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Abstract: To solve problems in dissimilarly light metal joints, refilled friction stir spot welding
(RFSSW) is proposed instead of resistance spot welding. However, rotation speed, dwell time, plunge
depth, and the diameter of welding tools all have a great influence on joints, which brings great
challenges in optimizing welding parameters to ensure their mechanical properties. In this study,
the 1.5 mm thick 2A12Al and 2 mm thick 7B04Al lap joints were prepared by Taguchi orthogonal
experiment design and RFSSW. The welding tool (shoulder) diameters were 5 mm and 7 mm,
respectively. The macro/microstructures of the cross-section, the geometrical characteristics of the
effective welding depth (EWD), the stir zone area (SZA), and the stir zone volume (SZV) were
characterized. The shear strength and failure mode of the lap joint were analyzed using an optical
microscope. It was found that EWD, SZA, and SZV had a good correlation with tensile–shear
force. The optimal welding parameters of 5 mm diameter joints are 1500 rpm of rotation speed,
2.5 mm of plunge depth, and 0 s of dwell time, which for 7 mm joints are 1200 rpm, 1.5 mm, and
2 s. The tensile–shear force of 5 mm and 7 mm joints welded with these optical parameters was
4965 N and 5920 N, respectively. At the same time, the 5 mm diameter joints had better strength and
strength stability.

Keywords: refill friction stir spot welding; welding of dissimilar aluminum alloys; effective welding
depth; fracture behavior

1. Introduction

In aviation, aerospace, and other manufacturing fields, developing lightweight prod-
ucts is a growing trend. The use of 2xxx and 7xxx aluminum alloys with light weight and
high strength is one of the most effective measures to meet this requirement [1]. However,
joining aluminum alloy parts is a challenge for manufacturing operations. Resistance
spot welding is widely used to join aluminum alloys. However, there are disadvantages
such as large deformation, high energy consumption, inconsistent welding quality, and
frequent electrode loss in resistance spot welding [2]. Therefore, it is of great significance
to promote the use of lightweight component manufacturing using new technologies for
joining aluminum alloys.

Refill friction stir spot welding (RFSSW) is a green, energy-saving, environmen-
tally friendly, and efficient spot-welding technology developed based on friction stir
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welding [3–5]. The technology is similar to friction stir welding, in which a solid joint
is formed while the workpiece is kept below the melting temperature under the action of
frictional heat and mechanical forces [6,7]. RFSSW has been identified as having better ap-
plication potential for aluminum alloy joining with no exit hole after welding (and smooth
surfaces), which overcomes the disadvantages encountered in resistance spot welding of
aluminum alloy [8–10]. The friction heat generated by the rotating tool in area of contact
with the specimen surface causes the material to flow in the stir zone (SZ) [11]. Welding
parameters, such as tool rotation speed (RS), dwell time (DT), axial force, and plunge
depth (PD), usually affect the flow and distribution of material grains [12–14]. The flow
of the material and the resulting microstructure greatly influence the defects and pores,
which often compromise the physical properties and performance characteristics of welded
joints [6,15–17].

Among so many welding parameters that affect the microstructure and mechanical
properties of RFSSW joints, it is still unclear which are the most important. For example, Li
et al. reported that the plunge speed of the RFSSW process was affecting the mechanical
properties of the 2A12Al-T42 joints [18]. However, Yu et al. found that the PD directly
affected the microstructure and mechanical properties of Al/steel joints [19]. In addition,
Fritsche et al. found that the mechanical properties and morphology of AlSi10Mg and
7075Al-T6 joints were optimal at medium RS (1500 rpm) [20].

For RFSSW, the size of the welding tool also affects the joint size as well as the
microstructure and mechanical properties of the joints. Among them, differently sized
(5–9 mm) diameter welding tools, especially 9 mm tools, are commonly used [21]. Ac-
cording to relevant research results, small RFSSW joints have better mechanical proper-
ties [12,22,23]. However, it is not known whether a smaller weld diameter can improve the
mechanical properties of the joint.

No matter whether using the same or different aluminum alloy, the relationship
between defects and the mechanical properties of joints can be determined by optimized
welding parameters and the selection of welding tool size [24]. However, for the RFSSW of
dissimilar aluminum alloys, the mechanical properties are different due to the different
initial compositions [25]. Therefore, appropriate welding and tool parameters are very
important for obtaining excellent structure and performance of dissimilar aluminum alloy
joints. At present, there is scarce research on the parameter optimization of dissimilar
aluminum alloy joints and the study of microstructure-related mechanical properties of
different types of welded joints.

A welding tool with optimized diameters can produce excellent welding blocks, which
increase the bearing capacity of a joint. Therefore, in this study, welding tools with different
diameters were used to join 2A12Al and 7B04Al, and the microstructures and mechanical
properties of the joints were compared under the conditions of different RSs, PDs, and DTs.
The microstructure-related mechanical properties were studied and the fracture behavior
was described.

2. Materials and Methods
2.1. Refill Friction Stir Spot Welding

Welding materials 2A12Al-T42 and 7B04Al-T74 were selected with thicknesses of
1.5 mm and 2.0 mm, respectively. The compositions of aluminum alloys are shown
in Table 1.

Table 1. The compositions of aluminum alloys (wt.%).

Alloy/Element Al Cr Cu Fe Mg Mn Zn

2A12Al Balance -- 4.0 -- 1.8 0.4 --
7B04Al Balance 0.1 1.5 0.05 1.8 0.2 5

Movable gantry refill friction stir spot welding equipment (FSSW-DLM-204, CFSW
Co., Ltd., Beijing, China) was used to weld alloys. For conventional welding tools, as
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shown in Figure 1a, the diameters of the SZ were 5 and 7 mm. For the small-sized welding
tool, the diameters of the clamping ring and shoulder were 15 mm and 5 mm. The diameter
of the pin was 2.5 mm. For the large-sized welding tool, the diameter of the clamping ring
was 18 mm. The diameters of the shoulder and pin were 7 mm and 4 mm. Both the pin
and shoulder were threaded on the outside. The PDs were set at 1.5, 2, and, 2.5 mm. The
RSs were 900, 1200, and 1500 rpm, with DTs of 0, 1, and 2 s, respectively. There were nine
experimental settings of welding parameters based on the Taguchi method using Minitab18
software (https://www.minitab.com/), as shown in Table 2 [26–28].
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Table 2. Optimization of welding parameters based on the Taguchi method.

Sample Rotation Speed (rpm) Plunge Depth (mm) Dwell Time (s)

900-1.5-0 900 1.5 0
900-2.0-1 900 2.0 1
900-2.5-2 900 2.5 2

1200-1.5-2 1200 1.5 2
1200-2.0-0 1200 2.0 0
1200-2.5-1 1200 2.5 1
1500-1.5-1 1500 1.5 1
1500-2.0-2 1500 2.0 2
1500-2.5-0 1500 2.5 0

The welding process was divided into four stages, as shown in Figure 1b. The first
stage started from the contact between the rotating tool and the top surface of the 2A12Al-
T42 upper plate to preheat the alloys. After preheating, the shoulder was plunged at a
rate of 50 mm/min until contact with the top surface of the 7B04Al-T74 bottom plate.
This stage led to material agitation and plastic flow, which was prone to generate friction
heat in the stirring pin. The stirring pin retracted to create a chamber for the displaced
material to flow into. The next stage was to plunge the stirring pin into the upper plate
at a rate of 240 mm/min, leading to a positive mixing of the material in the upper and
bottom plates. The tool’s plunge helped increase the volume of the stirred material. In the
whole process of welding, the moving speed ratio of the shoulder to the pin was 1:3. In the
next stage, the cross-sections of the stirring pin and shoulder were at the same level, thus
greatly increasing the stirring area and the generation of friction heat; then, the welding
was complete.

https://www.minitab.com/
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2.2. Microstructure and Mechanical Characterization

The microstructure of welded specimens of dissimilar aluminum alloys was analyzed
using an optical microscope (OM, OLYMPUS-GX71, Olympus IMS, Houston, TX, USA)
and scanning electron microscope (SEM, CIQTEK-SEM3100, 20 kV, CIQTEK, Hefei, China).
The material flow and fracture evolution in the mixed zone of the welded samples were
evaluated. The length of the welded sample was 175 mm and the thickness was 3.5 mm.
The initial surface treatment was carried out with sandpaper of different grit sizes, and
then the surface was polished with an alumina solution. The specimen surface was etched
using the Keller solution for 5 s before observation.

The tensile–shear properties of welded specimens were tested with an Instron 8801
(ASTM E8 standard [29]) at a rate of 2 mm/min, as shown in Figure 1c. Three samples were
selected for each parameter of the joints for mechanical property testing.

3. Results and Discussions
3.1. Mechanical Property Evolutions

The three factors (RS, PD, and DT) with three levels were selected for the experiment
(Table 2), which was conducted using an orthogonal table L9(34) to arrange joint diameters
of 5 mm and 7 mm. Figure 2 shows the tensile–shear force (F) of RFSSW joints with different
joint diameters (JD) with different welding parameters. All the results of the mechanical
properties are listed in Table 3.
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Figure 2. Tensile–shear force of RFSSW joints for various welding parameters with diameters of
(a) 5 mm and (b) 7 mm.

Table 3. The values of F and F/JD for the specimens with different JD.

Sample RS (rpm) PD (mm) DT (s)

JD (mm)

5 7

F (N) F/JD (N/mm) F (N) F/JD (N/mm)

900-1.5-0 900 1.5 0 4033 ± 191 801 5293 ± 94 756
900-2.0-1 900 2.0 1 4444 ± 145 889 5081 ± 244 726
900-2.5-2 900 2.5 2 4608 ± 86 922 4843 ± 64 692

1200-1.5-2 1200 1.5 2 4004 ± 116 801 5920 ± 136 845
1200-2.0-0 1200 2.0 0 4265 ± 70 853 5342 ± 177 763
1200-2.5-1 1200 2.5 1 4705 ± 205 941 4882 ± 187 697
1500-1.5-1 1500 1.5 1 3580 ± 223 716 5699 ± 210 814
1500-2.0-2 1500 2.0 2 4477 ± 196 895 3871 ± 351 553
1500-2.5-0 1500 2.5 0 4965 ± 248 993 3799 ± 210 543
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When the joint diameter was 5 mm, the tensile–shear force of RFSSW joints increased
with the increase in the PD (Figure 2a). From Table 3, it can be observed that the sample of
1500-2.5-0 exhibited the highest tensile–shear force at 4965 N.

Just as shown in Figure 2b, when the joint diameter was 7 mm, the tensile–shear
force was more complicated and affected by all three factors. Among these, the sample
of 1200-1.5-2 demonstrated the highest tensile–shear force at 5920 N. The corresponding
parameters were an RS of 1200 rpm, PD of 1.5 mm, and DT of 2 s. Additionally, it can be
observed from Table 3 that the tensile–shear force of the joint with 7 mm diameter was
higher than that of the joint with 5 mm diameter.

To remove influences caused by the diameter, the ratio of tensile–shear force to the
joint diameter (F/JD) was used as a reference for mechanical properties. The mechanical
properties of the joints with a 5 mm diameter were better than those with a 7 mm diameter.
The maximum value for a joint with a 5 mm diameter was 993 N/mm, and that for a joint
with a 7 mm diameter was 845 N/mm.

The orthogonal experiment results are summarized in Table 4. For joints with a
diameter of 5 mm, the range value showed that RPD > RDT > RRS, indicating that the
rank of influencing factors was PD, DT, and RS, as shown in Figure 3a. While the rank of
influencing factors was PD, RS, and DT (Figure 3b) for 7 mm joints.

Table 4. Orthogonal design for process optimization for joints.

JD 5 mm 7 mm

Factor RS PD DT RS PD DT

K1 4362 3872 4421 5072 5637 4811
K2 4325 4395 4243 5381 4765 5221
K3 4341 4759 4363 4456 4508 4878

Delta 37 834 178 925 1129 409
Rank 3 1 2 2 1 3
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RS refers to rotation speed, PD refers to plunge depth, DT refers to dwell time, JD
refers to joint diameter, and F refers to tensile–shear force.

The heat input of the welded joint is determined by both the RS and DT in the welding
process, which also impacts the refill effect of the keyhole. The PD influences the volume of
extruded base material during shoulder insertion, as well as the depth of the keyhole and
its impact on the lower 7B04Al plate. When pulling back the shoulder, material from the
mixing area is refilled into the keyhole. In conclusion, PD has a significant influence on
mechanical properties. Thus, for 5 mm of JD, the best welding parameter was 2.5 mm of
PD, 0 s of DT, and 1500 rpm of RS, while that was 1.5 mm of PD, 1200 rpm of RS, and 2 s of
DT for the 7 mm joints. Further, the tensile–shear force of 5 mm joints was stable.
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3.2. Effect of Welding Parameters on Microstructure

The microstructures of RFSSW joints can be divided into the stir zone (SZ), ther-
momechanically affected zone (TMAZ), heat-affected zone (HAZ), and the base metals
(BM), as shown in Figures 4 and 5. Besides, there were certain defects such as hooks,
holes, and adhesion ligaments, as shown. The formation of hook defects was attributed to
external loading.

Materials 2024, 17, x FOR PEER REVIEW 6 of 14 
 

 

 

Figure 3. Main benefits of factors affecting mechanical properties of welded joints with diameters of 
(a) 5 mm and (b) 7 mm. 

3.2. Effect of Welding Parameters on Microstructure 

The microstructures of RFSSW joints can be divided into the stir zone (SZ), thermo-
mechanically affected zone (TMAZ), heat-affected zone (HAZ), and the base metals (BM), 

as shown in Figures 4 and 5. Besides, there were certain defects such as hooks, holes, and 
adhesion ligaments, as shown. The formation of hook defects was attributed to external 
loading. 

 

Figure 4. Cross-section morphologies of RFSSW joints under different parameters: (a–c) at the same 
RS of 900 rpm with different PDs and DTs; (d) at an RS of 1200 rpm, a PD of 2 mm, and a DT of 0 s; 
(e–f) at the same RS of 1500 rpm with different PDs and DTs. 

Figure 4. Cross-section morphologies of RFSSW joints under different parameters: (a–c) at the same
RS of 900 rpm with different PDs and DTs; (d) at an RS of 1200 rpm, a PD of 2 mm, and a DT of 0 s;
(e,f) at the same RS of 1500 rpm with different PDs and DTs.

Materials 2024, 17, x FOR PEER REVIEW 7 of 14 
 

 

 

Figure 5. Macroscopic structures of the representative cross-section of joints with 7 mm diameter 
and 2 mm PD: (a) at an RS of 900 rpm and a DT of 1 s; (b) at an RS of 1200 rpm and a DT of 0 s; and 
(c) at an RS of 1500 rpm and a DT of 1 s. 

Figure 4a–c show the cross-sectional morphologies at the RS of 900 rpm. At different 

PDs (1.5, 2.0, and 2.5 mm), distinct material defects could be observed. As the PD in-
creased, there was an obvious increase in the volume of plastic deformation material along 
the depth, while the width of the SZ slightly expanded. 

When the PD was set at 1.5 mm, hook defects appeared at the interface with a small 
angle inclination which was formed by external loading. The material flow near the above 

interface was random, and numerous aluminum-clad layers were distributed specifically 
within the middle region as well as the interface of SZ and TMAZ. 

For the PD of 2.0 mm, the aluminum-clad layer took on a semi-circular shape at the 

bonding interface. Compared to the joint with the PD of 1.5 mm, the two longitudinal 
aluminum-clad layers along with the interface of SZ and TMAZ exhibited greater conti-

nuity. 
In cases wherein the PD reached up to 2.5 mm, holes emerged at the root part near 

the shoulder’s lowest depth. Although there was some reduction in aluminum-clad layer 

thickness occurring across the bond interface and the interface of SZ and TMAZ for such 
conditions, the presence of the interfaces remained highly noticeable. 

As shown in Figure 4d, the RS was increased to 1200 rpm. With the increase in RS, 
the intensity of material flow in the SZ area increased, and the width and depth of the SZ 
increased as a whole. In the meantime, there was an obvious downward bending trend in 

hook defects at the interface. In contrast, there was a wide aluminum-clad layer near the 
lower surface of the interface. 

Figure 4e,f show the cross-section of joints with 2 mm and 2.5 mm PD produced by 
1500 rpm, respectively. For the 2 mm PD joint, the hook defects at the interface disap-
peared, and the aluminum-clad layer was mainly distributed in the shape of “X” at the 

interface. Further, the refill line could still be observed, but there was no aluminum-clad 
layer. For the 2.5 mm PD joint, the hook defects at the interface tended to bend downward. 

In addition, the aluminum-clad area at the interface had two layers, one wide and another 
narrow, and the length of the SZ and TMAZ near the interface increased. 

Figure 5. Macroscopic structures of the representative cross-section of joints with 7 mm diameter and
2 mm PD: (a) at an RS of 900 rpm and a DT of 1 s; (b) at an RS of 1200 rpm and a DT of 0 s; and (c) at
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Figure 4a–c show the cross-sectional morphologies at the RS of 900 rpm. At different
PDs (1.5, 2.0, and 2.5 mm), distinct material defects could be observed. As the PD increased,
there was an obvious increase in the volume of plastic deformation material along the
depth, while the width of the SZ slightly expanded.

When the PD was set at 1.5 mm, hook defects appeared at the interface with a small
angle inclination which was formed by external loading. The material flow near the above
interface was random, and numerous aluminum-clad layers were distributed specifically
within the middle region as well as the interface of SZ and TMAZ.

For the PD of 2.0 mm, the aluminum-clad layer took on a semi-circular shape at the
bonding interface. Compared to the joint with the PD of 1.5 mm, the two longitudinal
aluminum-clad layers along with the interface of SZ and TMAZ exhibited greater continuity.

In cases wherein the PD reached up to 2.5 mm, holes emerged at the root part near
the shoulder’s lowest depth. Although there was some reduction in aluminum-clad layer
thickness occurring across the bond interface and the interface of SZ and TMAZ for such
conditions, the presence of the interfaces remained highly noticeable.

As shown in Figure 4d, the RS was increased to 1200 rpm. With the increase in RS,
the intensity of material flow in the SZ area increased, and the width and depth of the SZ
increased as a whole. In the meantime, there was an obvious downward bending trend in
hook defects at the interface. In contrast, there was a wide aluminum-clad layer near the
lower surface of the interface.

Figure 4e,f show the cross-section of joints with 2 mm and 2.5 mm PD produced by
1500 rpm, respectively. For the 2 mm PD joint, the hook defects at the interface disappeared,
and the aluminum-clad layer was mainly distributed in the shape of “X” at the interface.
Further, the refill line could still be observed, but there was no aluminum-clad layer. For the
2.5 mm PD joint, the hook defects at the interface tended to bend downward. In addition,
the aluminum-clad area at the interface had two layers, one wide and another narrow, and
the length of the SZ and TMAZ near the interface increased.

Figure 5a–c show the representative cross-sectional morphologies of 7 mm diameter
RFSSW joints at an RS of 900–1500 rpm with a 2 mm PD. When the RS was 900 rpm, the
existence of hook defects could be observed, and the aluminum-clad layer at the interface
was still mainly distributed in the middle of the lap interface. When the RS was 1200 rpm,
the material flow was intense, and the aluminum-clad layer at the interface appeared to
turn upward, while the hook-like defects extended to near the upper surface. When the RS
was 1500 rpm, the hook defects at the interface were obvious. At this RS, the material flow
was more adequate, the distribution area of the aluminum-clad layer increased, and the
material flow of SZ and TMAZ near the interface was significantly enhanced.

With the increase in RS, the material flow in the welding core area was intensified,
which was more adequate at the lap interface and the interface of SZ and TMAZ. However,
when the RS reached 1500 rpm, an upward flow trend appeared in local areas of the
interface, and hook defects extended to the surface. As a result, the joint strength was
reduced and unstable.

Figure 6a,b show the holes and end point of effective binding in the 900-2.5-2 joint
with a 5 mm diameter. There were also obvious defects in the joint. Figure 6c,d show the
SZ/TMAZ interface, TMAZ/HAZ interface, and end point of effective binding in the 5 mm
joint of 1500-2-2. The above results showed that joints with a better microstructure could
be obtained under high RS. Figure 6e,f show the adhesion ligaments and interfaces formed
in the joints without obvious defects produced under the optimal welding parameters
(a PD of 2 mm, an RS of 1200 rpm, and a DT of 0 s) with a 7 mm diameter tool. The dark
area is the intersection zone of the materials.

3.3. Effect of EWD and SZ Area on Tensile–Shear Force

Among the three welding parameters, the RS and DT affected the heat input and
material flow in the SZ. The higher the RS and the longer the TD was, the higher the heat
input and the more intense the material flow was. These resulted in a deeper effective
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welding depth (EWD), larger SZ area (SZA), and larger SZ volume (SZV), just as listed in
Table 5. The effective welded diameter was the distance between the two end points of
the effective binding (Figure 6b,d) of the joints. The EWD refers to the distance from the
joint surface to the bottom SZ/TMAZ interface. The values of the representative joints are
marked in Figures 4 and 5.
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Table 5. EWD, SZA, and SZV measurements for representative specimens.

JD
mm Sample Diameter of SZ

mm
EWD
mm

SZA
mm2

SZV
mm3

Tensile–Shear Force
N

5

900-1.5-0 5.41 2.28 12.33 52.38 4033
900-2-1 5.21 2.54 13.23 54.12 4444

900-2.5-2 5.45 2.86 15.59 66.69 4608
1200-2-0 5.23 2.48 12.97 53.25 4265
1500-2-2 5.27 2.66 14.02 57.99 4477

1500-2.5-0 5.39 2.9 15.63 66.14 4965

7
900-2-1 7.16 2.41 17.26 96.99 5081

1200-2-0 7.31 2.36 17.25 98.99 5342
1500-2-2 7.44 2.52 18.75 109.50 3871

For 5 mm diameter joints with a PD of 2 mm, the EWD was 27%, 24%, and 33%
deeper than the PD, while these values for 7 mm diameter joints were 21%, 18%, and 26%,
respectively. It can also be seen from the increase in EWD that the longer the DT was, the
higher the proportion of depth increase was. Therefore, when the same PD was set, the
DT had a greater impact on the EWD. Further, this effect decreased as the JD increased.
However, under the same RS, the effect of DT on the EWD was less than that of the PD. As
shown in Figure 4a–c, even with the increase in DT, the deeper the PD was, the smaller the
increment in EWD (46%, 27%, and 15%) was.
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In addition, the increments in the SZA (64%, 32%, and 25%) and SZV (78%, 38%,
and 36%) of the 5 mm diameter joints decreased with the increase in the PD. When the
PD was 2 mm, the increments in the SZA (32%, 30%, and 40%) and SZV (38%, 36%, and
48%) were both closed. For 7 mm diameter joints, the increments in the SZA were 23%,
23%, and 34%, while the increments in the SZV were 26%, 29%, and 42%, respectively.
Under the conditions of high RS and long DT, the affected volume of the material in the
joint increased.

To sum up, the most important factor influencing the shape of SZ was the PD. For
5 mm joints, the influence of DT on morphology was more prominent than for 7 mm joints,
while the effect of RS was less obvious. Further, the welding parameters and tool diameter
affected the flow of materials in a certain volume of SZ.

Through the orthogonal experiment, it was found that the most important factor
affecting the mechanical properties of the joint was the PD, which determined the EWD,
but the other two factors also affected the SZA and SZV.

Table 5 lists the results for the representative samples, giving the EWD, SZA, SZV, and
average tensile–shear force for each combination of RS, DT, and PD. Based on the values
in Table 5, Figure 7 was drawn, which shows the trends in EWD, SZA, and SZV versus
the trend in tensile–shear force. A similar behavior could be observed between them. For
the 900-1.5-0 joint of 5 mm diameter, the specimen had the smallest EWD, SZA, and SZV
(2.28 mm, 12.33 mm2, and 52.38 mm3). In contrast, the largest EWD, SZA, and SZV (2.9 mm
15.63 mm2, and 66.14 mm3) values were found on the 1500-2.5-0 joint. In both cases, the
EWD and SZA values conform to the minimum and maximum tensile shear force values for
the same combination of parameters (4033 N and 4965 N). The energy input to the welding
parameters could be improved in RFSSW, as the aluminum alloy of the upper plate was
extruded to the outside of the tools, and the plastic flow area was expanded. Therefore, a
large welding diameter and effective welding depth were obtained [8]. In this case, RFSSW
joints with different parameters are contrasted in terms of the welding area. Castro also
confirmed the same trend on the RFSSW joints of 3.2 mm thick 2198Al sheets [26,30].
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3.4. Effect of Tool Size on Fracture Behavior

Several researchers reported that the failure of RFSSW joints of aluminum sheets
under tensile shear loads resulted in two typical fracture types: through-the-weld and
pull-out [31–33] fractures. The first one was a shear fracture, in which the nugget remained
partially on the bottom sheet [34]. The second was a plug fracture, where the entire weld
nugget was left on the bottom sheet [35]. The fracture morphologies of representative
joints with 5 mm and 7 mm diameters selected according to their higher tensile–shear force
are shown in Figures 8 and 9, respectively. Due to stress concentrated locally after tensile
initiation, cracks started at the end point of the effective binding (Figure 6). Then, they
propagated along the path of least resistance through weak bonding at the interface.

The fracture cross-sections of all 5 mm joints showed a shear fracture, usually accom-
panied by nucleation of the crack from the hook region and propagation along the interface
between the upper and lower sheets. The joints showed different crack propagation char-
acteristics, which suggested the welding parameters led to different crack propagation
mechanisms [36]. In Figure 8, the red circle zones were the crack initiation points, and
the red arrows were the crack propagation path. The crack propagation of the 900-2.5-2
joint received little resistance, and the crack propagated along the adhesion ligament until
fracture, as shown in Figure 8a. For the 1200-2-0 joint shown in Figure 8b, the crack still
propagated along the adhesion ligament, but tended to propagate along the interface of
the SZ/TMAZ. When the welding parameters were an RS of 1500 rpm, a PD of 2 mm, and
a DT of 2 s, the crack was more complicated and tended to form plug cracks (Figure 8c).
The above results show that the weak parts of the 5 mm joints were the bonding interfaces
of the two aluminum alloy sheets, and the interfaces were mainly made up of adhesion
ligaments. Even if there were hole defects in the SZ/TMAZ interface in the joint, the crack
propagation was not affected.
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The fracture mode of the 7 mm joints was a plug fracture, and the nuggets were left
on the bottom sheet. As shown in Figure 9a, 2A12Al in the 900-2.5-2 joint was distributed
on the upper part of the blue dotted line, and 7B04 was located at the SZ/TMAZ interface.
After initiation from the effective binding end points on both sides, the crack propagated
along the outer side of the SZ/TMAZ interface to form a plug crack up to the upper
surface (Figure 9a). Figure 9b shows the fracture morphology of the 1200-2-0 joint with the
nugget remaining on the bottom sheet. The crack propagated upward along the SZ/TMAZ
interface, reaching the upper surface of the joint and causing failure. In the tensile shear
test, the crack originated from the hook tip and usually extended along the cladding or
shoulder exit path, and the crack propagated along the cladding with poor strength [37,38].
However, with these welding parameters, there was a significant path change in crack
propagation (shown by the arrows on the left in Figure 9b). It can be seen that the cracks
first propagated along the shoulder retraction path and finally only propagated along the
relatively weak cladding. Complex crack propagation can increase the tensile–shear force
of the joints [39,40].

The fracture morphology of the 1500-1.5-1 joint shown in Figure 9c is similar to that of
the 900-2.5-2 joint, showing left crack propagation along the SZ/TMAZ interface. The above
fracture morphologies and paths indicate that the RS of 1200 rpm was more conducive to the
preparation of high-strength joints. The results were also consistent with the experimental
results of orthogonal mechanics.

In addition, the welding parameters only affected the crack propagation path, but
did not affect the fracture mode. Meanwhile, the diameters of welding tools had a great
influence on fracture mode. According to the mechanical properties of the joint, the F/JD
values of the 5 mm joints were higher than the values of 7 mm. The above results showed
that RFSSW joints with small diameters have better strength and strength stability.

4. Conclusions

In summary, the study demonstrated that 2A12Al and 7B04Al can be welded with
high quality by adjusting the parameters of refill friction stir spot welding. The optimal
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welding parameters of joints with different diameters are different. The optimal welding
parameters of refill friction stir spot welding joints with a 5 mm diameter are 1500 rpm
of rotation speed, 2.5 mm of plunge depth, and 0 s of dwell time; for 7 mm joints, these
are 1200 rpm, 1.5 mm, and 2 s. The small diameter (5 mm) joint has better tensile shear
force/diameter than the large diameter (7 mm) joint; these values are 993 N/mm and
845 N/mm, respectively. For 5 mm diameter joints, the effective welding depths, SZA, and
SZV were positively correlated with the tensile–shear force. In the tensile shear tests and
microstructures’ failure tests, two fracture modes were determined: plug fracture mode (of
7 mm joints) and shear fracture mode (of 5 mm joints). Among the joints studied, those
with a shear fracture pattern showed higher strength and strength stability.
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