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Abstract: Plastic waste disposal is a major environmental problem worldwide. One recycling method
for polymeric materials is their conversion into carbon materials. Therefore, a process of obtaining
activated carbons through the carbonization of waste CDs (as the selected carbon precursor) in an
oxygen-free atmosphere, and then the physical activation of the obtained material with CO2, was
developed. Dyes such as methylene blue (MB) and malachite green (MG) are commonly applied in
industry, which contaminate the water environment to a large extent and have a harmful effect on
living organisms; therefore, adsorption studies were carried out for these cationic dyes. The effects of
the activation time on the physicochemical properties of the activated materials and the adsorption
capacity of the dyes were investigated. The obtained microporous adsorbents were characterized by
studying the porous structure based on low-temperature nitrogen adsorption/desorption, scanning
electron microscopy (SEM-EDS), elemental analysis (CHNS), Raman spectroscopy, X-ray powder
diffraction (XRD), infrared spectroscopy (ATR FT-IR), thermal analysis (TG, DTG, DTA), Boehm’s
titration method, and pHpzc (the point of zero charge) determination. Moreover, adsorption studies
(equilibrium and kinetics) were carried out. The maximum adsorption capacities (qm exp) of MB and
MG (349 mg g−1 and 274 mg g−1, respectively) were identified for the obtained material after 8 h of
activation. The results show that the use of waste CDs as a carbon precursor facilitates the production
of low-cost and effective adsorbents.

Keywords: activated carbons; polymer waste; physical activation; dye adsorption; physicochemical
properties

1. Introduction

The production, consumption, and generation rate of solid plastic waste constitute a
serious problem for the environment [1,2]. To counteract this, waste recycling can be used.
One such recycling method is the use of polymeric waste materials as precursors for the
production of activated carbons [1]. The production of carbon materials from this type of
waste has been the subject of numerous studies, in which the following materials were
used: poly(ethylene terephthalate) (PET) [3–11], polystyrene (PS) [12,13], polyethylene
(PE), poly(vinyl chloride) (PVC), polyacrylonitrile (PAN), polypropylene (PP), poly(methyl
methacrylate) (PMMA) [14], polycarbonate (PC) [15,16], etc.

These types of plastics are applied in our daily lives for the production of disposable
tableware, fabrics, bags, coatings and wiring, structural elements, equipment, and several
other materials, to name just a few [1,13]. Notably, not every polymer is known to be a good
carbon precursor. However, most polymers can be applied for the production of activated
carbons, and are thus effective materials [13]. An important parameter is the choice of
an appropriate carbon precursor, which should be characterized with consideration of
availability, cost, and, above all, a high carbon content and a low ash content. Taking into
account the economic and environmental benefits, the use of waste as carbon precursors
can be an attractive alternative [17].
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To obtain active carbons characterized by very good properties (large specific surface
area and established porosity), it is necessary to address the following points: which
polymer should be chosen; what carbonization and activation conditions should be selected;
what activating agent should be used; and whether additional modification is needed, and
if so, with which activating agent and under what conditions [13].

During the process of activation, there are two main distinguishable procedures:
physical and chemical activations. The most common method from the point of view of
commerce is physical activation, because chemical reagents are not used, and thus, the
costs and amounts of impurities are reduced [18–20]. The material carbonized previously
in the partially oxidizing atmosphere (H2O, CO2, or their mixture) is gasified over a range
of temperatures from 700 to 1000 ◦C [21,22]. Volatile substances, such as aliphatic carbons
and heteroatoms, are released during the carbon precursor carbonization. Moreover,
the residual carbon atoms assume the structures of aromatic sheets, which are flat and
randomly cross-linked. Then, as a result of gasification during the physical activation,
the irregularly arranged carbon sheets lead to the formation of free spaces, corresponding
to the initial porosity, which can be further developed. It is possible to create new pores
by removing material that possibly blocks the entrance to existing pores. Finally, there
is a clear development of the accessible porosity and an increase in the surface area [18].
However, chemical activation takes place in the following two ways: the first includes
carbon precursor impregnation using a chemical activator, which is followed by high-
temperature heating (activation/carbonization) [23]; the second method comprises two
stages, i.e., carbon precursor carbonization (300 to 600 ◦C) and then impregnation with a
chemical agent and activation (700 to 1200 ◦C) [24]. Carbon material produced by chemical
activation is more efficient than that produced by physical activation. However, it is more
expensive and harmful for the environment [18,25].

A serious global problem is the degradation and pollution of the natural environ-
ment [26]. There is no doubt that municipal and industrial wastewater pollutes surface
waters; colored organic compounds are undoubtedly the main group of such pollutants [27].
Today, many industries, e.g., textile, paper, dyestuffs, and plastics, use dyes to color their
products. As a result, manufacturing industries generate a huge amount of colored wastew-
ater, which adversely affects the aquatic environment, hindering the penetration of light,
and thus preventing aquatic flora photosynthesis [28,29].

One of the most common dyes is methylene blue (MB, cationic dye), which is very
frequently applied in industry, in the dyeing of cotton, wood, or silk [29]. Moreover,
this dye is used in the cosmetic, food, and pharmaceutical industries [30]. MB was also
proven to have a therapeutic effect: the neutralization of heparin and treatment of malaria
(36–72 mg/kg for 3 days). Another application is the treatment of vasoplegia after trans-
plant operations. However, MB, as a component of sewage, enters water ecosystems,
posing a danger to living organisms. In humans, MB can lead to shock, increased heart rate,
vomiting, tissue necrosis, cyanosis, jaundice, and other side effects. In plants, the presence
of MB inhibits their growth, reduces pigments, etc. [30]. Malachite green (MG, cationic
dye), due to its versatile use in aquaculture as antiparasiticin, in the leather industry, and
as a coloring agent in the paper, silk, and wool industries, is also very popular [31]. MG
is toxic, carcinogenic, and mutagenic. Moreover, it has adverse effects on the sensory
organs and the respiratory system, and can also lead to reduced fertility. In summary, dyes
that end up in aquatic environments can cause many health problems; thus, they must be
removed [31–33].

Therefore, to protect the environment, it is necessary to explore appropriate adsorbents
(cheap, but above all, effective). Among the various purification technologies, activated
carbon adsorption is one of the most effective and reliable methods of physicochemical
purification [28]. The adsorption effectiveness of activated carbons (ACs) is due to their
large surface area as well as the significant number of oxygen functional groups [17].

Large amounts of diverse forms of waste are produced worldwide. They are charac-
terized by different physical properties, affected by their nature, the method of storage,
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and the technological processes that they undergo. The adsorbents obtained from waste
CDs contribute to the “second life”. The waste materials include of polycarbonates (more
than 95% of the total weight of the disc). A disc surface is covered with a thin layer of
silver or aluminum. Many billions of CDs are still used or became waste. Therefore, they
should be got rid of by their processing not doing harm to the environment. CDs were
rarely examined as carbon precursors. However, there are few literature reports on this
topic [14–16]. This motivated us to obtain new effective adsorbents with developed porosity
based on this type of precursors. However, the literature reports much more about PETs as
precursors [3–11].

The authors believe that the presented research result fit the global trend aimed at
obtaining and characterizing carbon materials from various wastes. As follows from world-
wide research, the use of polymer waste for the production of activated carbons lends a fresh
perspective to the protection of the natural environment and fuel management. However, a
very advantageous solution deserves emphasis which justified the research subject.

The objective of the investigations was to prepare activated carbons from polycarbonates-
polymer waste (waste CDs) as a result of carbonization and then physical activation (with
CO2) as well as to characterize the physicochemical properties taking into account the
adsorption properties of the dyes, i.e., methylene blue and malachite green. The research is
innovative, especially when it comes to MG adsorption because, to our knowledge, there
are no literature reports on the adsorption of this dye on activated carbons obtained from
polymeric materials. The presented investigations were based on carbon adsorbents ob-
tained by physical activation due to being cheaper and eco-friendly (compared to chemical
activation), resulting in preparation of effective carbon adsorbents.

2. Materials and Methods
2.1. Materials and Reagents

Waste CDs were used as a carbon precursor. The organic dyes methylene blue hydrate,
purity 96% (C16H18ClN3S *H2O, Mmol = 319.85 g mol−1), and malachite green carbinol
hydrochloride, purity 85% (C23H26N2O *HCl, Mmol = 382.93 g mol−1), used as model
adsorbates, were purchased from Sigma-Aldrich (Schnelldorf, Germany).

2.2. Preparation of Adsorbents

At first, the polymer waste in the form of CDs was cut into small pieces. Then, the
prepared material was poured with 10 wt% hydrochloric acid solution (Chempur, Piekary
Śląskie, Poland) and left for 12 h. After washing with distilled water, it was dried overnight.
Thus, the CDs top layer was removed. Using the instructions in [14], slightly modified,
materials were obtained. Placed in a quartz boat, they were carbonized in a nitrogen
atmosphere (gas purity 5.0, 20 dm3 h−1) at 500 ◦C. The heating rate was 1 ◦C min−1. The
process of annealing at this temperature lasted 1 h. Physical activation using CO2 was
applied to develop the porous structure. At first, carbon was heated at room temperature
to 940 ◦C in a nitrogen atmosphere (gas purity 5.0, 20 dm3 h−1), then the gas (N2) was
changed to CO2 to carry out the activation process. Activation took place at 940 ◦C at
CO2 atmosphere (99.998%) for 4 h, 6 h, and 8 h (the CO2 flow rate: 5 dm3 h−1). Next,
CO2 was changed again to N2 (20 dm3 h−1) to cool the system to room temperature.
The flow of N2 and CO2 during carbonization and activation was verified by means of a
rotameter. The prepared carbons were: C-CD (4 h), C-CD (6 h), and C-CD (8 h). From 1 g of
carbon precursor, 0.35 g, 0.31 g and 0.27 g of each of the mentioned carbons were obtained,
respectively. After pyrolysis, the carbons were crushed and sieved. A fraction of 0.4 to
0.8 mm was selected for this study.

The scheme of microporous activated carbons preparation is presented in Figure 1.
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2.3. Carbon Materials Characterization

Low-temperature nitrogen adsorption/desorption isotherms (−196 K) were used for
determination of carbon materials porous structure by means of the volumetric adsorption
analyzer ASAP 2020 (Micromeritics, Norcross, GA, USA) (Structural Research Laboratory
of Jan Kochanowski University in Kielce). Before making the adsorptive measurements, all
carbon samples were degassed at 200 ◦C for 2 h. The porous structure standard parameters,
pore volume, specific surface area and pore size distribution, were determined using
the nitrogen adsorption isotherms. The specific surface area (SBET) was determined in
the relative pressure range from 0.05 to 0.20 considering the single nitrogen molecule
surface (0.162 nm2) [34]. The total pore volume (Vt) was determined from the point of
the adsorption isotherm which corresponded to the relative pressure p/p0 = 0.99 [35].
The non-local density functional theory (NLDFT) was applied for calculation of pore size
distribution (PSDs) functions for the slit-shaped pores of carbon with surface energetic
heterogeneity as well as geometrical corrugation [36,37] by means of the numerical program
SAIEUS (Micromeritics).

The morphology of carbon materials was studied by means of SEM Zeiss mod. Ultra
Plus, EDS Bruker Quantax 400 (Bruker, Karlsruhe, Germany). During the measurements,
the voltage was 2 kV. Energy-dispersive X-ray spectroscopy (SEM/EDX, acceleration:
15 kV) was used in quantitative analyses.

The elemental analysis (CHNS) was performed using the Elementar Vario Micro Cube
analyzer (Elementar, Langenselbold, Germany). Before the measurements, the samples
were dried to constant weight.

The degree of carbon skeleton structure ordering was determined recording the Raman
spectra using a spectrometer (Raman Station 400 F, Perkin Elmer, Waltham, MA, USA) with
the thermoelectrically cooled CCD detector and diode laser. The wavelength measurement
was 785 nm and the power was 350 mW. Each sample was dried earlier. Five scans were
made for each sample at the scanning time 20 s. The resolution was 1 cm−1.

X-ray diffraction analysis was performed on the PAN-alytical X’Pert PRO MPD X-ray
diffraction system (PANalytical Inc., Westborough, MA, USA) using Cu Kα radiation (40 kV,
40 mA, step 0.02◦, range 10◦ ≤ 2θ ≤ 50◦). The crystal structure was analyzed using the
PDF-2+ 2009 Database.

Derivatograph C (Paulik, Paulik and Erdey, MOM, Budapest, Hungary) was applied
for determination of thermal stability as well as volatile and fixed carbon share in the
samples. An amount of 10 mg of materials was put in a corundum crucible and Al2O3 was
used as the reference material. The range of temperatures was from 20 to 1000 ◦C in either
the air or inert (N2) atmosphere with the 10 ◦C/min heating rate. The TG, DTG, and DTA
curves were registered.

The content of volatile carbon, which is a less humified organic matter (%VC) was
estimated based on the data TGA in the N2 atmosphere in the temperature range from 150
to 900 ◦C, assuming the moisture desorption temperature to be up to 150 ◦C. Complete
material thermooxidation in an O2 atmosphere at up to 1200 ◦C results in ash (%A) as an
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inorganic residue. The amount of fixed carbon (% FC), being the more humified organic
matter, was calculated as the difference of TG%1200,O2, and TG%900,N2 [38]. The share
of thermostable fraction (Cthermo) being poorly thermodegradable was determined as
stable matter (%FC) per the sum of volatile (%VC) and fixed substances (% FC) [39].
Using this parameter, the stability of organic matter in the carbonaceous materials can be
estimated [40].

The infrared spectra were recorded by means of a Perkin-Elmer Spectrum 400 FT-
IR/FT-NIR spectrometer (Perkin-Elmer, Waltham, MA, USA) with a smart endurance
single-bounce diamond, attenuated total reflection (ATR) cell. The 4000–650 cm−1 spectra
were recorded due to the co-addition of 500 scans obtained at the 4 cm−1 resolution.
The samples were subjected to drying and powdering in the agate mortar before the
measurements.

The surface oxygen acidic and basic functional groups were determined by means
of Boehm’s titration method [38,41,42]. An amount of 0.2 g carbon was dispersed in the
sodium bicarbonate, sodium carbonate, sodium hydroxide and sodium ethoxide solutions
for functional acidic groups determination. The total basic groups were determined using
hydrochloric acid. Solution shaking at room temperature lasted 48 h. Then, the samples
were filtered and 10 cm3 of filtrate was titrated using 0.1 mol dm−3 HCl for determination
of acidic groups and 0.05 mol dm−3 NaOH for determination of the total basic groups.

The point of zero charge (pHpzc) was analyzed by means of the method presented
in [43–45]. The 0.01 mol dm–3 NaCl solutions were prepared and then the pH was brought
to 3–12 by adding 0.1 or 1 mol dm–3 HCl and 0.1 or 1 mol dm–3 NaOH. Approximately
0.15 g of the materials were put into the 100 cm3 flasks. Then, they were poured over using
50 cm3 sodium chloride solutions of different pH values. Shaking in an incubator (Orbital
Shaker—Inkubator ES-20, Grant-bio, Wasserburg, Germany) at 25 ◦C constant temperature
and 200 rpm speed lasted 4 h. Next, the final pH was measured using a pH-meter (inoLab
pH 730, WTW GmbH, Weilheim, Germany). In the next step, the final pH and the initial
pH relationships were determined. The pHpzc is defined as the point of this line with the
pHinitial = pHfinal one intersection [43,44].

2.4. Adsorption Studies

Adsorption experiments were performed in 100 mL Erlenmeyer flasks in the incubator
for a definite time. Adsorption kinetics: the concentration of MB and MG was 300 mg dm−3,
with the time from 15 to 600 min for MB and 15 to 360 min for MG. Adsorption isotherms:
the concentrations of MB and MG were 200 300, 400, 600, 800, 1000, 1200 mg dm−3;
experimental time: equilibrium conditions—480 min for MB, and 300 min for MG. The
carbons were weighed to be 0.1 g, then poured with 50 cm3 MB and MG solutions.

The spectrophotometric method (SP-830 Plus from Metertech, Poznań, Poland) was
applied at the 465 nm (MB) and 615 nm (MG) wavelengths for the dye concentrations
determination before and after the adsorption process. The temperature effect on the
adsorption process was studied. The test temperatures were 298 K, 308 K and 315 K and
the stirring rate was 200 rpm. All adsorption studies were carried out in three series, and
the results were averaged.

The calculation of the amount of dyes being adsorbed at equilibrium (qe, adsorption
capacity, mg g−1) was based on Equation (1):

qe =
(C0 − Ce)V

m
(1)

where C0 and Ce are the initial and equilibrium concentrations of dye solutions (mg dm3),
V is the volume of the dye solution (dm3), and m is the mass of carbon materials (g).

The adsorption kinetics of MB and MG from aqueous solutions on the carbon materials
was described using the pseudo-first-order model, also known as the Lagergren equation
(Equation (2)) [46], the pseudo-second-order model also called the Ho equation (Equa-
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tion (3)) [47] as well as the Weber–Morris intraparticle diffusion model (Equation (4)) [48].

ln(qe − qt) = ln qe − k1t (2)

t
qt

=
1

k2q2
e
+

t
qe

(3)

qt = kid t1/2 + c (4)

where k1—the pseudo-first order rate constant (min−1); k2—the pseudo-second order
rate constant (g mg−1 min−1); t—the time of contact between the adsorbent and the
adsorbate (min); qe—the adsorption value after the equilibrium stabilization (mg g−1);
qt—the adsorption value at a given time t (mg g−1); kid—the intraparticle diffusion rate
constant (mg g−1 min−1/2); and c—the intercept, which represents the thickness of the
boundary layer (mg g−1).

Two equilibrium isotherm models, namely Langmuir [49] (Equation (5)) and Fre-
undlich [50,51] (Equation (6)), were used.

Ce

qe
=

1
qm

Ce +
1

qm KL
(5)

logqe = log KF +
1
n

Ce (6)

where qm—the maximum adsorption capacity corresponding to the total monolayer cover-
age on the adsorbent surface (mg g−1); KL—the Langmuir constant (dm3 g−1), KF—the
Freundlich isotherm constant (mg(1−1/n) (dm3)1/n g−1); n—the empirical constant describ-
ing the heterogeneity of the adsorbent surface.

Free enthalpy (∆G) was determined to approximate the nature of the adsorption
processes of the tested systems (Equation (7)) [52].

∆G = −RTlnKL (7)

3. Results
3.1. Characterization of Carbon Materials
3.1.1. Porous Structure of Carbon Materials

Based on the IUPAC classification, the experimental adsorption–desorption N2 isotherms
of activated carbons (Figure 2a) are of type I [53,54], indicating their microporous character.
The structural parameters calculated based on the adsorption isotherms are given in Table 1.
As follows from the pore size distribution curves (Figure 2b), there is one complex peak
in the micropore range, indicating the bimodal micropores structure. The DFT method
was applied for determination of the micropores dimension (Table 1). According to the
IUPAC classification [55], they are ultramicro- (0.4 < d < 0.7 nm) and supermicropores
(0.7 < d < 2 nm). The BET surface was the largest for C-CD (8 h) sample (1136 m2 g−1) com-
pared to the other carbons. This tendency is also observed in the case of other parameters,
i.e., the total pore volume (0.51 cm3 g−1), and the micropore volume (0.49 cm3 g−1) for
C-CD (8 h). In the case of shorter activation time, i.e., 4 h and 6 h, the obtained adsorbents
had less developed porosity and thus smaller SBET values (4 h: 399 m2 g−1, 6 h: 679 m2 g−1),
Vt (4 h: 0.18 cm3 g−1, 6 h: 0.29 cm3 g−1), and Vmicro (4 h: 0.18 cm3 g−1, 6 h: 0.29 cm3 g−1).
If the values of the specific surface area are taken into account, then for 6 h of activation, a
2-fold surface area was obtained, while for 8 h, its value was 3-fold higher compared to the
material after 4 h of activation. To sum up, the parameters of the porous structure increase
with the increasing time of CO2 activation. The analysis of the micropore dimensions
showed a similar size for all carbons (ultramicropores: 0.60–0.61 nm and supermicropores:
1.14–1.26 nm Table 1).
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Table 1. Structural parameters of the studied carbons.

Carbon SBET
(m2 g−1)

Vt
(cm3 g−1)

Vultra
DFT

(cm3 g−1)
Vmicro

DFT

(cm3 g−1)
wmi

DFT

(nm)

C-CD (4 h) 399 0.18 0.13 0.18 0.60; 1.14
C-CD (6 h) 679 0.29 0.22 0.29 0.60; 1.15
C-CD (8 h) 1136 0.51 0.22 0.49 0.61; 1.26

SBET—the specific surface area, Vt—the total (single-point) pore volume obtained from the amount adsorbed
at p/p0 ≈ 0.99, Vultra

DFT—the ultramicropores volume (pores < 0.7 nm) obtained on the basis of DFT PSD,
Vmicro

DFT—the micropores volume (pores < 2 nm) obtained on the basis of DFT PSD, and wmi
DFT micropore

diameter at the maximum of the PSD curve obtained by the DFT method.

3.1.2. SEM/EDS Analysis

Figure 3 presents the activated carbon morphologies observed by means of SEM. The
carbons prepared from the polymer waste possess a layered structure, indicating their
arrangement. Figure 3b,d,f shows that activation time extension results in a less smooth
and rougher surface, indicating greater development of porosity. Such conclusions are
consistent with the results of BET studies, which show that activation causes an increase in
the specific surface area and porosity (Table 1).

The EDS analysis (Figure 4a–c) confirmed the presence of carbon and oxygen in the
synthesized activated carbons. The detailed data are presented in Table 2. The tested
adsorbents contain 94.46 to 97.89% w/w carbon, and 5.54 to 2.11% w/w oxygen. C-CD (4 h)
contains the most carbon, C-CD (6 h) slightly less, and C-CD (8 h) the least. Simultaneously,
the oxygen content gradually increased, indicating that the surface functionalities formation
in the activation process is observed. To sum up, it can be stated that the porous structure
is more developed with the smaller carbon content.

3.1.3. CHNS Analysis

The elemental composition of the obtained carbon materials is presented in Table 2.
The results proved that the activation time has a significant impact on the carbon content.
As the activation time increases, the carbon percentage decreases from 99.30% to 96.19%.
This trend is consistent with the results of the EDS analysis (Table 2). The CHNS analysis
did not show nitrogen or sulfur. Therefore, it can be assumed that oxygen, the content of
which increases with the increasing activation time, is the residue. The results obtained by
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EDS and CHNS are slightly different since EDS is a surface analysis while CHNS allows for
the analysis of the entire sample volume.
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Table 2. Results of EDS chemical composition microanalysis, CHNS analysis and the ID/IG values.

Carbon C
(% w/w)

O
(% w/w) C (%) H(%) Residue O

(%) ID/IG

C-CD (4 h) 97.89 2.11 99.30 0.42 0.28 1.24
C-CD (6 h) 95.90 4.10 98.16 0.53 1.31 1.28
C-CD (8 h) 94.46 5.54 96.19 0.39 3.43 1.30

ID/IG—the graphitization degree.

3.1.4. Raman Analysis

The activation time has a significant impact on the graphitization degree of activated
carbons which was proved by the Raman spectroscopy (Figure 5). Two broad overlapped
bands with the maxima at 1360 cm−1 and 1590 cm−1 are characteristic of carbon materials
and correspond to the D and G bands. The G-band is typical of monocrystalline graphite
originating from the tensile vibrations of sp2-hybridized carbon bond pairs in the rings
of graphene layers and the structure of graphitized carbon. Well-graphitized carbon is
characterized by a narrow and high band. The band widening indicates defects in the
graphene planes and the sp2 carbon structure. With the increasing disorder, the D-band
appears, indicating the amorphous nature and existence of defects in the sp3 hybridiza-
tion graphite structure. Determination of the correlation between the G and D bands
position and their intensity (ID/IG) allows to describe the structural properties of carbon
materials. An increase in the ID/IG peak intensity ratio indicates a decrease in the carbon
graphitization degree [56].
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Figure 5 shows the Raman spectra recorded for the activated carbons. An increase in
the D and G bands intensity with the increasing activation time is noticeable (Figure 5).
The bands are wide, indicating the existence of structural defects. The D-band to G-band
intensity ratio (ID/IG) is considered a determinant of the amorphous phase in carbon
materials. The ID/IG ratios (Table 2) increase from 1.24 to 1.30 with the increasing activation
time, indicating an increase in the graphitization degree. The obtained values point out to
the increasing share of disordered graphene structures containing carbon atoms with sp3

hybridization (decrease in the graphitization degree).

3.1.5. XRD Analysis

Figure 6 presents the XRD spectra of activated carbons. Wide, bloated peaks, reaching
the maximum at 2θ = 23◦ characteristic of the non-graphitic structures of carbons can be
observed. This indicates that the materials possess the amorphous structure. Very low and
wide diffraction peaks can be observed at 2θ = 43◦ which indicates the presence of a small
number of graphite structures [57].
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3.1.6. Thermal Analysis

The thermal stability of the materials was estimated by means of thermal analysis.
Figure 7 presents the TG%, DTG and DTA curves for the carbons obtained from CDs
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activated for 4, 6 and 8 h (samples C-CD (4 h), C-CD (6 h) and C-CD (8 h), respectively).
As follows from the mass loss curves (TG%) analysis, the thermal stability of all materials
proved to be up to ~ 530 ◦C. The carbon material is completely thermally degraded over the
range of temperatures, 850–975 ◦C, taking the activation time into account. The longer the
activation time, the faster the oxidative degradation of carbon is (DTG range, Table 3). These
changes are reflected in the DTG and DTA curves course. The DTG curves show a broad
minimum in the mass loss temperature range. The uniform course of the curves indicates
carbon’s structural homogeneity. Developed maxima are observed on the DTA curves
at ~600 ◦C. The curves course curves and the analysis of the ash content (%A) indicate
that oxidation in the CO2 atmosphere causes partial degradation of organic compounds
(Table 3). The carbon ash content increases from 3.7% (C-CD (4 h)) to 5.8% (C-CD (8 h))
when the activation time is extended. The carbon structure in all materials is similar;
however, a slight decrease in the content of volatile organic compounds (%VC) is observed,
with a simultaneous increase in the value of fixed carbon (%FC) and the thermal stability
index (Cthermo, Table 3).

Materials 2024, 17, x FOR PEER REVIEW 11 of 25 
 

 

 
Figure 6. XRD patterns for the studied carbons. 

3.1.6. Thermal Analysis 
The thermal stability of the materials was estimated by means of thermal analysis. 

Figure 7 presents the TG%, DTG and DTA curves for the carbons obtained from CDs acti-
vated for 4, 6 and 8 h (samples C-CD (4 h), C-CD (6 h) and C-CD (8 h), respectively). As 
follows from the mass loss curves (TG%) analysis, the thermal stability of all materials 
proved to be up to ~ 530 °C. The carbon material is completely thermally degraded over 
the range of temperatures, 850–975 °C, taking the activation time into account. The longer 
the activation time, the faster the oxidative degradation of carbon is (DTG range, Table 3). 
These changes are reflected in the DTG and DTA curves course. The DTG curves show a 
broad minimum in the mass loss temperature range. The uniform course of the curves 
indicates carbon’s structural homogeneity. Developed maxima are observed on the DTA 
curves at ~600 °C. The curves course curves and the analysis of the ash content (%A) indi-
cate that oxidation in the CO2 atmosphere causes partial degradation of organic com-
pounds (Table 3). The carbon ash content increases from 3.7% (C-CD (4 h)) to 5.8% (C-CD 
(8 h)) when the activation time is extended. The carbon structure in all materials is similar; 
however, a slight decrease in the content of volatile organic compounds (%VC) is ob-
served, with a simultaneous increase in the value of fixed carbon (%FC) and the thermal 
stability index (Cthermo, Table 3). 

 
Figure 7. Activated carbons TG%, DTG and DTA curves. Figure 7. Activated carbons TG%, DTG and DTA curves.

Table 3. Activated carbons proximate analysis and thermostability indices.

Carbon DTG Range, ◦C %A %VC %FC Cthermo

C-CD (4 h) 530–850 3.7 9.7 86.6 0.899
C-CD (6 h) 530–940 4.8 8.3 86.9 0.913
C-CD (8 h) 530–975 5.8 7 87.2 0.926

3.1.7. ATR-FTIR Analysis

ATR-FTIR spectra of all activated carbons are presented in Figure 8. The bands in the
3755–3576 cm–1 range correspond to the asymmetrical and symmetrical tensile vibrations
of -OH groups for all carbons [58–61]. Moreover, the 2174 cm–1 band results from the
presence of CO in the carbons [59]. However, the bands at 1740 cm –1 with larger intensities
for C-CD (6 h) and C-CD (8 h) and a very low intensity for C-CD (4 h) correspond to
the vibrations due to the double bonds presence between the atoms of carbon or those of
carbon and oxygen [62,63]. The bands at 1570 cm–1 for C-CD (4 h), 1567 cm–1 for C-CD
(6 h) and 1561 cm–1 for C-CD (8 h) are characteristic of the C=C bonds [64]. The bands of
the differentiated intensity in the 1500–1100 cm–1 range are due to the carbonyl groups
C=O [65,66] (1368 tcm–1, 1219 cm–1 and 1105 cm–1 for C-CD (4 h); 1368 cm–1, 1103 cm–1

for C-CD (6 h); 1100 cm–1 for C-CD (8 h) However, the presence of these groups is not
confirmed by the Boehm method. The band of 1005 cm–1 is characteristic of the C-OH
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tensile vibrations only in the case of C-CD (8 h) sample [66] The bands in the range from
900 to 750 cm−1 indicate the bending vibrations of C-H (slightly larger intensity for C-CD
(8 h) and smaller intensity for the other two carbons) [58].
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3.1.8. pHpzc

The surface charge (pHpzc) value of the carbons is largely affected by the functional
groups present on their surface. The pH value, at which the net surface charge of the
adsorbent is zero, can be defined as pHpzc. In a solution with pH < pHpzc the charge of
carbon surface is positive, but in the case of pH > pHpzc, it is negative. The relationship of
pHfinal as a function of pHinitial is presented in Figure 9. The values of pHpzc determined
from the graph (Figure 9) are: for C-CD (4 h): 5.77; for C-CD (6 h): 5.70; and C-CD (8 h):
4.40. The charge of the carbons is negative. It is essential that the adsorption properties of
the MB and MG adsorbates are determined by the surface charge. Taking into account the
electrostatic adsorbent-adsorbate interactions, the cationic MB and MG adsorption should
be intensive on the surface of carbon being negatively charged at pH > pHpzc.
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3.1.9. Boehm Method

Table 4 presents the oxygen functional groups content on the surface of the activated
carbons. Both types of functional groups, acidic and basic ones, are present on the ad-
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sorbents surface. In the case of C-CD (4 h), the basic groups (0.312 mmol g−1) dominate
over the acidic ones (0.249 mol g−1); for C-CD (6 h), it is analogous (0.359 mmol g−1 and
0.186 mmol g−1, respectively); for C-CD (8 h), the acidic groups (0.412 mmol g−1) prevail
over the basic ones (0.312 mmol g−1). In the case of the tested adsorbents, only the presence
of phenolic groups was confirmed. The remaining groups could not be determined using
the Boehm method. The carbonyl groups, not detected by the Boehm method, was con-
firmed by the FTIR analysis. This can be due to their small amount on the carbon materials
surface. Moreover, the 8 h activation gave a large increase in the surface functional groups
amount as proved by the FTIR analysis (Figure 8), the EDS microanalysis (Table 2) and the
Boehm method (Table 4).

Table 4. Carbons functional surface groups determined by the Boehm method.

Carbon
Total Basic

Groups
(mmol g−1)

Total Acidic
Groups

(mmol g−1)

Total
Functionalities

(mmol g−1)

Phenolic
Groups

(mmol g−1)

C-CD (4 h) 0.312 0.249 0.561 0.249
C-CD (6 h) 0.359 0.186 0.545 0.186
C-CD (8 h) 0.312 0.412 0.724 0.412

3.2. Adsorption Study
3.2.1. Adsorption Kinetics

The MB and MG adsorption on the adsorbents was described using the pseudo-first-
order kinetic (Equation (2)) [46], pseudo-second-order kinetic (Equation (3)) [47], and
intraparticle diffusion (Equation (4)) models [48] (Table 5). The pseudo-first-order model
characterizes physical adsorption, in which the physical interactions between the adsorbent
and the adsorbate are the adsorption limiting. The pseudo-second-order kinetic model
characterizes chemisorption, which is also adsorption limiting step. The Weber–Morris
intraparticle diffusion model is used to elucidate the adsorption mechanism which proceeds
in three stages [67–69]: (1) diffusion of adsorbate molecules into the outer surface of the
adsorbent and adsorption on its surface; (2) intraparticle diffusion and gradual adsorption
of adsorbate; (3) interactions between the adsorbate molecules and the adsorbent active sites
in the equilibrium stage. The experimental kinetic data for MB and MG are presented in
Figure 10a–c. The equilibrium of the MB adsorption process was established after 480 min,
and in the case of MG after 300 min for all materials.

Table 5. Kinetic parameters for the MB adsorption on the adsorbents.

Carbon Temperature [K]
Pseudo-First-Order Pseudo-Second-Order

k1 (min−1) R2 k2 (g mg−1 min−1) R2

C-CD (4 h)
298 0.0168 0.7889 0.00111 0.9999
308 0.0052 0.7898 0.00011 0.9995
315 0.0139 0.9329 0.00062 0.9995

C-CD (6 h)
298 0.0159 0.9386 0.00120 0.9999
308 0.0154 0.9659 0.00102 0.9999
315 0.0106 0.8338 0.00075 0.9997

C-CD (8 h)
298 0.0065 0.9312 0.00086 0.9995
308 0.0041 0.9452 0.00092 0.9996
315 0.0120 0.8604 0.00084 0.9997

Figure 11a–f presents the linear relationships for the pseudo-second-order
(Equation (3)) model of adsorption of MO (Figure 11a–c) and MB (Figure 11d–f) on the
adsorbents. Tables 5 and 6 show the kinetic parameters and the correlation coefficients
R2. Based on the obtained results (Figure 11a–f, Tables 5 and 6) and taking into account
the value of the R2 coefficient for MB (0.9995–0.9999) and for MG (0.9995–1.0000) one



Materials 2024, 17, 748 14 of 24

can state that the adsorption process speed can be described by the pseudo-second-order
model. As fitting to this model show the dyes adsorption process depends largely on the
active centers accessibility [70,71]. According to the pseudo-second-order kinetic model
adsorption of MB and MG indicates chemisorption (the chemical interactions between
adsorbate molecules and the adsorbent surface) [68]. This confirms permanent binding of
the adsorbate molecules to the adsorbent surface.
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Table 6. Kinetic parameters for the MG adsorption on the adsorbents.

Carbon Temperature [K]
Pseudo-First-Order Pseudo-Second-Order

k1 (min−1) R2 k2 (g mg−1 min−1) R2

C-CD (4 h)
298 0.0127 0.8857 0.00117 0.9995
308 0.0187 0.9677 0.00096 0.9995
315 0.0173 0.9724 0.00135 0.9999

C-CD (6 h)
298 0.0226 0.9736 0.00193 0.9999
308 0.0203 0.9196 0.00166 0.9998
315 0.0136 0.8564 0.00206 0.9999

C-CD (8 h)
298 0.0182 0.9690 0.00227 0.9999
308 0.0163 0.9481 0.00350 1.0000
315 0.0166 0.9362 0.00221 0.9999
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The Weber–Morris intraparticle diffusion model (Equation (4)) was applied to obtain
better information about the adsorption mechanism. The relationships in Figure 12 will
promote explanation how diffusion effects on the dyes adsorption. Two linear sections
were obtained for the systems, indicating that the adsorption rate is influenced not only
by intraparticle diffusion but also by other processes [72]. The first of the linear sections
deals with intraparticle diffusion, which can be interpreted as diffusion in small pores
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(micropores), whereas the second one presents the adsorption equilibrium. In the case of
the first section, the diffusion constant values kid were calculated (Tables 7 and 8). On the
other hand, the determined “c” values (Tables 7 and 8) are non-zero and they are positive,
indicating that intraparticle diffusion is not the adsorption process limiting step for the
systems being studied.
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Table 7. Intraparticle diffusion parameters for the MB adsorption.

Carbon Temperature [K]
Parameter

kid (min−1) c R2

C-CD (4 h)
298 4.88 85.02 0.9513
308 3.43 87.52 0.9188
315 3.62 84.13 0.9606

C-CD (6 h)
298 4.83 86.05 0.9644
308 4.72 83.10 0.9811
315 5.75 69.57 0.9627

C-CD (8 h)
298 2.35 111.26 0.9881
308 2.48 100.08 0.9948
315 3.38 94.27 0.9580

Table 8. Intraparticle diffusion parameters for the MG adsorption.

Carbon Temperature [K]
Parameter

kid (min−1) c R2

C-CD (4 h)
298 2.92 93.10 0.9381
308 3.60 85.82 0.9703
315 3.04 84.82 0.9782

C-CD (6 h)
298 2.79 100.83 0.9742
308 3.11 95.85 0.9949
315 2.21 95.79 0.9822

C-CD (8 h)
298 1.53 114.29 0.9956
308 1.46 114.14 0.9949
315 1.90 101.02 0.9662

In the case of MG adsorption, the equilibrium was established much faster than in
the case of MB, which can be also evidenced by the values of kid, which are lower for MG
(Table 8).

3.2.2. Adsorption Isotherms

To present the adsorbed dyes’ molecules distribution on the surface and interactions
with adsorbents, it is essential to determine the adsorption isotherm model. Figure 13
presents the experimental adsorption isotherms of MB and MG on the carbons. Taking
into account the experimental and calculated qe values, adsorption decreases with the
increasing temperature, indicating the exothermic nature of the process. The experimental
data were fitted to the linear forms of two models: Langmuir (Equation (5)) and Freundlich
(Equation (6)). The Langmuir isotherm is used to describe the monolayer adsorption
on a homogeneous surface on which one molecule of the adsorbate occupies one active
site of the adsorbent. According to the Langmuir model adsorption depends on the
temperature, concentration and magnitude of adsorption energy. In this case multilayer
adsorption is not possible, the adsorption energy is constant. Due to the energetically
homogeneous surface and the lack of interactions of adsorbate molecules with each other
(there are only interactions of adsorbate molecules with the adsorbent surface), the strength
of intermolecular attraction decreases with distance, all active sites of the adsorbent are
identical and energetically equivalent. Moreover, the adsorbent has a finite capacity—the
quantity of adsorbate molecules is limited [69,73–75].

The Freundlich isotherm describes the multilayer adsorption on the heterogeneous
surfaces, often on the microporous adsorbents. It is often used to describe adsorption from
aqueous solutions on activated carbons. The constant K describes adsorption strength and
is proportional to the adsorption capacity. The higher its value, the stronger the adsorption.
The n parameter characterizes the energetic heterogeneity of the adsorbent surface and
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determines the isotherm shape. For n = 1, the isotherm is linear, and the further the value
of n moves away from 1, the less linear it is. A value of n < 1 indicates relatively high
adsorption in the small concentration range. A value of 1/n indicates the adsorption
strength. The smaller this value is, the stronger the adsorption [69,73–75].
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The results of fitting to the Langmuir model are presented in Figure 14. The param-
eters of the equations and the correlation coefficients are summarized in Tables 9 and 10.
Analyzing the data (Figure 14, Tables 9 and 10) and taking into account the R2 correlation
coefficients large values (0.998–0.999) in the case of the Langmuir model, one can state that
this is the model describing the MB and MG adsorption best on the carbon materials. The
values qm are very similar to those obtained experimentally qe,exp (Tables 9 and 10). As for
the Freundlich model, the values of R2 are slightly smaller compared to those using the
Langmuir model. The coefficient KF (affinity constant) shows the strength of adsorbate
and adsorbent interactions. The KF values for all adsorbents were large (Tables 9 and 10).
However, the n values range from 4 to 8.7, indicating great chemical adsorption contribu-
tion, as when the n value is higher, the dye molecule and carbon surface interactions are
stronger [76]. The value of parameter n is a non-integer, which indicates that the mechanism
of adsorption on various adsorption centers on the adsorbent surface. The parameter n is
greater than 1 for all materials, which means that more than one adsorbate molecule can
occupy one adsorption center.
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Table 9. Parameters from the Langmuir and Freundlich adsorption isotherm models (MB adsorption).

Carbon Isotherm Parameter Temperature

298 K 308 K 315 K

C-CD (4 h) Langmuir
qm exp (mg g−1) 195 183 166
qm (mg g−1) 196 185 167
KL (dm3 mg−1) 0.0630 0.0566 0.0916
R2 0.9996 0.9989 0.9998

Freundlich KF (mg1−1/n (dm3)1/n g−1) 74.64 75.52 80.04
n 6.51 7.24 8.66
R2 0.8188 0.7784 0.6797

C-CD (6 h) Langmuir
qe exp (mg g−1) 232 207 186
qm (mg g−1) 238 208 189
KL (dm3 mg−1) 0.0437 0.0404 0.0567
R2 0.9992 0.9979 0.9991

Freundlich KF (mg1−1/n (dm3)1/n g−1) 68.96 69.63 74.39
n 5.12 5.93 6.98
R2 0.9115 0.8564 0.7948

C-CD (8 h) Langmuir
qm exp (mg g−1) 349 268 238
qm (mg g−1) 357 278 244
KL (dm3 mg−1) 0.0870 0.0336 0.0477
R2 0.9988 0.9985 0.9992

Freundlich KF (mg1−1/n (dm3)1/n g−1) 105.63 61.54 65.51
n 4.80 4.18 4.67
R2 0.9688 0.9426 0.9058

Table 10. Parameters from the Langmuir and Freundlich adsorption isotherm models (MG adsorption).

Carbon Isotherm Parameter Temperature

298 K 308 K 315 K

C-CD (4 h) Langmuir
qm exp (mg g−1) 161 155 145
qm (mg g−1) 164 156 147
KL (dm3 mg−1) 0.0738 0.1026 0.0646
R2 0.9997 0.9999 0.9993

Freundlich KF (mg1−1/n (dm3)1/n g−1) 79.25 81.58 77.20
n 8.95 9.81 10.27
R2 0.8756 0.8300 0.8975

C-CD (6 h) Langmuir
qe exp (mg g−1) 206 194 150
qm (mg g−1) 213 200 154
KL (dm3 mg−1) 0.0457 0.0396 0.0429
R2 0.9997 0.9990 0.9984

Freundlich KF (mg1−1/n (dm3)1/n g−1) 67.11 68.45 70.36
n 5.57 6.15 8.68
R2 0.9557 0.9696 0.9110

C-CD (8 h) Langmuir
qm exp (mg g−1) 274 256 165
qm (mg g−1) 286 263 167
KL (dm3 mg−1) 0.0356 0.0286 0.0424
R2 0.9990 0.9988 0.9991

Freundlich KF (mg1−1/n (dm3)1/n g−1) 63.55 55.58 66.45
n 4.19 4.08 7.18
R2 0.9681 0.9740 0.9401
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Table 11 presents the free enthalpy (∆G) values (Equation (7)) for MB and MG. MB
and MG adsorption on the activated carbons is spontaneous as follows from the negative
∆G values.

Table 11. Free enthalpy (∆G) values for the MB and MG adsorption on the adsorbents.

Carbon Temperature ∆G (kJ/mol) MB ∆G (kJ/mol) MG

C-CD (4 h)
298 −24.56 −25.39
308 −25.10 −27.09
315 −26.94 −26.49

C-CD (6 h)
298 −23.65 −24.20
308 −24.24 −24.65
315 −25.68 −25.42

C-CD (8 h)
298 −25.35 −23.59
308 −23.77 −23.82
315 −25.23 −25.39

In Table 12, the results of adsorption studies (maximum capacities, qm) for MB and
MG were compared with those of other similar studies to highlight the advantages of
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our investigations. The adsorbents obtained by us are characterized by large adsorption
capacity. It is worth noting that malachite green has not been tested for adsorption from
water on carbon materials obtained from polymer waste as precursors. The adsorbents
were also compared with commercial carbons and it proved that the materials prepared
by us exhibit similar or more effective adsorption properties. Therefore, the obtained
adsorbents can compete with the commercial activated carbons.

Table 12. Comparison of the characteristics of activated carbons with others.

Precursor Carbon SBET
m2 g−1

Activation
Method MB (mg g−1) MG (mg g−1) Ref.

CDs C-CD (4 h) 399 CO2 195 161 This study
CDs C-CD (6 h) 679 CO2 232 206 This study
CDs C-CD (8 h) 1136 CO2 357 274 This study

PET bottles AC 353.307 KOH 404 - [27]
waste granulated PET PET-2-700N 1334 KOH 368 - [6]

PVC APVC 2666 KOH 838 - [1]
commercial F400 1003 - 409 - [1]
PET waste graphene 721.7 - 867 [77]
PET waste ACK 1390 K2CO3 625 [15]
commercial AC 900 - 303 - [15]

waste polystyrene foam (PF) AC-800 2712 KOH 1042 - [12]
commercially powdered activated

carbon (Merk) CPAC - - - 222 [78]

commercial Coconut-
AC 1101 - - 91 [79]

commercial Coal-AC 923 - - 83.5 [79]

commercial Aprocot-
AC 819 - - 74 [79]

commercial Peach-AC 793 - - 74 [79]

4. Conclusions

Microporous activated carbons were prepared due to waste CD pyrolysis followed by
physical activation with carbon dioxide. The materials’ physicochemical properties were
investigated. The waste CDs proved to be an effective precursor of carbon adsorbents with
developed porosity. Such materials can be successfully used in the future for adsorption of
not only dyes, but also of herbicides, pharmaceuticals, trace metal ions from water, and for
the storage or capture of toxic gases. Attempts to use activated carbons as supercapacitors,
or to build battery electrodes, in photocatalytic studies as well as to store energy can be
also of great interest.

It was proved that 8 h activation was the most effective (SBET was the highest for C-CD
(8 h) (1136 m2 g−1)). The obtained carbons contain more than 86% of fixed carbon and are
characterized by a high coefficient of thermostability Cthermo. The MB and MG adsorption
from the aqueous solution on the carbon adsorbents was investigated. The efficiency of
MB removal was significantly larger compared to that of MG for all carbons. The pseudo-
second-order kinetic model can be used for description of kinetics of dye adsorption on the
carbons. Adsorption is better described by the Langmuir model. Adsorption proved to be
spontaneous and exothermic. In conclusion, activated carbons obtained from waste CDs as
carbon precursors are effective and low-cost MB and MG adsorbents. Therefore, it can be
expected that they will also adsorb other toxic and environmentally harmful dyes used on
a large scale effectively.
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52. Kurdziel, K.; Raczyńska-Żak, M.; Dąbek, L. Equilibrium and kinetic studies on the process of removing chromium(VI) from

solutions using HDTMA-modified halloysite. Desalin. Water Treat. 2019, 137, 88–100. [CrossRef]
53. Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption

data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57,
603–619. [CrossRef]

54. Choma, J. Characterization of nanoporous active carbons by using gas adsorption isotherms. In Wegiel Aktywny w Ochronie
Srodowiska i Przemysle; Wydawnictwo Politechniki Częstochowskiej: Częstochowa, Poland, 2006; pp. 9–19.
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