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Abstract: The incorporation of rubber recycled aggregates from end-of-life tyres (ELT) in the manufac-
turing process of sustainable building materials has gained great interest in recent decades as a result
of the large volume of this waste being generated annually. In this work, the objective is to make a
contribution towards the circularity of construction products by carrying out a physico-mechanical
characterisation of new gypsum composites made with the incorporation of these recycled rubber
aggregates. To this end, up to 30% by volume of the original raw material has been substituted,
analysing the mechanical resistance to bending and compression. Although lower than those of
traditional gypsum material, both properties exceed the limits set at 1 and 2 MPa, respectively, by the
current regulations. In addition, water absorption by capillarity significantly decreases, and thermal
conductivity is reduced by more than 35% with respect to the reference material. Finally, in order
to provide the research with a practical application, a prefabricated plate design has been proposed
that incorporates the gypsum materials studied and an agglomerated rubber band that increases the
thermal resistance and improves the efficiency of the designed construction system. In this way, this
research reflects the potential of these novel building materials and explores new avenues for their
application in building construction.

Keywords: gypsum composites; end-of-life tyres (ELT); recycled; characterisation; precast;
circular economy

1. Introduction

In general terms, it is estimated that at least one tyre per inhabitant is discarded in
the most economically developed countries [1]. The volume of tyre waste spread across
the globe reaches figures around 1.5 billion end-of-life tyres (ELTs) per year [2]. In the
European Union alone, around 4.5 million tonnes are produced annually, ranking third
in the world, behind only the United States (5.2 million tonnes) and China (14.6 million
tonnes) [3]. These alarming figures have led governments in different countries to include
the management of this waste as one of the major challenges worldwide, with the aim of
mitigating its environmental impact and reducing its high generation volumes [4].

Regarding the current management of this ELT waste, Abbas-Abadi et al. reported
that only 3–15% of these wastes are recycled, 5–23% are reused, 20–30% are landfilled and
25–60% are mostly incinerated [5]. The incineration technique for energy recovery is widely
used in industry and is a highly environmentally damaging strategy, as 450 kg of toxic gases
(such as CO, SO2, NO2 HCl, butadiene and aromatic substances [6]) and 270 kg of soot are
produced for every tonne of ELT incinerated, leading to the accumulation of suspended
particles in the air and the contamination of aquifers [7,8]. The accumulation in landfills
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also poses a risk due not only to their visual impact but also to the high flammability of
these solid wastes, which can ignite fires that are difficult to extinguish [9].

For all these reasons, and especially during the last 20 years, there has been an increase
in studies attempting to reincorporate these solid wastes from ELT into new sustainable
building materials [10]. The incorporation of ELT rubber wastes in gypsum composites
has been studied with the purpose of improving some of their physical properties, such as
their thermoacoustic behaviour or reducing the capillary water absorption capacity [11,12].
Although, in general, gypsum is a widely used material in the construction sector, it has
been used since ancient times for the production of cladding and interior finishes [13].
Although it has excellent performance in the hygrothermal regulation of living spaces [14],
as well as a clean and satin appearance after in situ application [15], the industrialisation
of the construction sector has been the key driver for its large-scale development through
new prefabricated systems [16].

In this regard, many studies have been carried out in recent years trying to incorporate
plastic waste into gypsum composites under circular economy criteria. Thus, additions
of polypropylene from coffee capsules [17], thermal insulation waste [18] or low-density
polyethylene from recycled bags [19] have been explored. All of them have demonstrated
their suitability to produce sustainable and technically feasible prefabricated construction
products. Table 1 shows a synthesis of the studies carried out in the last three years
on gypsum plasters with rubber additions and the properties analysed in them. For
this purpose, a search has been carried out in Web of Science, including the keywords
((“Gypsum*” OR “Plaster*”) AND “Rubber”).

Table 1. Studies carried out with gypsum composites and the incorporation of rubber aggregates in
the last three years (2021–2023).

Ref. Rubber Type Added Addition Percentage Properties Analysed (*)

A B C D E F G H I J

[20] ELT aggregates 0.063–8.0 mm 5% by weight and carbon fibres • • • • •
[21] ELT aggregates 0.0–5.0 mm 14.5–46.6% by volume • • • • • •
[22] Natural rubber latex 10–20–30–40% by weight • • • • • •
[23] Natural rubber latex 20–50% by weight • • • •
[24] ELT aggregates 4.0–2.5–0.5 mm 15% by weight and polymers • • • • • •
[25] ELT aggregates 2.5–4.0 mm 8.8–17.6% by weight and fibres • • • • • •
[26] ELT aggregates 2.96–3.60 mm 5–10–20% by weight • • •
[27] ELT aggregates 2.5–4.0 mm 10–20–30% by weight • • • • •

(*) A: flexural strength; B: compressive strength; C: superficial hardness; D: thermal behaviour; E: acoustic
properties; F: water properties; G: density; H: longitudinal elasticity modulus; I: fire resistance; J: chemical
composition.

As a result of the studies included in Table 1, it can be seen that a large part of the re-
search carried out analyses the physical–mechanical behaviour of gypsum composites with
rubber additions. In this sense, the aim is to find an optimum ratio between the amount of
recycled material added to reduce the final density of the materials and to obtain mechani-
cal strengths in accordance with the standards [28]. This sometimes leads to the addition of
reinforcement fibres to improve ductility [20] or to the design of prefabricated “sandwich”-
type panels with sheets that provide greater mechanical stability to the designed plate or
panel [22,23]. On the other hand, a large number of studies analysed the improvements
in the thermal resistance and acoustic behaviour of the composites produced [24], which
encourages their application in construction to improve energy efficiency and the habit-
ability conditions of buildings [25]. Finally, it should be noted that these rubber recycled
materials, although they have a beneficial effect in reducing capillary water absorption [12],
sometimes reduce the fire resistance characteristic of gypsum composites [21].

The main objective of this work is to carry out a physico-mechanical characterisation
of the gypsum composites produced by partially substituting the original raw material
with the fine fraction of recycled rubber from ELT ranging from 0–0.8 mm. To this end,
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an experimental campaign has been designed that includes mechanical resistance tests in
accordance with the current reference standards, behaviour against the action of water
and a study of its thermal behaviour, among others. Once the initial campaign has been
completed, a novel prefabricated product is proposed for the construction of interior
partitions and wall cladding made of the different plaster composites analysed and a strip
of agglomerated recycled rubber. Moulds have been designed to produce these sustainable
prefabricated products to scale, with the aim of studying their most relevant properties
for building and assessing their suitability for the construction of interior partitions. This
is, therefore, an original work in line with the objectives to promote the circularity of
construction products included in the European Green Pact [29].

2. Materials and Methods

In this section, the raw materials used for the elaboration of the different gypsum
compounds are presented, together with the sample preparation process and a description
of the experimental programme carried out.

2.1. Materials

For the development of this research, fine gypsum was used as a binder material
mixed with drinking water. In addition, two recycled rubber products from ELT were used:
fine aggregates and pressed sheets.

2.1.1. Binder and Water

For this study, type B1 building gypsum was used according to the classification in
the UNE-EN 13279-1: 2009 standard [30]. This is a conglomerating material commonly
used in building construction for interior cladding and interior partitions. Its most relevant
characteristics, provided by the Saint-Gobain Placo Ibérica, S.A. group (Madrid, Spain), are
listed in Table 2.

Table 2. Properties of type B1 building gypsum (provided by the manufacturer [31]).

Purity (%) Particle Size
(mm)

Flexural
Strength (MPa)

Compressive
Strength (MPa) pH

Fire-Resistant
UNE-EN

13501-1:2019 [32]

Water Vapour
Diffusion (µ)

>80 0–0.2 ≥1 ≥2 >6 A1 6

For the kneading process, drinking water from Canal de Isabel II (Madrid, Spain) in
compliance with Council Directive 98/83/EC [33] was used. This type of water has been
successfully used in previous research [25] and is characterised by its medium hardness
and neutral pH.

2.1.2. End-of-Life Tyres Products

Firstly, rubber aggregates were used as a secondary raw material for the partial volume
replacement of traditional gypsum. This powdery material has a particle diameter between
0 and 0.8 mm. Figure 1 shows their appearance, chemical composition and the most
relevant physical properties.
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On the other hand, agglomerated recycled rubber strips have been used for the
production of prefabricated ceiling panels with improved thermal performance. The main
characteristics of these recycled materials are shown in Figure 2 and were provided by the
company Corticeira Amorim, S.A. (Mozelos, Portugal).
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2.2. Sample Preparation Process

For the preparation of the different gypsum composites studied in this research, the
method and times recommended in the UNE-EN 13279-2:2014 standard were followed [35].
It should be noted that the composites were prepared by making progressive partial
substitutions of the traditional plaster material by rubber recycled aggregates until reaching
a 30% volume replacement of the original raw material. The water content of the samples
was experimentally set to obtain a workable consistency, which was achieved with a paste
diameter (water/plaster) of 165 ± 5 mm in the shaking table test.

Table 3 shows the proportions, both in mass and volume, used to produce the gypsum
composites developed.

Table 3. Proportions used for the plaster compound dosage.

Sample Proportions by Weight (g) Proportions by Volume (%)
Plaster Water Rubber Plaster Water Rubber

G0.65 1000.0 650.0 — 60.6 39.4 —
G0.65-5% 950.0 617.5 25.0 57.6 37.4 5.0

G0.65-10% 900.0 585.0 50.0 54.6 35.4 10.0
G0.65-15% 850.0 552.5 75.0 51.6 33.4 15.0
G0.65-20% 800.0 520.0 100.0 48.6 31.4 20.0
G0.65-25% 750.0 487.5 125.0 45.6 29.4 25.0
G0.65-30% 700.0 455.0 150.0 42.6 27.4 30.0

The curing process for the gypsum materials studied was as follows: First, the samples
were kept in laboratory conditions (20 ± 2 ◦C temperature and 50 ± 5% relative humidity)
for six days; then, during the 24 h prior to the tests, the samples were placed in an oven
under the conditions set out in the UNE-EN 13279-2 standard of 40 ± 2 ◦C temperature
and 50 ± 5% relative humidity. In this way, all the compounds were tested after seven days
under the same starting conditions.

Figure 3 shows the appearance of the prepared gypsum composite matrixes when
cross-sectioned.
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2.3. Experimental Programme

The experimental programme developed in this research is divided into three stages:
(1) mechanical characterisation of the gypsum composites produced, (2) study of their most
relevant physical properties and, finally, (3) design and characterisation of new sustainable
prefabricated products. Figure 4 shows a scheme of the experimental process designed in
relation to the size of the samples tested.
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Regarding the first phase of mechanical characterisation, a total of three 4 × 4 × 16 cm3

samples were tested for each type of dosage developed. Firstly, the longitudinal modulus
of elasticity was determined using a Matest model C368 ultrasound machine (S.A.E. Ib-
ertest, Madrid, Spain), equipped with emission–reception transducers working at 55 kHz.
Vaseline was used at the junction interface to ensure adequate contact between the trans-
ducers and the samples. The surface hardness was determined with the aid of a Shore
C hardness tester (Figure 5a) (S.A.E. Ibertest, Madrid, Spain), taking five measurements
for each longitudinal face of the samples that had been in contact with the mould, accord-
ing to the recommendations of the UNE 102042:2023 standard [36]. Finally, the flexural
and compressive mechanical strengths were determined with the aid of an Ibertest hy-
draulic press (AUTOTEST 200-10SW) (S.A.E. Ibertest, Madrid, Spain), working with load
speeds of 10 N/s and 20 N/s, respectively, until the specimens broke according to the
recommendations of the UNE-EN 13279-2 standard [35] (Figure 5b,c).
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In order to better understand the microstructure of the gypsum composites, scanning
electron microscopy images were taken to observe the interaction between the rubber
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aggregates and the gypsum matrix. A Jeol JSM-820 microscope (Jeol, Croissy-sur-Seine,
France) operating at 20 kV and equipped with Oxford EDX analysis was used for this test.

On the other hand, physical characterisation tests were carried out on the compos-
ites, first determining the bulk density as the ratio between the mass and volume of
the 4 × 4 × 16 cm3 samples, in accordance with the procedure indicated in the UNE
102042:2023 standard [36]. At the same sample size, the capillary water absorption of
the gypsum materials produced following the adaptation of UNE-EN 1925:1999 [37] was
studied (Figure 5d). On the other hand, using samples of size 240 × 240 × 30 mm3, the
thermal conductivity coefficient of the composites was determined with the help of a mini
Hot-Box (DEC-FCTUC, Coimbra, Portugal) equipped with thermocouples. Finally, the
total water absorption coefficient according to UNE-EN 14617-1:2013 [38] and the open
porosity according to UNE-EN 1936:2007 [39] were determined for the same previously
dried samples.

Finally, flexural strength and impact hardness tests were carried out on
400 × 300 × 15 mm3 plates composed of the developed gypsum materials and a sheet
of agglomerated recycled rubber. The flexural strength test was carried out following
the indications of the UNE-EN 12859:2012 standard [40] on a total of three samples, and
the impact resistance was determined according to the procedure included in the same
standard, measuring the diameter produced by a steel ball of 50 mm in diameter and a
drop height of 50 cm.

3. Results

In this section, the results obtained for the different tests conducted in the experimental
programme designed are presented, including a critical discussion of them and exploring
their application possibilities.

3.1. Mechanical Characterisation Tests

Firstly, Figure 6 shows the values obtained for the bending strength and longitudinal
modulus of elasticity by ultrasound for the different composites.
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It can be observed how the progressive substitution of plaster material by recycled
rubber aggregates causes a progressive decrease in the flexural strength of the gypsum com-
posites. This same effect is observed in the longitudinal modulus of elasticity determined
by ultrasound and presented in Figure 6. However, although, for the composite with the
highest content of recycled material (G0.65-30%), a decrease in flexural strength of more
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than 29% is produced in comparison with the reference composite (G0.65), in all the cases
analysed, the minimum values required by the standards for this mechanical property, set
at 1 MPa, were exceeded. Thus, all the composites included in this study are suitable for
use in buildings in accordance with the UNE-EN 13279-2:2014 standard.

On the other hand, Figure 7 shows the results obtained for the compressive strength
and surface hardness of the developed gypsum materials.
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As in Figure 6, the compressive strength results shown in Figure 7 reflect a progressive
decrease in compressive strength as the amount of residue added increases. Thus, the
G0.65-30% composite showed a decrease in compressive strength of up to 41% compared
to the traditional G0.65 gypsum material. However, as in the case of flexural strength, all
the composites analysed exceeded the minimum value required by the UNE-EN 13290-2
standard for use in buildings, which is set at 2 MPa. In the same way, surface hardness
also experienced a slight decrease with the incorporation of ELT rubber waste in the
production of the gypsum composites. The most unfavourable decrease was 9.49% for
sample G0.65-30% with respect to the reference composite G0.65.

The results obtained for the mechanical properties analysed agree with those obtained
previously by other researchers. Thus, Herrero et al. observed that, for partial substitutions
in volume of the original gypsum material by rubber recycled aggregates of more than 50%,
it is not possible to guarantee compliance with the minimum flexural and compressive
strengths established in the standards [11]. A similar effect on the decrease in mechanical
strength was observed by Vidales et al., who added plastic waste from electrical cables [41],
and by Asadi et al., who incorporated waste from the automotive sector to produce gypsum
mortars under circular economy criteria [42]. The relationship between the decrease
in flexural strength and the modulus of elasticity, as well as between the compressive
strength and surface hardness, has been observed in previous studies using textile fibres
from ELT [43]. Finally, it should be noted that the incorporation of rubber wastes in
other investigations has led to a significant decrease in the surface hardness of gypsum
composites. In this regard, Jimenez-Rivero et al. observed a reduction in surface hardness
compared to the reference composites of more than 20% when rubber waste was added at
7.5% by weight of the original gypsum material [44].

Finally, in order to better understand the internal microstructure of the gypsum com-
posites developed in this research, images were obtained by scanning electron microscopy
(SEM). Figure 8 shows the interaction between the ELT aggregates and the gypsum matrix
at different magnifications.
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Figure 8. SEM images obtained for sample G0.65-20%. (a) Overview of the matrix of the pro-
cessed composites. (b) Details of the adhesion between the ELT rubber aggregates and the plaster
composite matrix.

Figure 8a corresponds to a generic view of the plaster composite matrix after the
flexural fracture test. Although a good integration of the residue in the matrix can be seen,
voids produced by the detachment of the rubber after mechanical testing can be visualised.
In Figure 8b, the characteristic acicular morphology of the dihydrate crystals (CaSO4·2H2O)
formed during the setting process of the gypsum material [45] envelop the rubber recycled
aggregates, forming a compact matrix without chemical reactions at the interface. This
corroborates what Herrero del Cura observed in his doctoral thesis, the adequate cohesion
between the traditional gypsum material and the rubber particles from ELT [46].

3.2. Physical Characterisation Tests

For this physical characterisation, firstly, the results obtained for the behaviour of the
gypsum composites analysed in relation to the action of water are presented. The effect of
water absorption by capillarity was studied in the different materials developed, obtaining
the results shown in Figure 9.
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Figure 9 shows the evolution of the mass water absorption per unit area versus test
time. Thus, it can be seen how the slope of the lines generated decreases as the recycled
raw material content increases, which implies a decrease in capillary water absorption as a
consequence of the incorporation of rubber recycled aggregates in the gypsum composite
matrix. Thus, the compounds with the highest ELT waste content, sample G0.65-30%,
showed the lowest water absorption during the 40-min test duration. Figure 9 shows the
good correlation between water absorption and the course of time in s½, being, in all the
cases, a linear adjustment with an R2 coefficient close to unity. This excellent correlation
and beneficial effect of rubber recycled aggregates was observed, in part, in the research
carried out by Zaldívar et al. [12].

Table 4 presents the results obtained for the open porosity of the materials analysed
and the total water absorption test.

Table 4. Results for the total water absorption and open porosity of the composites produced.

Type G0.65 G.065-5% G0.65-10% G0.65-15% G0.65-20% G0.65-25% G0.65-30%

Total Water
absorption (%) 43.36 42.54 40.03 39.04 38.18 37.01 36.67

Open Porosity (%) 45.22 44.67 42.17 39.53 39.81 38.60 38.19

As can be seen in Table 4, both the open porosity and the total water absorption
coefficient are reduced by incorporating rubber residues from ELT into the gypsum matrix.
This effect is related to the decrease in capillary water absorption presented in Figure 9.
In previous research [47,48], a similar effect on these properties has been observed when
incorporating shredded plastic waste into gypsum composites. This effect is due to the lack
of water absorption capacity of these rubber materials, which makes it difficult for water to
rise through the gypsum composite by capillarity.

In the same way, the maximum height reached by the water after the capillarity test
was analysed. These results are shown in Figure 10, which shows a progressive decrease
in the final height reached by the water in the gypsum composites as the recycled raw
material content increases. This effect is due to the larger pore diameter of the gypsum
composites as the recycled rubber content increases, in accordance with Jurin’s Law.
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As shown in Figure 10c and reflected in Figure 10a and thermography (Figure 10b),
there is a reduction in the water height reached of up to 53.6% for the G0.65-30% composite
versus the traditional gypsum material.

On the other hand, the effect of recycled rubber aggregates on the thermal conductivity
and bulk density of gypsum composites is studied in Figure 11.
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Figure 11 shows how the incorporation of ELT aggregates leads to a decrease in the
thermal conductivity of the gypsum composites and their bulk density. Although it is true
that, for the composite with the highest recycled raw material content (G0.65-30%), a slight
lightening of the gypsum material of 4.1% occurs, its effect on the reduction in thermal
conductivity is denoted by up to 39.1% with respect to the G0.65 reference material. This
suggests the suitability of these composites for the production of prefabricated products for
a sustainable and more energy-efficient building. This effect is due to the lower coefficient
of thermal conductivity of rubber aggregates compared to traditional gypsum composites,
as it has been observed in other works that the difference in thermal conductivity between
the two types of raw materials can be up to 44% [11].

The results obtained in this research are in agreement with those observed by other
researchers who have added plastic wastes to the matrix of gypsum composites. Examples
include Pedreño-Rojas et al., who added polycarbonate waste and obtained a 16.9% de-
crease in thermal conductivity with respect to the reference [49], Vidales et al., with a 7.4%
reduction in plaster composites with the addition of electrical cable insulation waste [50],
or Ferrández et al., with a decrease of up to 18% in the thermal conductivity of gypsum
composites with partial replacement of the original material with low-density polyethylene
granules [19]. Regarding studies with rubber recycled aggregates from ELT, it has been ob-
served that the incorporation of these wastes reduces the thermal conductivity of hardened
gypsum composites. Thus, Herrero et al., in their work, obtained decreases in thermal con-
ductivity of more than 25% in composites with partial replacement of the gypsum material
by ELT aggregates of a size between 0 and 0.8 mm [46]. Similarly, the incorporation of other
secondary raw materials from ELT, such as textile fibres in the manufacture of gypsum
composites, has also led to a decrease in the final thermal conductivity of the materials
developed and an improvement in their energy efficiency [43].
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3.3. Design and Characterisation of New Sustainable Prefabricated Products

The aim of this section is to show the application possibilities of the gypsum-based
composite materials developed in this research. To this end, the design of a prefabricated
panel for modular construction with a mixed composition of agglomerated recycled rubber
strip and the different gypsum-based materials studied is proposed. The manufacturing
process followed for the production of the panels is shown schematically in Figure 12.
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Figure 12. Production process diagram of the gypsum prefabricated products developed in this
research.

In this way, an environmentally friendly product design is presented for use in the
construction sector. The aim is to reduce the consumption of natural resources and chem-
ical agents used in the production of prefabricated products and to show new ways of
revaluing ELTs. Its simple manufacturing process makes it possible to move towards an
industrialisation of the construction sector, which is committed to the development of
modular parts with a better design adjustment that generates less waste on site [51].

Figure 13 shows the tests performed for plate bending strength and impact toughness.
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Figure 13. Plate bending test and impact toughness test results.

Firstly, as can be seen in Figure 13, the maximum ultimate load of the plates decreased
as the content of recycled material increased. These results are in agreement with those
obtained in the bending strength test according to UNE-EN 13279-2 shown in Figure 6. Thus,
for the sample with the highest raw material substitution by ELT aggregates (G0.65-30%),
there was a decrease of 30.04% in the bending strength.

This effect on the decrease in the flexural strength of plaster boards by incorporat-
ing plastic waste in the matrix of the composites has been observed previously by other
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researchers. Thus, Pedreño-Rojas et al. observed a decrease in the flexural strength of gyp-
sum plates with the incorporation of polycarbonate waste from CD and DVD wastes [52].
Similarly, Vidales-Barriguete observed a similar effect in his doctoral thesis by replacing
gypsum material in volume with plastic re-waste from low-voltage cables [49].

However, Figure 13 shows the positive effect of these rubber residues in cushioning
the impact on the surface of the plaster composites. From a partial substitution of 10% by
volume with ELT aggregates, the footprint diameter is progressively reduced. Furthermore,
it could be observed that the reference and G0.65-5% plates, although with a reduced
footprint diameter, fractured during the impact test because of their less elastic behaviour.
For this reason, it is understood that the incorporation of these ELT residues in prefabricated
plaster can be favourable in improving the impact toughness, in line with the results
obtained in the research carried out by Herrero et al. [46].

Lastly, Figure 14 shows the values collected for the thermal resistance and heat trans-
mission coefficient of the prefabricated elements studied. Additionally, a construction
detail of their possible application in partition walls is included.
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thermal properties.

As can be seen in Figure 14, the total thermal resistance of the prefabricated products
increases as the content of recycled rubber aggregates added increases, and a beneficial
effect derived from the incorporation of the agglomerated recycled rubber band is observed.
These mixed prefabricated products have a design that can be commercialised in the build-
ing sector, with a higher environmental quality than other gypsum composites for similar
applications. In addition, besides improving energy efficiency by reducing the thermal
conductivity of the partition cladding materials, the incorporation of the agglomerated
recycled rubber band mitigates the thermal bridges generated between the prefabricated
panel and the supporting metal studs. These thermal bridges are a source of heat losses that
have been studied in other investigations, in which the beneficial effect of the agglomerated
recycled rubber as thermal break strips in the partitions has been observed [53,54]. More-
over, given the good acoustic-related properties of the agglomerated recycled rubber, e.g.,
high compressibility rate (Figure 2), a higher vibration attenuation leading to an increase of
the airborne sound insulation provided by this new partition wall system is expected.
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However, these types of panels, by incorporating the thermal bridge break in their
manufacturing process, represent an improvement in terms of ease of execution and
reduction of assembly times. Thus, a creative solution is proposed to reformulate the
design of prefabricated panels for interior partition walls, extending the use of secondary
raw materials, being technically possible to develop and having analysed their properties.
In this way, a differentiated product is being offered that would allow the companies
involved in its development to opt for the achievement of competitive advantages in costs
and product differentiation.

4. Conclusions

In this work, the physical and mechanical behaviours of gypsum composites with
partial substitution of the original raw material by ELT aggregates with sizes between 0
and 0.8 mm were studied. In the same way, a critical discussion of the results was carried
out, and the properties of a new prefabricated prototype of our own design were anal-
ysed, which aim to meet the needs of customers with a greater environmental awareness
and contribute to the current need of construction companies to evolve towards greater
sustainability in the sector.

With the specific conclusions of the experimental program developed, the following
can be highlighted:

• Gypsum composites were developed with a partial substitution of up to 30% by
volume with recycled rubber aggregates. Although it is true that there was a reduction
in flexural and compressive strength of up to 29.6% and 41.2%, respectively, in both
cases, the minimum strength value required by the current standards was far exceeded,
and the surface hardness was higher than 70 Shore C units in all the cases analysed.

• From the SEM study, the correct setting of the gypsum composites produced by the
formation of dihydrate crystals was evident, as well as the high degree of cohesion
of the matrix and the good adhesion at the interface between the ELT waste and the
gypsum base material.

• It was observed that the incorporation of these recycled rubber aggregates reduces
water absorption by capillarity, reducing the height reached by water in the composites
subjected to this phenomenon by up to 53.6%. These results were consistent with
those obtained for open porosity, which were also reduced in the composites with the
highest amount of residue.

• The recycled rubber aggregates allowed a slight reduction in the density of the gypsum
compounds, originating a significant decrease in the final thermal conductivity of the
developed material, which was reduced by up to 39.1% for the G.65-30% compound.

• In order to provide practical application of the research, a prefabricated panel design
was proposed that combined the studied gypsum material with bonded rubber bands.
With these prefabricated plates, a decrease in the mechanical resistance to bending, an
increase in the impact absorption capacity and a decrease in the thermal conductivity
of the prefabricated products made with agglomerated rubber bands were deduced.
From this, their potential to be applied in the execution of partition walls and light
interior partitions was inferred.

In summary, it is considered that this research contributes in a relevant and original
way to the recovery and revalorisation of waste from ELT, extending the useful life of
these subproducts and improving the circularity of construction materials. Finally, as
limitations of this work that allow establishing future lines of research based on the results
obtained, it is worth mentioning the absence of acoustic and fire performance tests on
the materials developed. These complementary tests would be necessary for the possible
commercialisation of the products designed in this work and could be complemented with
a life cycle analysis of the final prefabricated product.
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