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Abstract: It has become clear that superior material functions are derived from precisely controlled
nanostructures. This has been greatly accelerated by the development of nanotechnology. The
next step is to assemble materials with knowledge of their nano-level structures. This task is as-
signed to the post-nanotechnology concept of nanoarchitectonics. However, nanoarchitectonics,
which creates intricate three-dimensional functional structures, is not always easy. Two-dimensional
nanoarchitectonics based on reactions and arrangements at the surface may be an easier target to
tackle. A better methodology would be to define a two-dimensional structure and then develop
it into a three-dimensional structure and function. According to these backgrounds, this review
paper is organized as follows. The introduction is followed by a summary of the three issues; (i) 2D
to 3D dynamic structure control: liquid crystal commanded by the surface, (ii) 2D to 3D rational
construction: a metal–organic framework (MOF) and a covalent organic framework (COF); (iii) 2D to
3D functional amplification: cells regulated by the surface. In addition, this review summarizes the
important aspects of the ultimate three-dimensional nanoarchitectonics as a perspective. The goal
of this paper is to establish an integrated concept of functional material creation by reconsidering
various reported cases from the viewpoint of nanoarchitectonics, where nanoarchitectonics can be
regarded as a method for everything in materials science.

Keywords: covalent organic framework (COF); liquid crystal; living cell; metal–organic framework
(MOF); nanoarchitectonics; surface; three dimensions; two dimensions

1. Introduction

The development of new technologies such as information technology, device technol-
ogy, and medical technology is supporting the development of society. However, materials
chemistry, which has been steadily developing since the 20th century, is also indispens-
able [1,2]. Useful materials are essential to fulfill important parts of the later technologies.
Such developments in materials chemistry solve a variety of existing problems. Energy pro-
duction [3–18], energy storage [19–30], environmental remediation [31–40], carbon neutral
strategies [41–46], detection of hazardous substances [47–52], bio-related sensing [53–58],
technologies leading to medicine [59–69], and the creation of device materials to support
them [70–75] are among the many demands that depend on the development of materials
chemistry. Effective function is not determined solely by the properties of the substances
themselves. Their functions depend much on what kind of structure a substance takes or
what kind of internal structure it takes. With the progress of materials chemistry, such mat-
ters have been gradually elucidated. This has been greatly accelerated by the development
of nanotechnology. As is still the case in current research, nanotechnology makes it possible
to observe nanostructures from the atomic and molecular levels [76–89]. Accordingly, it
has become clear that superior material functions are derived from precisely controlled
nanostructures. The next step is to assemble materials with knowledge of their nano-level
structures. This task is assigned to the post-nanotechnology concept of nanoarchitectonics
(Figure 1) [90].
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Figure 1. Outline of the nanoarchitectonics concept which establishes a methodology for building 
functional material systems from nano-units such as atoms, molecules, and nanomaterials. 

Nanotechnology was founded by Richard Feynman in the middle of the 20th century 
[91,92]. In the early 21st century, nanoarchitectonics was proposed by Masakazu Aono 
[93,94] as a successor to Feynman’s work. The goal of nanoarchitectonics is to establish a 
methodology for building functional material systems from nano-units such as atoms, 
molecules, and nanomaterials [95–97]. Rather than a completely new concept, it is more 
of an integration of existing concepts. In other words, it is a fusion of nanotechnology with 
various material-related sciences and peripheral fields (organic chemistry, inorganic 
chemistry, coordination chemistry, polymer chemistry, supramolecular chemistry, bio-re-
lated chemistry, microfabrication technology, etc.). The following elemental technologies 
for building functional material systems from nano-units can be considered: atomic/mo-
lecular-level manipulation, chemical/physical material transformation including organic 
synthesis, self-assembly/self-organization, alignment and orientation by application of ex-
ternal fields and energy, nano/microfabrication, and biochemical/biotechnological pro-
cesses [98]. These are selected and combined as appropriate. Compared to self-assembly, 
which is a single-equilibrium process, it is often a multistep process. Accordingly, nano-
architectonics is well suited to creating asymmetric and hierarchical structures [99]. In ad-
dition, the underlying nanoscale interactions often involve uncertainties such as thermal 
fluctuations, stochastic distributions, and quantum effects. Therefore, the various effects 
are harmonized rather than simply added together [100]. 

The above principles are general and Independent of the type of materials and their 
functions. Nanoarchitectonics will be universally applicable to a wide variety of material 
systems. Originally, all matter is composed of units of atoms and molecules. Therefore, 
the concept of nanoarchitectonics, which is the architecture of matter from atoms and mol-
ecules, can be the creation of all matter. Like the ultimate theory of everything in physics 
[101], it could become a method for everything [102,103], an integrated concept for syn-
thesizing functional materials in materials science. In fact, many papers advocating nano-
architectonics have been published in recent years. The field ranges from basic to applied 
sciences. It includes material synthesis [104–114], creation of specific structures [115–125], 
organization of structures [126–138], exploration of basic physical phenomena [139–150], 
basic biochemistry [151–163], catalysis [164–175], environmental remediation [176–187], 
sensors [188–197], devices [198–205], energy generation [206–214], energy storage [215–
222], drug delivery [223–227], cellular control [228–231], and biomedical applications 
[232–242]. Since nanoarchitectonics is a comprehensive concept, there are also many ap-
proaches that do not advocate nanoarchitectonics but have the same effect as nanoarchi-
tectonics. 

Figure 1. Outline of the nanoarchitectonics concept which establishes a methodology for building
functional material systems from nano-units such as atoms, molecules, and nanomaterials.

Nanotechnology was founded by Richard Feynman in the middle of the 20th cen-
tury [91,92]. In the early 21st century, nanoarchitectonics was proposed by Masakazu
Aono [93,94] as a successor to Feynman’s work. The goal of nanoarchitectonics is to estab-
lish a methodology for building functional material systems from nano-units such as atoms,
molecules, and nanomaterials [95–97]. Rather than a completely new concept, it is more of
an integration of existing concepts. In other words, it is a fusion of nanotechnology with var-
ious material-related sciences and peripheral fields (organic chemistry, inorganic chemistry,
coordination chemistry, polymer chemistry, supramolecular chemistry, bio-related chem-
istry, microfabrication technology, etc.). The following elemental technologies for building
functional material systems from nano-units can be considered: atomic/molecular-level
manipulation, chemical/physical material transformation including organic synthesis, self-
assembly/self-organization, alignment and orientation by application of external fields and
energy, nano/microfabrication, and biochemical/biotechnological processes [98]. These
are selected and combined as appropriate. Compared to self-assembly, which is a single-
equilibrium process, it is often a multistep process. Accordingly, nanoarchitectonics is well
suited to creating asymmetric and hierarchical structures [99]. In addition, the underlying
nanoscale interactions often involve uncertainties such as thermal fluctuations, stochastic
distributions, and quantum effects. Therefore, the various effects are harmonized rather
than simply added together [100].

The above principles are general and Independent of the type of materials and their
functions. Nanoarchitectonics will be universally applicable to a wide variety of material
systems. Originally, all matter is composed of units of atoms and molecules. Therefore, the
concept of nanoarchitectonics, which is the architecture of matter from atoms and molecules,
can be the creation of all matter. Like the ultimate theory of everything in physics [101], it
could become a method for everything [102,103], an integrated concept for synthesizing
functional materials in materials science. In fact, many papers advocating nanoarchitecton-
ics have been published in recent years. The field ranges from basic to applied sciences.
It includes material synthesis [104–114], creation of specific structures [115–125], organi-
zation of structures [126–138], exploration of basic physical phenomena [139–150], basic
biochemistry [151–163], catalysis [164–175], environmental remediation [176–187], sen-
sors [188–197], devices [198–205], energy generation [206–214], energy storage [215–222],
drug delivery [223–227], cellular control [228–231], and biomedical applications [232–242].
Since nanoarchitectonics is a comprehensive concept, there are also many approaches that
do not advocate nanoarchitectonics but have the same effect as nanoarchitectonics.



Materials 2024, 17, 936 3 of 35

However, nanoarchitectonics, which creates intricate three-dimensional functional
structures, is not always easy. Two-dimensional nanoarchitectonics based on reactions and
arrangements at the surface may be an easier target to tackle. A better methodology would
be to define a two-dimensional structure and then develop it into a three-dimensional
structure and function. It is a structure development prescription from interface to bulk.
Such an approach can be seen in several existing research examples. A typical approach
is the interface-based nano thin film fabrication technique. One typical approach is the
Langmuir–Blodgett (LB) method [243–249]. A thin film at the monolayer level is first
prepared at a two-dimensional liquid interface, such as a water surface. If these films are
sequentially transferred onto a substrate, a three-dimensional, multilayered structure is
formed. Layer-by-layer (LbL) assembly is a simpler and more versatile method than the
LB method, although its structural control is more ambiguous [250–256]. Based on specific
interactions; thin films are sequentially deposited on a substrate to obtain a variety of
thin film structures. If this technique is performed on colloidal templates, it is possible to
fabricate three-dimensional thin-film capsules. These techniques are widely studied as a
powerful method to convert two-dimensional nanoarchitectonics into three-dimensional
structures. However, the resulting structures are still at the thin-film level and may be
described as somewhat thicker two-dimensional nanoarchitectonics. Other than these
methods, nanoarchitectonics conversion from two dimensional to three dimensional has to
be considered.

This review aims to discuss other possibilities of methodologies that expand from
some two-dimensional nanoarchitectonics to three-dimensional structures and functions.
Three typical examples are presented (Figure 2) that fall under this research orientation,
regardless of what is advocated for nanoarchitectonics. The first is the control of bulk
materials through nanoarchitectonics of two-dimensional surfaces. This is illustrated
by the example of controlling the orientation of a bulk liquid crystal by changing the
structure of a very thin surface layer. The second is rational structural architecture from
two dimensional to three dimensional. Several examples of metal–organic frameworks
(MOFs) and covalent organic frameworks (COFs) from two-dimensional control to three-
dimensional architecture are given as examples for this purpose. The third category is
the control of cells by surfaces. Cells originally have a cascading signal-generated growth
mechanism [257–259]. Contact with a two-dimensionally nanoarchitectonized interface
can induce advanced functions of the cell. This can be introduced as amplification from
two-dimensional nanoarchitectonics to three-dimensional function.
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According to the above backgrounds, this review paper is organized as follows. This
introduction is followed by a summary of the three issues introduced in the previous
paragraphs. They are the following sections: (i) 2D to 3D dynamic structure control: liquid
crystal commanded by the surface; (ii) 2D to 3D rational construction: MOF and COF;
(iii) 2D to 3D functional amplification: cells regulated by the surface. In addition, this
review summarizes the important aspects of the ultimate three-dimensional nanoarchi-
tectonics as a perspective. The goal of this paper is to establish an integrated concept of
functional material creation by reconsidering various reported cases from the viewpoint
of nanoarchitectonics. Nanoarchitectonics can be regarded as a method for everything in
materials science.

2. 2D to 3D Dynamic Structure Control: Liquid Crystal Commanded by the Surface

Liquid crystals are materials that can flexibly change their structures while maintain-
ing a certain degree of orientation and other organizing ability [260–262]. In Ichimura’s
review article on the optical control of liquid crystals [263], the behavior of liquid crystals
incorporating photochromic molecules is discussed. Photochromic molecules are usually
embedded in various matrices in both fundamental and practical research. In such cases,
the structural transformation of the photochromic guest molecule alters the reversible
properties of the matrix, the liquid crystal. The orientation of the host molecules and
residues that act as the matrix is changed. Broadly speaking, photoaligned liquid crystal
systems fall into two types. The first type consists of liquid crystal molecules doped with
photochromic units. The light-induced structure of a few photochromic chromophores
results in the reorientation of the majority of matrix liquid crystal molecules. This leads to
the generation of large optical anisotropy. Another type of liquid crystal system reflects
the photoalignment state of photochromic molecules attached to the substrate surface into
the bulk liquid crystal layer. This type of structural change in the surface, in which minute
structural changes on the surface dictate structural changes in many of the molecular layers
above it, is called a command surface [264,265]. This technique demonstrates the effective
application of photochromic units to fabricate liquid crystal photoresponsive systems. It
also opens the way to the control of photoalignment of liquid crystals, even with irreversible
photochemistry. This concept is not only performed by photochromic molecules. It can be a
methodology to expand broadly two-dimensional nanoarchitectonics to three-dimensional
liquid crystal functionality. It can also be an effective method for fabricating new types of
optical elements and devices for photonics applications.

One of the pioneering examples of the command surface concept can be found in
the report of Seki, Ichimura, and co-workers [266]. In this study, LB films of side-chain
azobenzene amphiphilic polymers were used as photochromic command layers. The
photoisomerization of the command layer was used to control the reversible homeotropic
planar photochemical orientation of nematic liquid crystals. As a nanoarchitectonics
strategy for the command surface, it is important that the azobenzene photochromic unit is
separated from the background, the poly(vinyl alcohol) backbone, by a methylene spacer
of appropriate length. With this molecular design, a single azobenzene monolayer is
sufficient to induce a change in thick liquid crystal orientation. For LB nanoarchitectonics,
the vertical transfer method of preparation is more advantageous. The vertical transfer
method produced more homogeneously aligned LB films and the liquid crystal molecules
were oriented parallel to the immersion direction. When linearly polarized UV light was
irradiated, the liquid crystalline molecules reoriented in the direction perpendicular to the
polarization plane. In other words, the trans–cis isomerization of the highly photoreactive
azobenzene photochromic units in the polymer LB layer successfully commanded the
orientation between the homeotropic and planar modes of the nematic liquid crystal.

The orientation of liquid crystal molecules is largely governed by the degree of freedom
of the surfaces with which they come into contact and other factors. As in the above
example, the photoresponsive layer on the surface with freedom serves as the command
layer of the side-chain liquid crystal polymer film. Various studies have been conducted
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to understand the interfacial behavior of these liquid crystal molecules. For example, the
photoalignment behavior of nematic liquid crystals on azobenzene polymer films has been
the subject of research. Hara, Seki, and co-workers have investigated the optical orientation
behavior of side-chain liquid crystalline azobenzene polymer films with a thickness of
approximately 400 nm and a 35 µm-thick low-molecular-weight nematic liquid crystal,
4′-pentyl-4-cyanobiphenyl in situ at the interface (Figure 3) [267]. In addition to polarized
light optical microscopy observations, small-angle X-ray scattering measurements were
used to evaluate the structure inside the liquid crystal-injected sandwich cell. This technique
has provided new insights into the behavior of liquid crystal molecules in the vicinity of
alignment films on solid substrates. For example, they have succeeded in detecting the
selective and time-series structuring and orientation of mesogens at the interface in the
formation of smectic layers. A highly ordered smectic liquid crystalline phase is induced by
the hybridization of the mesogens of azobenzene polymers and 4′-pentyl-4-cyanobiphenyls.
A cooperative hybrid highly ordered smectic liquid crystal phase is formed by weak
electron transfer at interfacial contact. Such analysis is important to understand how slight
structural changes at the two-dimensional interface are reflected in the three-dimensional
structure. Direct X-ray observations in intact liquid crystal cell systems provide useful
information on the driving mechanism. It can be a powerful tool in industrial applications
in terms of liquid crystal device design. It should also expand the possibilities in terms of
practical applications.
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Figure 3. Evaluation of the optical orientation behavior of side-chain liquid crystalline azobenzene
polymer films with a thickness of approximately 400 nm and a 35 µm thick low-molecular-weight
nematic liquid crystal, 4′-pentyl-4-cyanobiphenyl in situ at the interface. Reprinted with permission
from [267]. Copyright 2023 American Chemical Society.
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Lundin and co-workers used electrospinning to fabricate core–sheath nanofibers
with photochromic and liquid crystalline components (Figure 4) [268]. The core–sheath
nanofibers consist of a polyvinylpyrrolidone sheath doped with a photochromic azobenzene
surfactant and a low-molecular-weight nematic liquid crystal core. By incorporating
the azobenzene surfactant into the polymer sheath, the nematic-to-isotropic transition
temperature of the liquid crystal core could be photochemically controlled. In other words,
ultraviolet (UV) irradiation reduced the phase transition temperature. At high surfactant
content, the temperature of the photo-induced phase transition was reduced to below
room temperature. It allows “turning on” and “turning off” the birefringence of the
nanofibers upon UV irradiation and does not require external heating. Photoisomerization
of azobenzene surfactants at the poly(vinylpyrrolidone)/liquid crystal interface causes
surface-induced disordering of the liquid crystal core. Therefore, UV irradiation causes
a change from planar-axis orientation to random orientation. In the case of visible light
irradiation, the opposite change is expected to occur. Thus, the photochromic nature of
this core–sheath nanofiber system is the result of the difference in the compatibility of
the cis- and trans-isomers with the liquid crystal matrix at the liquid crystal/polymer
interface. Similar to the command surface of LB films described above, the incorporation of
azobenzene into the polymer sheath of liquid-crystalline-core nanofibers allows molecular
changes to be reflected in the three-dimensional properties of the liquid crystal.
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The optical control of liquid crystal molecules as an example of how two-dimensional
nanoarchitectonics through molecular design and orientation is reflected in the properties
of three-dimensional materials. Not only LB-type monolayers, but also polymer layers
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with a core-shell structure act as a command surface. The molecular-level phenomena
of structural and orientation changes on the command surface are amplified into three-
dimensional material properties such as liquid crystal orientation and phase transitions.
The key to this process is molecular phenomena at the interface. The control of the interface
leads to the amplification of functional structures from two to three dimensions.

3. 2D to 3D Rational Construction: MOF and COF

The synthetic approaches of metal–organic frameworks (MOFs) [269–279] and covalent
organic frameworks (COFs) [280–284] are methods for rationally building structures from
molecular units and ions. These structures are often formed as two-dimensional structures
in interfacial environments, although they can also be obtained in three-dimensional
structures such as crystals. As a rational nanoarchitectonics from two dimensions to three
dimensions, material designs based on MOFs and COFs are beneficial. In this section,
several approaches to three-dimensional architecting from two-dimensional MOFs and
COFs are exemplified.

Structural evolution from two dimensions to three dimensions is a useful technique for
tuning mechanical properties. For example, developing strategies to improve the structural
robustness of COFs has been recognized as very important. Yu, Zhang and co-workers
reported a method to rationally design and synthesize crosslinked COFs in which the
two-dimensional COF layers are covalently fixed and linked by poly(ethylene glycol) (PEG)
three-dimensional or alkyl chains (Figure 5) [285]. It is a bottom-up synthetic strategy
to structuralize layered structures of two-dimensional COFs using monomers linked by
flexible PEG or alkyl chains. The two-dimensional layered structure was converted into a
quasi- three-dimensional accumulation framework via covalent crosslinking, where vertical
crosslayer bonding is dominant. All synthesized crosslinked COFs were highly crystalline
and porous. In particular, they exhibited robust structural stability that surpassed that
of typical two-dimensional COFs. While simple assemblies of two-dimensional COFs
were easily exfoliated into nanosheets by sonication, pulverization, and water treatment,
three-dimensional crosslinked COFs maintained their ordered framework even after such
treatments due to the crosslinking effect. The structural stability while inheriting high
crystallinity and porosity provides the interlayer stability that is extremely necessary for
advanced applications such as heterogeneous catalytic reactions and proton/ion transport.
A high application potential of quasi-three-dimensional COFs is expected.

Three-dimensional COFs are of interest as a structurally stable group of materials with
their inherent large number of open sites and pore confinement effects. However, it is
not easy to generate an entangled three-dimensional network formed from multiple two-
dimensional layers inclined toward each other. Ma, Li, and co-workers have successfully
synthesized a new three-dimensional COF based on a two-dimensional network with
interpenetrations (Figure 6) [286]. The structures were formed by [3+2]imine condensation
reactions using triangular knots and linear linkers. Specifically, they were formed by
[3+2]imine condensation reactions using 1,3,5-triformylbenzene and 2,3,5,6-tetramethyl-
1,4-phenylenediamine. The range of strategies for achieving three-dimensional COFs
was broadened by mutual coordination. Such examples demonstrate that structurally
complex extended frameworks can be obtained from simple molecules and can be used
for nanoarchitectonics. They enrich synthetic strategies for three-dimensional COFs and
greatly expand the range of COF materials.

Gui, Sun, and Wang and co-workers devised a method to form three-dimensional
COFs by introducing steric hindrance to molecular blocks that inhibit π–π stacking, as
a method for two-dimensional COFs to intertwine with each other (Figure 7) [287]. In
this approach, highly crystalline COFs are synthesized starting from rationally designed
precursors containing longitudinally bulky anthracene units. Structurally, the presence of
anthracene groups outside the C2h symmetry plane strongly inhibits π–π interactions. As
a result, the formation of square entanglement is promoted. Furthermore, the fluorescence
synthesized here can be used as a sensor to detect trace amounts of antibiotics in water. It
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is promising to construct three-dimensional COFs by entanglement of two-dimensional
layers from precursors with bulky groups in the vertical direction of the skeleton shown
in this example. This strategy would open the door for the design and synthesis of many
entangled COFs.
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dimensional COF layers are covalently fixed and linked by poly(ethylene glycol) (PEG) three-
dimensional or alkyl chains. Reprinted with permission from [285]. Copyright 2023 American
Chemical Society.

COFs can selectively interact with biomolecules due to their large surface area and
well-defined pores. Their properties lend themselves to highly sensitive and selective
sensing methods. Pseudo-three-dimensional COF nanosheets have shown applications in
virus detection, etc. Parvin et al. synthesized pseudo-three-dimensional COF nanosheets
by [2+2]imine condensation reaction between building blocks of p-phenylenediamine
and 2,5-furandicarbonaldehyde [288]. Then, trend-based detection of biomolecules, in-
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cluding COVID-19 virus, was demonstrated (Figure 8). During the synthesis process,
a two-dimensional sheet was initially formed, which was later converted into a stable
pseudo-three-dimensional structure by changing the bond angles. Furthermore, exfoliation
techniques were used to produce nanosheets with reduced π stacking. The exfoliation of
COFs into nanosheets provides highly porous structures. The pseudo-three-dimensional
COF nanosheet created in this research functions as an adsorbent for biomolecular probes.
In addition, it also functions as an acceptor to quench the fluorescence of Texas Red
dye-labeled probes. This enabled sensitive and selective fluorescence-based detection of
biomolecules, including COVID-19 virus, with a low detection limit of 2 picomoles. Pseudo-
three-dimensional COF nanosheets exhibited advantages over conventional graphene
oxide, including large surface area, pore structure, specific channel structure, multidimen-
sionality, and stability. Since no catalyst is used in the synthesis process, simpler and more
cost-effective production methods can be employed. It also does not require complex and
time-consuming procedures such as RT-PCR. These materials have potential applications
in the detection of various diseases, electronic devices, and membrane separations.
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Oña-Burgos and co-workers have developed a stable structure consisting of two pairs
of two-dimensional nanosheets [289]. In other words, they synthesized a new cobalt MOF
based on a well-defined layered double core strongly bound by intermolecular bonds
(Figure 9). Its three-dimensional structure is maintained by π–π stacking interactions be-
tween the unstable pyridine ligands of the nanosheets. In an aqueous solution, the axial
pyridine ligands are exchanged with water molecules. This results in the exfoliation of
the material. In such cases, the individual double nanosheets maintain their structures.
Furthermore, the original three-dimensional layered structure is restored by a solvother-
mal process using pyridine. During the exfoliation-columnarization process, the material
exhibits a memory effect. This two-dimensional MOF also exhibits electrocatalytic activity.
Electrochemical activation of the two-dimensional cobalt MOF∼=nafion-modified electrode
improves both ion and electron transfer across the membrane. The formation of electro-
catalytically active cobalt centers is then promoted. The activated composite exhibited
enhanced electrocatalytic activity for the oxidation of water in neutral media. Spectroscopic
and electrochemical characterizations were performed. The nanosheets have a special
topology in which the cobalt centers are quite far apart. A mononuclear center-dependent
reaction pathway mechanism has been proposed for the cobalt-mediated electrocatalytic
oxygen evolution reaction. This electrocatalyst has a better TOF value and robustness than
reported for similar electrocatalysts.
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The construction of two-dimensional nanosheets into three-dimensional ordered struc-
tures facilitates mass transfer. The full potential of two-dimensional building blocks can
be exploited in applications such as catalytic reactions. Zou et al. reported the synthesis
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of organometallic frameworks with orthogonal nanosheet arrays (Figure 10) [290]. Cu-
bic MOFs are used as the core, and single-crystalline MOF nanosheets with naturally
occurring non-preferred faceted exposures are epitaxially grown on top of them as shells.
The nanoarchitectonized nanosheets have two typical shapes and crystallographic orien-
tations. Nevertheless, they form an orthogonally aligned single-crystal framework. It
is possible to obtain MOFs with a single composition and hollow orthogonally aligned
nanosheet morphology. It has the characteristics of peculiar facet exposure and macro-
porous structure. Therefore, the electrocatalytic oxygen evolution activity is improved
compared to conventional nanosheets. This structure exposes unsaturated active sites,
stabilizes hydrogen-containing intermediate species, and promotes the oxygen evolution
reaction process. The orthogonal arrangement of the nanosheets reduces the possibility
of nanosheet re-stacking. Abundant surface active sites are provided, enhancing catalytic
activity. Vertical and through pore channels are formed, facilitating diffusion of electrolyte
and oxygen molecules. The hollow structure facilitates effective utilization of active sites
and mass transfer, improving electrocatalytic properties. Thus, it is expected that rational
function-oriented three-dimensional nanoarchitectonics strategies will lead to the design of
highly functional heterostructures based on MOF nanosheets.
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The controllable fabrication of angstrom-sized channels has long been desired in fun-
damental studies of ion transport. This is also necessary to mimic biological ion channels.
Jiang, Zhang, and co-workers reported a strategy to grow MOFs into nanochannels with
angstrom-scale ion channels with one- to three-dimensional pore structures (Figure 11) [291].
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One-dimensional structures with flexible pore sizes can facilitate cation transport in conduc-
tivity and mobility one to two orders of magnitude higher than MOF channels with hybrid
pore shapes and sizes. Theoretical simulations and calculations show that the energy barrier
for ion transport through pure one-dimensional channels is lower than through complex
channel connections. The three-dimensional MOF channel also exhibited better ion sieving
properties than the one-dimensional and two-dimensional MOF channels. Further studies
assuming angstrom porous MOFs with various channel configurations as the building
blocks will open the way to fabricate artificial ion channels of 1 nm or smaller. Applications
to high-efficiency ion separation and energy conversion technologies are expected. It will
also provide guidance for the development of ion separation and nanofluidics.
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Two-dimensional conductive MOFs have attracted much attention for their usefulness
in applications ranging from electrochemical energy storage to electronic devices. However,
the stacked two-dimensional structure limits access to the internal pores. The full potential
has not yet been realized. Park and co-workers reported a method for converting two-
dimensionally conjugated MOFs into a three-dimensional framework by post-synthetic
pillar ligand insertion (Figure 12) [292]. Such structural transformation improves ion
accessibility to the internal pores. As a result, there can be up to a 2-fold increase in
capacitance per weight. It is expected that such nanoarchitectonics methods can be used
to functionalize a variety of two-dimensional conductive MOFs. Increased accessibility
through the introduction of pillars increases the potential for sensing, electronics, and
energy-related applications. The pillar portion can also be given a role other than that of
a spacer. For example, providing a coordination site for the pillar ligand could lead to
advanced applications including electrocatalysis and sensing. The restitution of conductive
MOFs from two dimensional to three dimensional and the introduction of additional
functionality is expected to facilitate the volatilization of possible materials in this new field.
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Wee et al. reported the preparation of a new hierarchical MOF with Cu(II) centers
linked by benzene tricarboxylates (BTC) (Figure 13) [293]. It is prepared by thermally
induced solid-state transformation of a dense CuBTC precursor phase. It is found that
ribbon-like one-dimensional constituent units transform into two-dimensional layers and
finally into a three-dimensional network. The formed phases contain excess copper. The
charge is compensated by hydroxyl groups, forming an open microporous framework
with microporosity. This structure is useful for molecular separation. For example, it was
superior to other hierarchical materials in the separation of 11-component mixtures of
C1–C6 alkanes. Microscopic insights into structural host–guest interactions were obtained,
confirming a significant entropic contribution to molecular separation.

Li and co-workers reported the synthesis of a two-dimension-on-three-dimension (2D-
on-3D) hetero-MOF structure (Figure 14) [294]. They introduced a kinetic control method
using polyvinylpyrrolidone to realize an anti-epitaxial growth pattern of foreign MOF
nuclei on the (111) plane of the UiO-66-NH2 octahedron. This nanoarchitectonics method-
ology has led to the successful fabrication of 2D-on-3D MOFs with various heterostructures
(Cu, Zn, Cd, Co, Ni). 2D-on-3D MOFs exhibit unique dimensional hybridization effects
in the photocatalytic hydrogen evolution process in a photocatalytic hydrogen evolution
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process. The photoactivity was significantly enhanced compared to the usual dimensionally
identical two-dimensional, three-dimensional, and 3D-on-3D MOF structures. This can be
attributed to faster electron transfer rates and more efficient electron–hole separation.
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Conversely, there are examples where dimensional reduction nanoarchitectonics of
MOF structures from three dimensions to two dimensions is functionally superior. For
example, a dimensional reduction approach has been proposed to improve the cryopreser-
vation efficiency of red blood cells by MOFs. Such an approach takes the methodology of a
stepwise reduction in three-dimensional MOF nanoparticles into two-dimensional ultrathin
metal–organic layers (MOLs). Guo, Zhu, and co-workers synthesized a series of hafnium
(Hf)-based two-dimensional metal–organic layers with different thicknesses (from single
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layer to stacked multilayers) and densities of hydrogen-bonding sites (Figure 15) [295].
Two-dimensional MOLs enhance the interaction of interfacial hydrogen-bonded water
networks due to their high surface-to-volume ratio. This increases the utilization of in-
ternally ordered structures. The ability of the hydrogen donor group to recognize and
match ice crystal planes can effectively inhibit ice growth and recrystallization for red blood
cell cryopreservation. Thin-layered Hf-MOL was found to have significantly better ice
recrystallization inhibitory activity and superior cell retrieval efficiency compared to three-
dimensional MOL. Flexible two-dimensional MOLs have a higher density of hydrogen
donor groups compared to three-dimensional MOF nanoparticles, which have a rigid struc-
ture and limited exposure of lattice planes. They also have smaller steric hindrance. These
structural advantages may account for the marked efficiency of MOFs in ice suppression
and erythrocyte recovery.
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different thicknesses (from single layer to stacked multilayers) and densities of hydrogen-bonding
sites with inhibition capability of ice growth. Reprinted with permission from [295]. Copyright 2023
Wiley VCH.

MOF and COF nanoarchitectonics approaches are excellent methods for rationally
designing and building material structures from unit molecules and ions. Compared to
conventional material synthesis methods, MOF and COF have a short history of develop-
ment and leave plenty of room for various developments. The excellent dimensionality
controlled nanoarchitectonics method is expected to contribute to the development of
various functional systems.

4. 2D to 3D Functional Amplification: Cells Regulated by the Surface

Within living cells, various functional units function through cascade-like coordination.
Thus, external stimuli and molecular inputs often lead to sophisticated functions. This can
be a useful system for linking two-dimensional nanoarchitectonics to three-dimensional
function. Thus, creating artificial structures in two dimensions and altering the function
of the cells that come into contact with them can be very sophisticated transfer from
two-dimensional to three-dimensional nanoarchitectonics function. This section presents
examples of cellular control by two-dimensional liquid interfaces and nanoarchitectonized
two-dimensional structures.

Cells are cultured on solid interfaces such as conventional culture media. In the
culture process, cells are affected by the solid surface of the equipment, such as mechanical
properties. On the other hand, cell control at the liquid interface, which is unaffected by
materials such as containers, is a pioneer area. In fact, liquid interfaces are found in many
places as adaptive systems in biological systems, from the tear film of the eye to the liquid
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lining of the lungs and stomach. At such interfaces, liquid interfaces are ubiquitous in
natural adaptive systems. The fluidity and reconfigurability of liquids allow for unique
response mechanisms. By anchoring living cells at the liquid interface, a system can be
constructed that dynamically adapts to the forces generated by the cells. Such cell research
at the soft liquid interface is attracting increasing attention. Jia et al. have successfully
developed a technique that uses the interface between two immiscible liquids, aqueous cell
culture solutions and perfluorocarbons, as a site for culturing and inducing differentiation
of human mesenchymal stem cells (hMSCs) (Figure 16) [296]. At this interface, coexisting
fibronectin proteins form organized nanosheets that exhibit transient mechanical effects
with the cells. Early in culture, the traction force of the cells dynamically transformed
the two-dimensional protein nanosheet into a hierarchical fiber structure. Elongated
fibronectin aggregates modulate the size and elongation of the focal adhesions of the
interacting network. Ultimately, these mechano-transduction signals determine the fate of
stem cell differentiation. In this system, cultured hMSCs spontaneously differentiated into
neurons without the addition of differentiation-inducing factors. The hMSCs adhered to the
liquid interface and took an elongated adherent shape. Stress fibers of F-actin originating
there were formed. The accumulation of downstream signaling protein phosphatase
(FAK) activators in adhesion plaques and nuclear migration of Yes-associated protein
(YAP) were also observed. hMSCs do not perceive protein nanosheets as soft, suggesting
that some novel mechano-sensing mechanism is involved. Depending on the design of
the two-dimensional nanoarchitectonics, it may be possible to induce differentiation into
various types of cells, not only neural cells. This methodology is expected to lead to the
development of new technologies for regenerative medicine.
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Figure 16. A technique that uses the interface between two immiscible liquids, aqueous cell cul-
ture solutions and perfluorocarbons, as a site for culturing and inducing differentiation of human
mesenchymal stem cells (hMSCs). Reprinted with permission from [296]. Copyright 2019 Wiley VCH.

Protein nanofibrils are polymeric β-sheet aggregates of proteins of several microns
in length. This structure is also a promising material to mimic extracellular matrix (ECM)
matrix fibers due to its biocompatibility for cell adhesion and high mechanical strength.
Jia et al. created an adaptive biomaterial based on a two-dimensional network of protein
nanofibrils at the liquid–liquid interface and cultured hMSCs [297]. Culture on a two-
dimensional network of protein nanofibrils at the liquid–liquid interface promoted neural
differentiation of hMSCs. Throughout the study, lipid raft microdomains were found to
play a central regulatory role in both the initial cell adhesion and subsequent neural dif-
ferentiation of hMSCs (Figure 17). They are receptive to biophysical stimuli involving the
lipid raft/focal adhesion kinase (FAK) pathway. It seems to direct the neural differentiation
of hMSCs. Lipid rafts internalize cell adhesion molecules. In addition, lipid rafts act as an
enrichment platform. This induces the integration of large signaling complexes. Through
these processes, cells can rapidly adapt to the constantly changing microenvironment. FAK
is one of the key mechano-sensors at the adaptive liquid interface. Spatiotemporal regula-
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tion of FAK phosphorylation is a prerequisite for neural differentiation of hMSCs. Lipid
raft formation and FAK phosphorylation at the adaptive liquid interface regulate hMSC
differentiation. These findings also provide a better understanding of the fundamentals
of cell-ECM dynamic interactions. Two-dimensional nanoarchitectonics can also incor-
porate bioactive proteins and responsive polymers. Two-dimensional nanoarchitectonics
of liquid interfaces may provide opportunities to design adaptive biomaterials that were
previously unimaginable.
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Figure 17. Culture on a two-dimensional network of protein nanofibrils at the liquid–liquid interface
for neural differentiation of hMSCs where lipid raft microdomains were found to play a central
regulatory role in both the initial cell adhesion and subsequent neural differentiation of hMSCs.
Reproduced under terms of the CC-BY license [297]. Copyright 2022 Springer-Nature.

Gautrot and co-workers examine the interfacial dynamics of bovine serum albu-
min (BSA) and β-lactoglobulin (BLG) aggregates at the fluorinated liquid-water interface
(Figure 18) [298]. The design of protein nanosheets based on these two globular proteins
biofunctionalized with RGDSP peptides that enable cell adhesion is mentioned. High cell
proliferation can be achieved even on bioemulsions with protein nanosheet formation with-
out surfactants. As a strategy for the rational design of scaffold proteins at liquid interfaces,
the fabrication of interfaces with strong shear dynamics and elasticity, bioactivity, and cell
adhesion was investigated. For example, in the case of BLG nanosheets, relatively high
elasticity was observed even in the absence of the co-surfactant. Based on this as well, the
research demonstrated adhesion and proliferation of mesenchymal stem cells and human
embryonic kidney (HEK) cells on bioemulsions stabilized with RGD-functionalized protein
nanosheets. Such protein nanosheets and bioemulsions are useful for the development of
bioreactors for scale-up of cell production. Such studies could also lead to the control of
biological activity with scaffold proteins commonly used in food processing and stem cell
technology, without the use of surfactant molecules.
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Figure 18. Interfacial dynamics of bovine serum albumin (BSA) and β-lactoglobulin (BLG) aggregates
at the fluorinated liquid-water interface where high cell proliferation can be achieved even on
bioemulsions with protein nanosheet formation without surfactants. Reproduced under terms of the
CC-BY license [298]. Copyright 2023 American Chemical Society.

The use of liquid interfaces for cell culture has the potential to avoid the inconve-
niences of using solid substrates. In particular, it is advantageous in terms of scale-up and
cell detachment. This methodology could be applied to other biotechnological platforms,
such as microdroplet systems. For this purpose, analytical studies are needed. Gautrot
and co-workers reconfirmed that cell spreading and growth on low-viscous liquid surfaces
are enabled by the self-assembly of mechanically strong protein nanosheets at the inter-
face [299]. Interfacial rheology and atomic force microscopy measurements revealed the
mechanical properties of protein nanosheets and their associated liquid interfaces. The
aggregation behavior of surfactant molecules with proteins and polymers associated at the
liquid interface is directly related to the interfacial mechanics. Cells do not rely on surface
tension to sustain diffusion, as in the case of amoebae, but primarily sense the in-plane
mechanical properties of the interface (Figure 19). Based on these findings, it is essential to
design bulk and nanoscale mechanical properties independently. Both scales can provide
suitable structures and control cellular phenotypes. In other words, the design of bioma-
terials and implants requires nanoscale material design, where cell adhesion phenomena
can be designed at the interface, independently of other bulk properties needed to provide
flexibility and structure.

Gautrot and co-workers showed that mesenchymal and adherent stem cells can be cul-
tured on liquid surfaces [300]. They also exemplified that this is mediated by the association
of polymer nanosheets at the liquid–liquid interface. Despite the lack of bulk mechanical
properties of the underlying liquid substrate, cell adhesion to the quasi-two-dimensional
material is mediated by an integrin/actomyosin mechanism. Stem cell proliferation and
differentiation are also controlled by the mechanical properties of the self-assembled protein
nanosheets. Keratinocytes spread on rigid poly(l-lysine) nanosheets formed a structured
actin cytoskeleton with distinct stress fibers. Focal adhesions were also formed. In contrast,
cells adhering to the soft poly(l-lysine)-oil interface did not observe such structures. The
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use of solid substrates often requires potentially harmful enzymatic degradation for cell
recovery. The use of liquid substrates avoids such problems.

Materials 2024, 17, x FOR PEER REVIEW 20 of 35 
 

 

 
Figure 19. Cell spreading and growth on low-viscous liquid surfaces enabled by the self-assembly 
of mechanically strong protein nanosheets at the interface. Reproduced under terms of the CC-BY 
license [299]. Copyright 2018 American Chemical Society. 

Gautrot and co-workers showed that mesenchymal and adherent stem cells can be 
cultured on liquid surfaces [300]. They also exemplified that this is mediated by the asso-
ciation of polymer nanosheets at the liquid–liquid interface. Despite the lack of bulk me-
chanical properties of the underlying liquid substrate, cell adhesion to the quasi-two-di-
mensional material is mediated by an integrin/actomyosin mechanism. Stem cell prolifer-
ation and differentiation are also controlled by the mechanical properties of the self-as-
sembled protein nanosheets. Keratinocytes spread on rigid poly(l-lysine) nanosheets 
formed a structured actin cytoskeleton with distinct stress fibers. Focal adhesions were 
also formed. In contrast, cells adhering to the soft poly(l-lysine)-oil interface did not ob-
serve such structures. The use of solid substrates often requires potentially harmful enzy-
matic degradation for cell recovery. The use of liquid substrates avoids such problems. 

Cells are controlled not only by two-dimensional nanoarchitectonics, such as protein 
nanosheets that spontaneously form at the liquid interface, but also by the two-dimen-
sional structure of artificially placed nanomaterials. For example, the assembly of fuller-
enes, which are nanomaterials of carbon materials, is often used in two-dimensional nano-
architectonics. Although fullerenes are zero-dimensional spherical structures, they exhibit 
a variety of self-assembled structures from one dimension to three dimensions, such as 
sheets, rods, pores, and whiskers [301–309]. For example, fullerene nanowhiskers can be 
prepared on a large scale using the liquid–liquid interface deposition method. Minami 
and co-workers have successfully induced muscle differentiation by arranging fullerene 
nanowhiskers while simultaneously controlling the direction of cell growth (Figure 20) 
[310]. The two-dimensional in-plane aligned structure of fullerene nanowhiskers can be 
applied as a cell scaffold, and the orientation of muscle fibers formed during muscle dif-
ferentiation can be controlled by the orientation of fullerene nanowhiskers. Using the 
Langmuir–Blodgett (LB) method, highly aligned one-dimensional fullerene nanowhisker 
scaffolds were fabricated in the centimeter region. This scaffold can simultaneously con-
trol cell orientation and differentiation into muscle cells C2C12 myoblasts. Subsequently, 
myogenic differentiation and cell growth direction were analyzed by immunostaining for 
myosin heavy chain. A protein required for nucleus and myotube formation C2C12 my-
oblasts were found to fuse and form multinucleated myotubes. The fusion index increased 
from 12.3% on glass to 23.2% on aligned fullerene nanowhisker scaffolds. One-dimen-
sional fullerene nanowhiskers stimulate myoblast fusion. The direction of myotube for-
mation strongly coincided with the direction of aligned fullerene nanowhiskers. When the 
same experiment was performed on bare glass, myoblasts fused randomly. 

Figure 19. Cell spreading and growth on low-viscous liquid surfaces enabled by the self-assembly
of mechanically strong protein nanosheets at the interface. Reproduced under terms of the CC-BY
license [299]. Copyright 2018 American Chemical Society.

Cells are controlled not only by two-dimensional nanoarchitectonics, such as protein
nanosheets that spontaneously form at the liquid interface, but also by the two-dimensional
structure of artificially placed nanomaterials. For example, the assembly of fullerenes,
which are nanomaterials of carbon materials, is often used in two-dimensional nanoar-
chitectonics. Although fullerenes are zero-dimensional spherical structures, they exhibit
a variety of self-assembled structures from one dimension to three dimensions, such as
sheets, rods, pores, and whiskers [301–309]. For example, fullerene nanowhiskers can be
prepared on a large scale using the liquid–liquid interface deposition method. Minami
and co-workers have successfully induced muscle differentiation by arranging fullerene
nanowhiskers while simultaneously controlling the direction of cell growth (Figure 20) [310].
The two-dimensional in-plane aligned structure of fullerene nanowhiskers can be applied
as a cell scaffold, and the orientation of muscle fibers formed during muscle differentiation
can be controlled by the orientation of fullerene nanowhiskers. Using the Langmuir–
Blodgett (LB) method, highly aligned one-dimensional fullerene nanowhisker scaffolds
were fabricated in the centimeter region. This scaffold can simultaneously control cell
orientation and differentiation into muscle cells C2C12 myoblasts. Subsequently, myogenic
differentiation and cell growth direction were analyzed by immunostaining for myosin
heavy chain. A protein required for nucleus and myotube formation C2C12 myoblasts were
found to fuse and form multinucleated myotubes. The fusion index increased from 12.3%
on glass to 23.2% on aligned fullerene nanowhisker scaffolds. One-dimensional fullerene
nanowhiskers stimulate myoblast fusion. The direction of myotube formation strongly
coincided with the direction of aligned fullerene nanowhiskers. When the same experiment
was performed on bare glass, myoblasts fused randomly.

hMSCs are useful for cell-based tissue regeneration therapy because of their easy
availability and potent immunosuppressive properties. However, the therapeutic efficacy
based on hMSCs is limited by the small amount of human-derived cells isolated for clinical
use. During in vitro growth, hMSCs undergo uncontrolled differentiation. In the process
of in vitro proliferation, hMSCs undergo uncontrolled differentiation, thereby rapidly
losing pluripotency and regenerative capacity. Therefore, new strategies to grow hMSCs
in vitro while preserving their stem cell properties are strongly needed. This technique
can produce large-area nanostructured surfaces with continuously adjustable alignment
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of the constituents. Nanopatterned surfaces fabricated with high-aspect-ratio fullerene
nanowhiskers could promote long-term pluripotency retention and differentiation potential
of hMSCs via appropriate cell contractility and nuclear localization of Yes-associated protein
(YAP) as demonstrated by Song et al. (Figure 21) [311]. Mechanical signals are transmitted
to the nucleus by YAP. As a transcriptional coactivator, YAP translocation to the nucleus
positively regulates the activity of core regulators (OCT4, SOX2, NANOG). As a result,
retention of pluripotency of hMSCs is promoted. High aspect ratio fullerene nanowhiskers
as cell culture scaffolds create an intermediate situation where focal adhesion is effectively
reduced but not eliminated. As a result, long-term proliferation of hMSCs that retain
pluripotency is mediated by appropriate cell contractility and nuclear localization of YAP.
The pseudo-LB method used here is a simple technique that can be manipulated manually.
It can be easily used to fabricate centimeter-sized nanotopographic substrates for the mass
proliferation of hMSCs in clinical practice. This study demonstrates the importance of two-
dimensional nanoarchitectonics for improving hMSCs technology in regenerative therapies.
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Cells have well-developed cascade-like information transmission systems, which are
excellent systems for generating large functions from simple stimuli. Exposing cells to
structure-controlled two-dimensional surfaces allows for the expression of sophisticated
functions such as cell differentiation and proliferation. Various scaffolds such as protein
nanosheets and very rigid fullerene nanowhisker arrays, which form in very soft fields such
as liquid surfaces, produce diverse cellular changes. This is not only of basic scientific inter-
est as two-dimensional nanoarchitectonics makes a breakthrough into three-dimensional
function. This is an area that should also make a significant contribution to practical areas
such as regenerative medicine.
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license [311]. Copyright 2020 American Chemical Society.

5. Summary and Perspectives

Nanoarchitectonics is a post-nanotechnology concept that provides functional ma-
terial systems from nano-units (atoms, molecules, and nanomaterials). Interfacial media
contribute sufficiently to building functional materials. This is where two-dimensional
(2D) materials as building units of three-dimensional (3D) functional nanoarchitectures
are powerful. On top of that, materials nanoarchitectonics from two dimensions to three
dimensions is necessary for the development of a wider range of functional materials. In
this review, the control of liquid crystals from two dimensions, three-dimensional architec-
ture of MOF/COF structures, and the control of cell arrangement and differentiation by
two-dimensional contact are taken as examples.

Molecular films made of LB-type monolayers can control the orientation of liquid crys-
tals as a command surface. The molecular-level phenomena of structural and orientation
changes on the command surface are amplified into three-dimensional material properties
such as liquid crystal orientation and phase transitions. This indicates that the combination
of a soft oriented structure and a precise surface is useful. MOF and COF are methods that
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enable rational design and construction of material structures from unit molecules and
ions. The structure produced is determined by the arrangement of interacting functional
groups in the molecular unit and the coordination structure of the ions. This means that
the two-dimensional and three-dimensional structures of MOFs and COFs are determined
by the structural design of the molecular unit-ion unit in the zero dimension. Therefore,
the conversion from two dimensional to three dimensional can be achieved by devising the
combination of the two-dimensional and three-dimensional structures. For structures with
fixed interaction points, the structural design of the units is shown to be useful. Organisms
are complex complexes of functions. However, cells have well-developed cascade-like in-
formation transmission systems. By exposing cells to structure-controlled two-dimensional
surfaces, sophisticated functions such as cell differentiation and proliferation are expressed.
This is a rational system for generating large three-dimensional functions from simple
stimuli from two dimensions. Utilizing the cascade stimulus transduction system of living
organisms is also useful for generating three-dimensional functions from two-dimensional
nanoarchitectonics. In addition to approaches and examples described in this review article,
simulations/theoretical perspective of 2D materials nanoarchitectonics for 3D functionali-
ties are crucial matters. For example, both DFT calculation [312] and ab initio molecular
dynamics [313] are rapidly transforming the field. With the aids of experimental and theo-
retical considerations, representative differences between 2D and 3D materials will be more
clearly elucidated. Such additional efforts would lead to more sophisticated transformation
from 2D to 3D from viewviewpoints of applications.

The several examples presented here have extracted several keys to increasing two-
dimensional nanoarchitectonics to three-dimensional functionality. These include the use
of soft orientation systems, the use of structural architecture reflecting molecular unit
structures, and the use of cascade-like function transfer systems in living organisms. These
are typical examples, but there may be other ways to link two-dimensional nanoarchitec-
tonics to three-dimensional functionality. The ultimate goal of nanoarchitectonics is to
create bio-like functional materials whose functions are hierarchical and exhibit complex
interactions. Therefore, we must consider systems that incorporate multiple and diverse
multifunctional mechanisms in three-dimension as described above. There are an infinite
number of choices of substances, actions, and functions, and their combinations are also
diverse. Therefore, there may be a limit to the trial-and-error or few-theory-based approach.
Fortunately, humankind has developed artificial intelligence technology. In the field of
materials science, machine learning approaches [314–316] and the concept of materials
informatics [317–319] are being used. The combination of nanoarchitectonics and materials
informatics has also been proposed [320,321]. The fabrication of functional structures from
a large number of options may be completed with the help of artificial intelligence under
the concept of nanoarchitectonics. Finally, these developments are expected to become
nanoarchitectonics as a method for everything in materials science.
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