient
modulus of subgrade are mostly empirical, and the process is simple and lacks systematic
theoretical guidance; thus, whether it can be directly used for the resilient modulus calcula-
tion of a submerged subgrade needs to be further discussed. Consequently, analyses on
the equivalent resilient modulus of a subgrade under different submerged conditions and
subgrade parameters are less frequent, making it difficult to provide effective guidance for
submerged subgrade design. Therefore, it is necessary to propose a procedural approach to
simplify the calculation and analysis of the equivalent resilient modulus of a subgrade.

Accordingly, in order to efficiently calculate the mechanical response and equivalent
resilient modulus of a submerged subgrade and analyze the key influencing factors of the
resilient modulus, a suction-dependent resilient modulus constitutive model was applied
to reflect the effect of the moisture field on the mechanical properties of a subgrade based
on ABAQUS’s user-defined material (UMAT) subroutine. Subsequently, the pavement
response was analyzed, and the equivalent resilient modulus was calculated through the
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equivalent iteration and weighted average methods via ABAQUS python script. Fur-
thermore, the influence of key factors on the equivalent resilient modulus was analyzed,
including material parameters and the structural parameters of the subgrade. This study
provides a complete framework for the rapid calculation of the subgrade equivalent re-
silient modulus, and the analyzed results can be utilized as a guide for subgrade design
and water damage mitigation.

2. Materials and Methods
2.1. Typical Submerged Subgrade Model

The typical highway structure applied in this study is shown in Figure 1, together
with information on highway construction and hydrogeology in Africa. The pavement is
composed of 4 cm AC13 + 6 cm AC20 + 20 cm graded aggregate with a width of 16 m. The
slope of the subgrade was set to 1:1.5, with a height of 6 m. The foundation was assumed
to be 12 m deep, with the initial water level being 6 m underground.
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Figure 1. Typical highway structure (unit: m).

The parameters of the pavement material are shown in Table 1. We used dynamic
moduli for all the elastic moduli E in order to replicate the structural performance under
the field conditions.

Table 1. Pavement material parameters.

Layer Material Thickness
(cm)

Elastic Modulus
(MPa) Poisson’s Ratio Dry Density

(g·cm−3)

Top layer AC13 4 8200 0.25 2.40
Bottom layer AC20 6 8000 0.25 2.40

Base course Graded
Aggregate 20 300 0.35 2.32

The parameters of the subgrade and the foundation were set as follows: elastic modu-
lus E = 35 MPa, Poisson’s ratio ν = 0.3, cohesion c = 15 kPa, and friction angle φ = 30 ◦. The
relationship between permeability coefficient Kw and saturation Sr in the unsaturated zone
is shown in Equation (2):

Kw = Sr
3Kws (2)

where Kws is saturated permeability coefficient, taken as 5 × 10−7 m·s−1.
To account for the seepage problems in unsaturated soil, the SWCC (Soil–Water

Characteristic Curve) was defined using the Fredlund and Xing model [37]:

θw = C(ψ)
θs{

ln
[
e +

(
ψ
a

)n]}m (3)

C(ψ) = 1 −
ln
(

1 + ψ
ψr

)
ln
(

1 + 106

ψr

) (4)
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where θw is volumetric moisture content; θs is saturated volumetric water content; C(ψ) is
correction function; ψ is matrix suction, given in kPa; ψr is residual matrix suction, given in
kPa; and a, n, and m are fitting parameters, taken as 2813, 0.4836, and 3.7106, respectively.

The corresponding hydraulic parameter curves developed according to Equations (2)–(4)
are shown in Figure 2.
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Figure 2. Hydraulic parameter curves of soil material: (a) relationship between permeability coeffi-
cient and saturation; (b) SWCC (Soil–Water Characteristic Curve).

The sides of the slope and foundation were set as the submerged boundary, and
the boundary conditions related to pore water pressure were incorporated. In order to
effectively carry out the fluid–solid coupling analysis, the plane pore water pressure units,
CPE8P, were adopted in the subgrade and foundation. Since falling weight deflectometer
(FWD) loads need to be applied subsequently to observe the mechanical response of
the subgrade and pavement and back-calculate the resilient modulus of the subgrade
accordingly, in order to improve the accuracy of the results, the mesh was divided into a
local refinement set in addition to the global distribution. The middle part of the mesh was
gradually encrypted from the outside to the inside, and the meshes of the surface layer and
the base layer were encrypted vertically. The corresponding results are shown in Figure 3.
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2.2. Constitutive Model of Resilent Modulus

Since a constitutive model of the unsaturated soil resilient modulus is not provided
in ABAQUS, it was necessary to complete the definition with the assistance of the UMAT
subroutine. Given the stress dependence and moisture dependence of the resilient modulus
in unsaturated soil, a constitutive model considering the effect of saturation and matrix
suction was applied based on Equation (1), as shown in Equation (5):

Mr = k1 pa

(
θ + 3Srψ

pa

)k2
(

τoct

pa
+ 1

)k3

(5)

where the fitting parameters k1, k2, and k3 were determined using nonlinear regression
analysis, and the source data came from the predicted resilient modulus of unsaturated
clay in Nantong, Jiangsu Province, from Qian’s research [24]. As shown in Figure 4, the
horizontal and vertical coordinates of the dots represent the results of the resilient modulus
predicted using the two different models respectively. The fitting parameters were obtained
as k1 = 0.4351, k2 = 0.9698, and k3 = −1.6522, and the goodness-of-fit value of the two
models was 0.9542, with a significant correlation.
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Under the submerged condition, the stress state at each node of the subgrade was
extracted by the UMAT subroutine through the interface with ABAQUS, and the corre-
sponding resilient modulus was calculated based on the constitutive model. Subsequently,
the stress state was updated according to the new distribution of the resilient modulus.
When the water level rises, the states of stress and moisture change correspondingly, leading
to differences in the resilient modulus and the pavement response.

2.3. Calculation of Equivalent Resilient Modulus

Due to the stress and moisture dependence of the resilient modulus in unsaturated soil,
the stress and moisture states in the subgrade vary from position to position, resulting in an
inhomogeneous spatial distribution. The equivalent resilient modulus is a representative
value of the spatial distribution according to a given equivalence principle used to reflect
the overall bearing capacity of the subgrade. For this purpose, the equivalent resilient
modulus of the subgrade was calculated using the equivalent iteration and weighted
average methods.

2.3.1. Equivalent Iteration

For the design of flexible base asphalt pavement, the tensile strain at the bottom
of the asphalt layer, εt, and the compressive strain at the top of the subgrade, εc, are
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regarded as key indicators in structural calculations, controlling fatigue damage and
permanent deformation, respectively, and both can be adopted as equivalent indicators for
iteration [38,39].

The iteration process based on εt is shown in Figure 5. The iteration algorithm was
implemented via a python script. The steps are as follows:

1. Set the reference value. The value εt was calculated using the nonlinear model under
the peak load.

2. Calculate the linear elastic response. A linear elastic model was established with
the initial modulus Ei between the maximum and minimum values in the modulus
distribution of the nonlinear model, and the corresponding response εt’ under the
same load was calculated.

3. Iterative convergence algorithm. The convergence criterion is that the error between
the linear elastic response and the reference value must be less than the permit-
ted value (0.5%), and the bisection method was applied to ensure convergence of
the iterations.
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2.3.2. Weighted Average

The resilient modulus distribution of the subgrade was calculated according to
Equation (5). On this basis, determining the weighted average involved finding a suitable
weight function to calculate the equivalent resilient modulus of the subgrade directly.

Generally speaking, the closer the soil is to the center of the load, the higher the load
it is subjected to, and, accordingly, the greater its contribution to the equivalent resilient
modulus. Thus, the weight function should reflect this characteristic. To this end, a falling
weight deflectometer load was applied to the model to analyze the dynamic response. The
FWD load was simplified as a circular homogeneous load with a half-period sinusoidal
function with a peak load of 0.714 MPa, an action time of 30 ms, and a loading radius of
0.15 m, as shown in Figure 6. Considering the two-dimensional plane model used in this
study, the circular homogeneous load was converted to a line load with a peak load of
168.23 kPa.
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Figure 6. FWD load time-history curve.

The result of the top compressive strain of the subgrade εc at the peak load is shown
in Figure 7, from which it can be seen that the spatial distribution of the compressive
strain meets the requirements for the weight function, which can be used to calculate the
weighted average of the equivalent resilient modulus according to Equation (6):

E =
∑ Ei · εci

∑ εci
(6)

where E is the equivalent resilient modulus; Ei and εci are the resilient modulus and
maximum compressive strain at the center of the elements within the subgrade.
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Figure 7. Distribution of maximum compressive strain at FWD peak load. (Unit: µε).

3. Results
3.1. Validation of Constitutive Model

In order to verify the validity of the proposed constitutive model, as shown in
Equation (5), the results of laboratory tests reported in the study by Qian et al. [24] and
Liang et al. [23], which include clay samples from different regions of China and the USA,
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were selected for analysis, and the results of the resilient modulus of the soil samples under
different matrix suction conditions were obtained through triaxial tests.

The model of Equation (5) was used to fit the above test data nonlinearly, and the
obtained fitting parameters are summarized in Table 2. The fitting results are shown in
Figure 8, wherein the goodness of fit is above 0.94. It can be seen that the results predicted
by the model have a high degree of fitting with respect to the measured results of the
laboratory tests, making this model highly applicable to different soil samples of subgrades
in different regions.

Table 2. Fitting parameters of different soil samples.

Soil Samples
Fitting Parameters

k1 k2 k3 R2

Qian et al. Shanghai [24] 0.3712 0.9822 −1.6248 0.9627
Qian et al. Shandong [24] 0.3942 0.9973 −1.5841 0.9415

Liang et al. A-4 [23] 0.4544 0.8842 −1.7612 0.9638
Liang et al. A-6 [23] 0.4832 0.9161 −1.8033 0.9725
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et al. [24] and Liang et al. [23].

3.2. Distribution of Resilient Modulus

In order to illustrate the effect of water level variations on the distribution of field
variable outputs, the final states with the initial water level and the water level raised to
2 m were chosen for analysis.

The vertical effective stress distribution of the initial state obtained from the analysis
is shown in Figure 9a. Due to the existence of side slopes, the vertical effective stress
shows a gradual increase from the surface of the side slopes inwards. As the water level
rises and reaches stability, the vertical effective stresses in all parts of the structure are
reduced significantly, as shown in Figure 9b, which is consistent with the results of the
theoretical analysis.
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Figure 9. Distribution of vertical effective stress (a) at a water level of 6 m underground and (b) at a
water level of 2 m (Unit: kPa).

The distribution of the resilient modulus at a raised water level of 2 m is shown
in Figure 10. In general, the resilient modulus gradually increases from the top of the
subgrade and the slope to the depth of the foundation, which is consistent with the stress
field distribution in Figure 7. From Equation (5), it can be gleaned that the contributions
of bulk stress and shear stress to the resilient modulus are opposite, which means that
the value of bulk stress is relatively large compared with that of shear stress and plays a
dominant role in the magnitude of the resilient modulus. Meanwhile, the effect of matrix
suction is reflected in the stress results through Bishop’s effective stress principle, and the
foot of the slope has the smallest resilient modulus due to the small bulk stress and the
presence of pore water pressure. At the top of the subgrade, the resilient modulus is larger
than that at the foot of the slope; this is because the presence of matrix suction makes the
effective stress here significantly higher.
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Figure 10. Distribution of resilient moduli at a water level of 2 m (Unit: kPa).

3.3. Dynamic Response

In order to analyze the dynamic response characteristics of the submerged subgrade,
the variations in the tensile strain at the bottom of the asphalt layer εt and the compressive
strain at the top of the subgrade εc at different water levels were analyzed. The strain
results discussed in the following are the maximum principal strains of the elements at the
FWD peak load in Figure 6.

From Figure 11, it can be seen that the tensile strain is similar to the exponential change
with the elevation of the water level. When the water level is located underground (i.e., the
water level is 0 m or less), the amount of change is slight, the water level rises from −6 m
to 0 m, and the tensile strain increases 11.6%; when the water level is located above the
ground, a saturated zone appears in the part of the subgrade, the tensile strain change is
obvious, the water level rises from 0 m to 5 m, and the tensile strain increases by 36.3%.
In particular, when the water level rises above 5 m, the tensile strain increases rapidly,
corresponding to 39.3% between 5 m and 6 m.
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Figure 11. Curves of tensile and compressive strains versus water level.

The change rule of compressive strain was similar to that of tensile strain, increasing
by 30.8%, 77.4%, and 31.6%, respectively, when the water level was at −6~0, 0~5, and
5~6 m. It can be seen that the variation in compressive strain is more obvious than that for
tensile strain at a low water level, while the tensile strain better reflects the influence of the
submerged water level at a high water level on the subgrade.

Specifically, the rapid increase in structural strain in the high-water-level case may be
due to the influence of excess pore water pressure. The pore water pressure distributions
corresponding to the peak loads at water levels of 0 m and 6 m, respectively, are given in
Figure 12. Since the loading time was quite short, the FWD load was loaded to the peak
value in only 0.015 s, and the permeability coefficient of the soil was quite small. Therefore,
the excess pore water pressure accumulated within the subgrade could not be dissipated
within such a short period of time, and the effective stresses were further narrowed down,
leading to a decrease in the resilient modulus of the soil. However, when the water level of
the subgrade was not high, the saturated zone of the soil was located at a deeper position,
and only a small amount of excess pore water pressure was induced by the transfer of the
pavement load to the saturated zone; additionally, the modulus of the soil at this depth
contributes a small amount to the values of the strains, and thus the change in strain
is not obvious.
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Figure 12. Pore water pressure distributions corresponding to peak load (a) at a water level of 0 m
and (b) at a water level of 6 m.

3.4. Equivalent Resilient Modulus

The two methods described in Section 2.3 were employed to calculate the equivalent
resilient modulus of the subgrade, and the results are shown in Figure 13. Comparing the
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results of equivalent iteration by the two indicators of tensile strain εt and compressive
strain εc, it can be seen that the modulus values of the two curves are different at the same
water level due to the different indicators chosen, but the two show similar trends. The
moduli of the subgrade all decrease significantly with the increase in water level. The
variation range is 20~190 MPa, and the linear correlation coefficients are 0.9867 and 0.9783,
respectively, which can essentially be regarded as corresponding to a linear variation.
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Figure 13. Equivalent resilient modulus results of subgrade obtained using different methods.

Based on the same indicator of compressive strain εc, the results of equivalent iteration
and weighted average were compared. It was revealed that the weighted average results
are in high agreement with the more accurate equivalent iteration results, so the method of
determining the weighted average according to the distribution of the compressive strain
can be considered feasible.

In conclusion, both methods for determining the equivalent resilient modulus value
of a subgrade show a strong moisture correlation. This also implies that the effect of
subgrade moisture should be emphasized in the design of actual pavement structures
that and necessary anti-drainage measures should be taken. Between the two methods,
the equivalent iteration method is more complicated, but its calculation results are more
accurate with the aid of UMAT subroutine. The weighted average method is simpler,
but the determination of the weight function is the main difficulty in this regard. The
calculation method can be selected according to actual needs.

4. Discussion

In this section, the proposed equivalent modulus calculation method is used to ana-
lyze the influence of key influencing factors, including subgrade material and structural
parameters, on the value of the equivalent resilient modulus so as to provide a reference
for the design of submerged subgrades. Moreover, the suggested values for the resilient
modulus of subgrade can also be presented in relation to local construction conditions.

In order to effectively control the variables, if not specified, the following simulation
parameters were set so as to be consistent with those of the previous model, the water
level was set to 2 m, and the compressive strain equivalent iteration method was applied
to calculate the equivalent modulus. In particular, only the analysis results under several
common working conditions are provided, and the reasonableness of the trend was ana-
lyzed with respect to the mechanism, while the specific values under other special working
conditions need to be further explored.
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4.1. Influence of Material Parameters

The SWCC of unsaturated soil determines the relationship between matrix suction
and saturation, constituting an important parameter in the fluid–solid coupling analysis
of unsaturated soil. Meanwhile, the saturated permeability coefficient of the subgrade
directly affects the speed of moisture change inside the subgrade. Therefore, three SWCCs
(Figure 14) and different saturated permeability coefficients of clay subgrade were selected
to investigate the influence of the above two hydraulic parameters on the results of the
equivalent modulus calculation.
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Figure 14. Three types of SWCC of clay.

As the SWCC gradually shifts towards the low-suction region, the saturation of the soil
decreases under the same suction conditions, resulting in a decrease in the effective stress
and modulus in the unsaturated zone, as shown in Figure 15. However, the magnitude of
modulus reduction is not obvious, presumably due to the small permeability coefficient
setting. With the continuous increase in the permeability coefficient, the modulus shows
obvious attenuation. When the permeability coefficient is increased 10-fold, the modulus
decreases by 9.9%, and when it is further increased 100-fold, the modulus only decreases
by 3.2%, and there is a certain saturation effect, indicating that at this time, the permeabil-
ity coefficient is already large enough, and the moisture at the side slope can enter the
roadbed rapidly.
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Figure 15. Equivalent modulus of subgrade with different hydraulic parameters.
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4.2. Influence of Structural Parameters

In order to investigate the influence of subgrade structural parameters on the equiva-
lent resilient modulus, the width, height, and slope of the subgrade were selected as the key
influencing factors. For the width, three conditions, namely, 12 m, 16 m, and 26 m, were
selected according to different highway grades. For the height, 6, 8, and 10 m were selected.
For the slope, three conditions, namely, 1:1, 1:1.5, and 1:2, were selected for analysis.

As can be seen in Figure 16, the equivalent modulus of the subgrade increases grad-
ually with the increase in subgrade width, but the overall change is not large, and the
modulus only increases by 5.8% when the subgrade width increases from 12 m to 26 m.
The increase in subgrade width prolongs the duration of water inflow from the slope to the
inside of the subgrade when the water level rises; additionally, the hysteresis phenomenon
of moisture inside the subgrade is obvious, and the equivalent modulus of the subgrade
increases. Conversely, if the water level decreases, the moisture inside the subgrade is
discharged slowly, resulting in a larger modulus in a wider subgrade. Therefore, in the
determination of the correlation between subgrade width and equivalent modulus, one
should also consider the water level change conditions.
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Figure 16. Equivalent modulus of subgrade with different structural parameters.

Compared with subgrade width, the effect of subgrade height on the equivalent
modulus of the subgrade is fairly obvious, and the modulus increases by 40.7% when the
subgrade height increases from 6 m to 8 m. With the increase in subgrade height, the range
of the unsaturated zone of the subgrade enlarges, and the overall matrix suction in the
unsaturated zone increases; meanwhile, the effective stress in the saturated zone of the
subgrade obviously increases due to the increase in soil self-gravitational stress, which, in
turn, leads to an increase in the overall modulus of the subgrade.

There are no significant differences in the results of the resilient modulus of the
subgrade under different slopes. Theoretically, the effect produced by the increase in slope
is similar to the increase in subgrade width; i.e., it can be regarded as a narrow subgrade
when the slope rate is 1:1 and a wide subgrade when the slope rate is 1:2. However, the
hysteresis effect of moisture when the slope decreases is not obvious, and therefore the
effect of slope on the resilient modulus of the subgrade can nearly be neglected in the actual
engineering process.

4.3. Design Framework for Submerged Subgrade

Based on the calculation method and analysis process proposed in this study, a pre-
liminary framework for the design of a submerged subgrade was developed, as shown in
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Figure 17. The framework allows designers to quickly calculate the equivalent resilient
modulus of a submerged subgrade, assess whether the overall stiffness of the subgrade
meets the design requirements, and guide the optimization of the initial design based on the
results of the analysis of the key influencing factors. Unlike the current resilient modulus
prediction model for soil samples under specified conditions, this method considers the
spatial inhomogeneous distribution of the modulus of the subgrade and calculates the
equivalent resilient modulus of the subgrade as a whole by means of the finite element
method, which is of strong engineering practicability, and the framework can generally be
divided into four parts:

1. Determine the model parameters, including boundary conditions, the constitutive
model, structural parameters, and material parameters. The constitutive model
of Equation (5) must be adopted, and other parameters need to be preliminarily
determined in combination with local construction conditions and in consideration of
engineering experience.

2. Calculate the mechanical response. Calculate the tensile strain at the bottom of the
asphalt layer, εt, and the compressive strain at the top of the subgrade, εc, under
FWD loading as representative dynamic response indicators. At the same time, these
two indicators will also be used as the basis for calculating the equivalent resilient
modulus of the subgrade.

3. Calculate the equivalent resilient modulus. The equivalent resilient modulus can
be calculated via equivalent iteration with tensile strain and weighted average with
compressive strain. Theoretically, the equivalent iteration method has higher accuracy,
while the weighted average method has higher computational efficiency. Designers
can choose a method according to the requirements of the task at hand.

4. Carry out decision making. Judge whether the results of the equivalent resilient
modulus meet the requirements. If so, then complete this design. If not, the design
parameters can be modified with reference to the results of the key influencing factors
analysis given in this study until the design requirements are met.
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5. Conclusions

In this study, a finite element model of a typical submerged subgrade was established,
and a constitutive model considering the effect of saturation and matrix suction was intro-
duced via a UMAT subroutine. The equivalent iteration and weighted average methods
were used to calculate the equivalent resilient modulus. Based on this, the dynamic re-
sponse and equivalent resilient modulus of the subgrade under different water levels were
obtained. Finally, the influence of material parameters and the structural parameters of
the subgrade were analyzed, and the results can provide a reference for the design and a
suitable modulus value of the subgrade. The conclusions are as follows:
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1. The effect of water level rise on the tensile strain at the bottom of the asphalt layer and
the compressive strain at the top of the subgrade is obvious, and its trend is similar to
an exponential change. At a low water level, the change in compressive strain is more
obvious, while the change in tensile strain is more significant when the water level
rises to a point where the subgrade is close to saturation. In fact, a situation in which
near-saturation occurs is very rare, so the indicator of compressive strain is especially
important in the design of a submerged subgrade.

2. The equivalent resilient modulus of the subgrade calculated using the equivalent
iteration and weighted average methods has a strong correlation with the moisture
content of the subgrade, and the modulus of the subgrade basically decreases linearly
with the increase in the water level. The results of the weighted average based on the
distribution of compressive strains at the top of the subgrade under FWD load are in
high agreement with the results of the equivalent iteration, which is a more accurate
method in theory. Therefore, it can be concluded that the method of determining the
weighted average based on the distribution of compressive strain is feasible.

3. Among the subgrade materials and structural parameters considered in this study, the
saturated permeability coefficient and subgrade height have the most significant effect
on the resilient modulus of the subgrade, while SWCC and subgrade width have a
slight effect on the modulus, and the effect of slope can be approximately ignored.
Therefore, during the process of designing a submerged subgrade, the influence of the
above parameters on the dynamic response of the structure should be emphasized,
and the corresponding suggested values of the resilient modulus of the subgrade
should be proposed according to the actual construction conditions.

This study provides an effective means for calculating and analyzing the equivalent
resilient modulus of a submerged subgrade, but there is still room for improvement in
this methodology. Only the results obtained under individual working conditions were
considered. In fact, subgrades experience seasonal wet and dry cyclic effects, and the
applicability of the constitutive model proposed in this study under such effects needs to
be further discussed.

In addition, a preliminary framework for the design of a submerged subgrade was
proposed in this study, but the overall process is still slightly cumbersome, and the com-
putational efficiency is low in the case of a large quantity of data, making it to apply
this framework on a wide scale in engineering practice. Therefore, it is possible to try to
program the framework and develop a corresponding graphical user interface (GUI) so
as to achieve rapid modelling and automatic computation, constituting the focus of our
future research.
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