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Abstract: The evaluation of the elastic modulus of recycled concrete is one of the focuses of civil
engineering and structural engineering, which is not only related to the stability of building structures
but also related to the resource utilization of concrete. Therefore, based on the IRSM method in
mesoscale, a novel model for predicting the elastic modulus of recycled concrete is proposed which
has the advantages of being low-cost and high-precision, amongst others, compared to theoretical
and experimental methods. Then, the influence of coarse aggregate, contact surface, gelling material,
and air bubbles on the elastic modulus of recycled concrete is studied. The IRSM model includes
four processes: Identification, Reconstruction, Simulation, and Monte Carlo, which can accurately
reconstruct the geometric characteristics of coarse aggregate, efficiently reconstruct the coarse ag-
gregate accumulation model, and quickly analyze the elastic modulus of concrete, as well as fully
consider the nonuniform characteristics of coarse aggregate distribution and shape. Compared with
the experimental results, the error is less than 5%, which verifies the rationality of the IRSM method.
The results of the parametric analysis show that the influence of each factor on the elastic modulus
of concrete in descending order is elastic modulus of cement, elastic modulus of coarse aggregate,
content of coarse aggregate, content of air voids, elastic modulus of contacting surface, and thickness
of contacting surface, and the corresponding Pearson’s Coefficients are 0.688, 0.427, 0.412, −0.269,
0.188, and −0.061, respectively, in which the content of air voids and thickness of contact surface have
a negative effect on the elastic modulus of concrete. These influences mainly affect the deformation
resistance (elastic modulus) of concrete through “force chain” adjustment, including the force transfer
effect, number of paths, and integrity.

Keywords: concrete; elastic modulus; numerical simulation; mesoscale; Monte Carlo

1. Introduction

As a kind of high-performance engineering material, concrete is widely used in
construction, bridges, dams, and other man-made structures [1,2]. With the development of
buildings towards higher, deeper, and larger volumes, higher performance is put forward
for concrete materials, such as compressive strength, tensile strength, fatigue characteristics,
and elastic modulus [3]. In addition, with the deterioration of the ecological environment,
researchers are making efforts to build sustainability [4–6], such as using green building
materials, low-carbon engineering designs, and efficient construction technology.

In terms of green building materials, the reuse of construction waste is a good
method [7,8], which can not only reduce the processing cost of construction waste but
also reduce the cost of building materials. Therefore, some scholars have put forward the
research plan of recycled concrete (RC), which uses recycled construction waste to replace
part of coarse aggregate [9]. In terms of material design, in order to find concrete mate-
rials that meet specific performance requirements, engineers generally use experimental
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research [10], numerical simulation [11], theoretical analysis [12], and empirical estima-
tion [13]. Experimental research is the most reliable, but its high test and time cost makes
it difficult for engineers to accept. Theoretical analysis and empirical estimation are two
kinds of concrete design methods based on theoretical model and engineering experience,
respectively, but their accuracy is based on the rich experience of engineers, which limits the
wide application of such methods. Numerical simulation is a new way to predict concrete
properties and has been widely used in civil engineering in recent years. Due to the greater
discretization of recycled materials compared with traditional materials (from the source
of construction waste, processing technology, powder content, etc.), these uncertainties
make experimental research short in terms of economic cost and time cost, and theoretical
and empirical formulas cannot accurately predict the elastic modulus of recycled concrete.
Therefore, numerical solutions are a low-carbon way to solve these problems.

In order to ensure the rationality of the numerical simulation model, it is necessary to
establish a refined concrete geometric model [14,15]. Abdelmoumen et al. [16] established
a prediction model of the elastic modulus of particle-reinforced composites considering
coarse aggregate, interfacial layer, and filler and proved the feasibility of numerical simu-
lations in elastic modulus prediction. Weigger et al. [17] used disjoint random spheres to
simulate the spatial distribution characteristics of coarse aggregates and controlled differ-
ent particle gradations by radius. Huang et al. [18] constructed a particle stacking model
considering particle shape and surface characteristics by means of feature recognition and
reconstruction. Dehghanpoor et al. [19] used ellipsoid to simulate coarse aggregate and
established a concrete coarse aggregate deposition model that could consider particle shape
and orientation. Garboczi et al. [20,21] considered concrete coarse aggregate as a fixed
shape (spherical, regular polygon, etc.) and studied the influence of aggregate shape, diam-
eter, and interface defects on concrete strength. In the study of Zhou et al. [22], concrete
aggregate is considered to be a two-dimensional polygon with irregular shape, and the
influence of the strength of the contact surface between aggregate and cementing material
is considered through the interface layer. Chen et al. [15,23] further considered the shape
of coarse aggregate and proposed a mesoscale model construction method for concrete
with an irregular shape of coarse aggregate. In the study of Shuguang et al. [24,25], a real
mesoscale numerical model of concrete was established based on CT scan images, and the
influence of the interface between aggregate and cementing material was fully considered
through thickening interface elements.

Unlike traditional concrete composed of coarse aggregate, fine aggregate, and cement-
ing material [26], recycled concrete may also contain recycled coarse aggregate [27] or
air bubbles [28]. In addition, in order to further reduce the impact of concrete material
production on the environment, some concrete will be mixed with an air-entraining agent,
which can greatly improve the construction workability of concrete and ensure the quality
of a construction. At the same time, the amount of cementing material per unit volume can
be reduced, and the carbon emissions in the production process of concrete material can
be reduced. In concrete structures, the performance of the contact surface between coarse
aggregate and cementing material [29] has a huge impact on its overall performance, which
is reflected in the aspects of compressive strength, failure mode, elastic modulus prediction,
and so on. In recycled concrete, because recycled aggregate is broken by construction
waste, the surface of coarse aggregate is rougher than that of traditional coarse aggregate,
and its strength may be weaker than the contact surface between traditional concrete and
cementable material, which brings challenges to the prediction of the mechanical properties
of recycled concrete.

Based on the above analysis, in order to design recycled concrete materials that
meet the elastic modulus requirements under the premise of low carbon, referred to as
the IRSM (Identification—Reconstruction—Simulation—Monte Carlo) numerical analysis
method in mesoscale, a novel elastic modulus prediction model was established considering
the actual coarse aggregate topography, composition diversity (coarse aggregate, gelling
material, bubbles, etc.), and nonuniformity of the component distribution of concrete. The
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influencing factors of the elastic modulus of recycled concrete are analyzed in order to
guide the engineering application of high-performance recycled concrete.

2. Mesoscale Numerical Model

In order to establish an accurate prediction model of the elastic modulus of concrete, based
on the research of Huang et al. [30], an IRSM (Identification—Reconstruction—Simulation—
Monte Carlo) prediction method for the elastic modulus of concrete was proposed.

As shown in Figure 1, the method mainly includes four processes, namely, Identifi-
cation, Reconstruction, Simulation, and Monte Carlo calculation. For identification, the
purpose is to extract the geometric features of coarse aggregates in concrete [31], such as
particle size, long-axis size, roughness, etc. For the reconstruction process, the purpose is
to reverse reconstruct the geometric characteristics of coarse aggregate in concrete based
on the identified characteristic parameters and rationally put it into the set area. For the
evaluation process, the purpose is to calculate the elastic modulus of concrete by numerical
simulation based on the generated concrete elastic modulus calculation model, combined
with the initial conditions of the model, attribute parameters, and boundary conditions.
For the Monte Carlo method [32,33], the purpose is to fully consider the nonuniformity of
the coarse aggregate placement position and geometric characteristics in concrete so as to
obtain the predicted elastic modulus of concrete with statistical significance.
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Figure 1. Introduction to IRSM methods.

2.1. Identification for Concrete Model

According to Hohanson’s studies [34,35], it can be found that particle shape has great
influence on the material mechanical properties and failure modulus. Therefore, in order
to better reveal the influence of coarse aggregate on the elastic modulus of concrete, it is
necessary to quantify the geometric features of coarse aggregate. Therefore, an efficient
feature recognition method for concrete coarse aggregate is proposed, which can accurately
identify the geometric size and angular characteristics of particles. The specific recogni-
tion process includes cross-section photography, coarse aggregate acquisition, long-axis
acquisition, short-axis acquisition, feature point acquisition, and polar axis acquisition.

Cross-section photography: The method of cross-section scanning, such as CT [36], is
used to obtain nondestructive cross-section images of concrete. Cross-section images of
concrete can also be obtained by means of first cutting and then optical photography, as
shown in Figure 2a.
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Figure 2. Characteristics identification of concrete coarse aggregate. (a) Concrete section; (b) Aggre-
gate marked concrete; (c) The longest axis of coarse aggregate; (d) The width of of coarse aggregate;
(e) The characteristic points of coarse aggregate; (f) The angle of of coarse aggregate.

Coarse aggregate acquisition: The outline image of coarse aggregate particles is
obtained based on pixel differences and imported into Matlab software, as shown in
Figure 2b.

Long-axis acquisition: Based on Matlab software (2018), the longest axis of coarse
aggregate is obtained by scanning boundary point data, and is defined as H, as shown in
Figure 2c.

Short-axis acquisition: Based on the long axis of the identified particle, the long axis is
extended along the vertical line to both ends until the particle is completely wrapped. The
short side of the wrapped outer rectangle is the width W of the coarse aggregate, as shown
in Figure 2d.

Feature point acquisition: According to Matlab software, the control point of coarse
aggregate is extracted by setting the smooth threshold (the angle difference between tangent
lines between adjacent coarse aggregate contour points), as shown in Figure 2e.

Polar axis acquisition: The midpoint of the outer rectangle is point A, the feature point
is point B, the line segment is constructed, and the length R of the line segment and Angle
θ between the line segment and horizontal line is measured.

In order to reconstruct the geometric model of concrete coarse aggregate, based on
a set of CT scan results, the identification method proposed in this paper was adopted to
identify and extract the geometric features of coarse aggregate, and the results are shown
in Figure 3. Figure 3a shows the recognition results of concrete feature Angle θ. It can be
found that the spatial distribution of the feature angle is significantly random and presents
the characteristics of random distribution; Figure 3b shows the identification results of
the relative length α of coarse aggregate, which ranges from 0.4 to 1.1, and the calculation
formula is shown in Equation (1). Through the statistical analysis of relative length α, it can
be found that the relative length of coarse aggregate presents a normal distribution trend in
spatial distribution, and this trend will be applied to the reconstruction of coarse aggregate.
Figure 3d shows the identification results of the long axial ratio β of coarse aggregate, which
reflects the morphological characteristics of the particles, such as elongated, spherical, etc.
The identification results show that the β distribution of coarse aggregate is in the range
of 1.0~2.0 and presents a normal distribution. Figure 4d shows the identification results
of the number of control points N in 200 particles, which reflects the number of feature
points in a single particle and is an important parameter for later model reconstruction. The
identification results show that the number of feature points in the coarse aggregate ranges
from 4 to 23, and the average is 13, which indicates that there are normal characteristics in
the statistical sense.

α =
2R
H

(1)
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β =
L
W

(2)
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Figure 3. Identification results of feature parameters. (a) feature angles; (b) relative length; (c) long-
axis/short-axis ratio; (d) the number of control points.
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Figure 4. Reconstruction of coarse aggregate accumulation model.

2.2. Reconstruction for Concrete Model

Based on Huang’s studies [30], a reconstruction method for the concrete to match
the identified method proposed in this manuscript is put forward, and the corresponding
construction process is shown in Figure 4. Firstly, the geometric parameters of coarse
aggregate are input into the calculation model. Then, according to the grading and porosity
requirements of coarse aggregate, the coarse aggregate content Ac in each grading range
is calculated. Then, according to the grading requirements, the short-axis length W of
coarse aggregate is generated, and the corresponding long-axis H of coarse aggregate is
constructed according to the long-axis ratio β. Then, according to the number of control
point parameters N, feature angle θ and relative length α are identified to reconstruct
the corresponding coarse aggregate geometric contour. The constructed coarse aggregate
is added to the coarse aggregate generation set, and whether the allowable error of the
area value of a single gradation is satisfied is judged, as shown in the process 1⃝. If it is
not satisfied, the particle is re-generated; otherwise, it enters the next cycle. According
to the gradation order from large to small, coarse aggregate generation sets within the
corresponding gradation range are constructed successively, as shown in process 2⃝, until
all the generation sets are completed.

When the coarse aggregate generation set is constructed, the particles need to be put
into the corresponding concrete space. The coarse aggregate is placed in the order from
large to small so that a higher efficiency can be obtained [30]. When a new particle is
placed, all the feature points of the new particle are tested against the particles that have
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already been placed. The new coarse aggregate will only be placed if all the feature points
of the newly placed coarse aggregate are outside the already placed coarse aggregate as
shown in Figure 5a (this is also known as the collision detection process). If some of the
new coarse aggregate is inside the concrete space as shown in Figure 5b, this is repeated
until all the pellets have been placed. Since part of the coarse aggregate may be outside the
concrete space, which may cause the porosity of the concrete accumulation model to be
different from the design porosity, it is necessary to conduct a secondary test to ensure that
the generated porosity is within the allowable range of the design porosity error. For the
consideration of the contact surface between coarse aggregate and cementing material, the
coarse aggregate outline is mainly shifted inward, and the offset distance is equal to the
thickness of the contact surface. Then all the coarse aggregate is put in and converted to a
numerical output format that the software can recognize (DXF files are recommended).
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2.3. Simulation for Concrete Model

In order to predict the elastic modulus of concrete, based on the generated concrete
geometric model containing contact surface, COMSOL software [37] was used to establish
the corresponding numerical simulation model. The modeling and analysis process is
shown in Figure 6. Figure 6a shows the geometric model in the numerical analysis, which
mainly includes four parts, namely coarse aggregate, contact surface, bubble, and cementing
material, all of which a have different elastic modulus. Figure 6b shows the results of the
grid division of the calculated region. It should be noted that a smaller grid size, while
allowing for more accurate prediction results, will increase the amount of computation.
Therefore, the model adopts a “transitional” grid division method [38], that is, small-size
grids are used for some small-size areas (such as contact areas and other areas of concern),
while large-size grids are used for some large-size areas (such as coarse aggregate center
and other cementing material areas), and a grid coefficient less than two times is used to
amplify the two different sizes of the grids. The problem of nonconvergence that may exist
in the calculation of the model is eliminated. Figure 6c shows the boundary conditions of
the elastic modulus of concrete. In this model, fixed boundary conditions are set at the
bottom of the concrete, boundary conditions of force F are set at the top, and free boundary
conditions are set on both sides of the model. Figure 6d shows the stress distribution
results of the model after compression. It can be seen from the Figure 6d that large stress
distributions appear around the aggregate edges and bubbles, which is related to the stress
concentration [11] caused by the elastic modulus of the material and geometric effects.
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Figure 6. This is a figure. Simulation for the elastic modulus simulation of concrete. (a) Geometric
model; (b) mesh division; (c) boundary conditions; (d) numerical results.

Based on the numerical analysis results, the deformation ∆L of concrete under rated
load F is measured, and the elastic modulus of concrete is calculated by Equation (3).

E =
F·b

a·∆L
(3)

where F represents model load, N; ∆L represents the deformation of the model, m; a
represents the model width, m; and b represents the height of the model, m.

2.4. Monte Carlo Consideration for Concrete Model

In order to fully consider the nonuniform characteristics of the geometric shape and
distribution characteristics of the concrete coarse aggregate, the Monte Carlo method was
used for analysis. A set of typical analysis results are shown in Figure 7a. In Monte Carlo
analysis, it is very important to determine a reasonable random number of times, which
requires a balance between statistically significant results and model computations. Hence,
the cumulative average of the calculation results under different calculation times was
statistically analyzed, as shown in Figure 7b, and it can be found that the model is basically
in a state of equilibrium when the calculation amount reaches 500 times, so 500 times is
set as the standard calculation times of the model. The statistical results calculated by the
model are shown in Figure 7c. It can be found that the calculated results of the concrete
elastic modulus show a trend of normal distribution across the horizontal line, and the
average value is 25.8 Gpa.
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3. Rationality Verification

In order to test and obtain the elastic model of concrete, prismatic samples with a
length, width, and height of 150 mm, 150 mm, and 300 mm, consisting of C40 and C35 level
concrete, were prepared (shown in Figure 8) based on the Standard for Testing Mechanical
Properties of Ordinary Concrete (GB_T50081-2019) [39], and the deformation and load
values of concrete samples were obtained by micro-deformation measuring the instrument
and pressure module. It should be noted that the distance between the two marks is
150 mm, as shown in Figure 8.
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Figure 8. Experimental details for the elastic modulus of concrete.

Table 1 reflects the test results of elastic model quantities of concrete in two groups (six
in each group). It can be found that the elastic modulus values of concrete in two tests are
32.2 Gpa and 26.3 Gpa, respectively, and the corresponding numerical analysis predicted
values are 33.5 Gpa and 25.8 Gpa, respectively; the difference between the two is 4.04%
and 1.9%, respectively. The 5% error requirement of engineering design is satisfied, and
the rationality of the numerical simulation model is proved. In addition, by comparing
the values of the two, it can be found that the elastic modulus of the concrete mixed with
recycled coarse aggregate is lower than that of traditional concrete, and the strain generated
under the same pressure value is larger, which is mainly due to the poor mechanical
properties of recycled coarse aggregate.

Table 1. Elastic modus obtained by experimental and numerical method.

No. Exp-1
/GPa

Exp-2
/GPa

Exp-3
/GPa

Exp-4
/GPa

Exp-5
/GPa

Exp-6
/GPa

Exp-Ave
/Gpa

Num
/Gpa Error

1 32.2 30.5 31.3 33.2 33.9 32.1 32.2 33.5 4.04%
2 26.1 27.9 24.9 25.3 26.3 27. 26.3 25.8 1.90%

4. Parametric Analysis

The influencing factors of concrete elastic modulus mainly include coarse aggregate
content, coarse aggregate properties, contact surface thickness, contact surface properties,
cementing material type, and bubble content. Therefore, based on the IRSM method for
predicting the elastic modulus of concrete proposed in this project, the elastic modulus
of concrete under the influence of various variables is analyzed to better support the
application of concrete engineering. Coarse aggregate is an important component of
concrete structures. According to the results of the CT scan in this project and the research
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results of Liu et al. [40], the effective range of coarse aggregate is set at 20~50%. Considering
that concrete coarse aggregate includes recycled coarse aggregate prepared by construction
waste, the elastic modulus of the coarse aggregate is 20~50 Gpa. Based on CT test results
and previous studies [11], the thickness of the contact layer between coarse aggregate and
cementing material was set to 0~5 mm, and the elastic modulus was considered to be
10~30 Gpa. According to the test results of the elastic modulus of mortar and the research
results of Chen et al. [23], the elastic modulus of cementing material is set at 5~30 Gpa.
According to the amount of initiator and CT test results, the bubble content in concrete is
set to 0~10%. According to the effective range of the above variables, parametric analysis
was carried out, and the test scheme is shown in Table 2.

Table 2. Analysis of influencing factors of elastic modulus of concrete.

Materials Factors Range

Coarse aggregate Content/% 20, 25, 30, 35, 40, 45, 50
Elastic modulus/Gpa 20, 25, 30, 35, 40, 45, 50

Contact surface
Thickness/mm 0, 1, 2, 3, 4, 5

Elastic modulus/Gpa 5, 10, 15, 20, 25, 30
Bubble Content/% 0, 2.5, 5, 7.5, 10

Cementing material Elastic modulus/Gpa 10, 20, 30

4.1. The Influence of Coarse Aggregate

Figure 9 shows the simulation results at the different contents and elastic modulus
of coarse aggregate. It can be seen from Figure 9a that with the increase in the coarse
aggregate content, the elastic modulus of concrete presents a nonlinear increase, and the
increasing trend gradually slows down. In the analysis of the reasons, with the increase in
the coarse aggregate content, concrete gradually formed a mechanical skeleton composed
of coarse aggregate, improved the deformation resistance of concrete, and thus showed a
higher elastic modulus. When the coarse aggregate content reaches 40%, the mechanical
skeleton inside the concrete has been perfected. Therefore, with the continuous increase
in the mixed coarse aggregate content, the contribution of the increased coarse aggregate
content to the mechanical skeleton gradually weakens, and the increase rate gradually
slows down. Comparing the test results of different cementing materials, it can be found
that the lower the elastic modulus of cementing materials, the greater the influence of the
increase in the coarse aggregate content on the elastic modulus of concrete.
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As shown in Figure 9b, under the premise of the same coarse aggregate content, with
the increase in the elastic modulus of coarse aggregate, the predicted result of the elastic
modulus of the concrete also gradually increases, showing a nonlinear growth trend. When
the content of coarse aggregate is 40%, the force transfer skeleton composed of coarse
aggregate inside concrete is relatively perfect, so the greater the elastic modulus of coarse
aggregate, the stronger the deformation resistance of concrete, and the higher the elastic
modulus. When the elastic modulus of cementing material is 10 Gpa, the nonlinear trend
of the elastic modulus of concrete increasing with the increase in the elastic modulus of
coarse aggregate is obvious. When the elastic modulus of cementing material is 30 Gpa, the
elastic modulus of concrete increases linearly with the elastic modulus of coarse aggregate.
Analyzing the reasons for this, the lower elastic modulus of the cementified material limits
the increase in the elastic modulus of the coarse aggregate on the deformation resistance of
concrete, and the greater the difference between the elastic modulus of the coarse aggregate
and the cementified material, the more obvious this limitation is. Therefore, with the
increase in the elastic modulus of the coarse aggregate, the concrete containing a low elastic
modulus of the cementified material shows a smaller increase in the elastic modulus.

4.2. The Influence of Contact Surface

Figure 10 shows the simulation results at a different thickness and elastic modulus of
contact surface between coarse aggregate and cementing material. As shown in Figure 10a,
when the elastic modulus of the contact layer is the same as that of the cementing material
(10 Gpa), the elastic modulus of concrete does not increase with the increase in the thickness
of the contact layer. When the elastic modulus of the contact layer is less than the strength
of the cementing material, the elastic modulus of the concrete gradually decreases with
the increase in the thickness of the contact layer, and the greater the difference between
the elastic modulus of the contact layer and the cementing material, the more obvious
the reduction amplitude. Analyzing the reasons for this, the lower elastic modulus of the
contact layer weakens the force transfer effect of the “force chain” of the coarse aggregate,
and the greater the thickness of the contact layer, the larger the proportion of the contact
layer in the “force chain”, the more obvious the weakening effect on the deformation
resistance of the concrete, so the elastic modulus of the concrete increases with the increase
in the thickness of the contact surface.
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As shown in Figure 10b, the elastic modulus of concrete presents a linear growth trend
with the increase in the elastic modulus of the contact surface, and the higher the elastic
modulus of the cementing material, the more obvious the increase. The reason for this is
that with the increase in the elastic modulus of the contact layer, the less the weakening
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effect of the force chain composed of coarse aggregate inside the concrete, the better the
deformation resistance of the concrete, that is, the greater the elastic modulus. When the
elastic modulus of the cementitious material is high, the contact layer has a greater influence
on the “force chain” of the concrete, so the elastic modulus of the contact layer shows a
greater influence on the cementitious material concrete with a high elastic modulus.

4.3. The Influence of Bubble

Figure 11 shows the evolution law of the concrete elastic modulus under different
bubble contents. It can be seen from the Figure 11 that with the increase in the bubble
content, the elastic modulus of concrete gradually decreases and presents a nonlinear trend.
Analyzing the reasons for this, with the increase in the content of bubbles inside the concrete,
the “force chain” will be affected by different degrees, such as disconnection, zigzag, etc.,
which will weaken the antideformation ability of the concrete, so the elastic modulus
gradually decreases. When the bubble content is less than 5%, the effect on the “force chain”
is significant, so the decrease amplitude of the elastic modulus of concrete is large. When
the bubble content is greater than 5%, the “force chain” has been greatly disturbed, and the
increase in bubbles has little impact on the “force chain”, so the decline gradually slows
down. By comparing the test results of cementified materials under different elastic moduli,
it can be found that the higher the elastic moduli of cementified materials, the greater the
reduction caused by bubbles, which is related to the greater difference between the elastic
moduli of bubbles and cementified materials. The greater the difference between the two,
the more obvious the weakening effect of bubbles, and the greater the reduction in the
elastic moduli of concrete.
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4.4. Discussion and Analysis

It is very important for the design and application of high-performance concrete to
understand the influence of various factors on the elastic modulus of concrete. To this
end, Pearson correlation analysis [41,42] was used for research, and the analysis results are
shown in Figure 12.

Figure 12 shows the simulation results of the correlation coefficient, and it can be
found that the influence factors on the elastic modulus of concrete in descending order is:
elastic modulus of cement, elastic modulus of coarse aggregate, content of coarse aggregate,
content of air voids, elastic modulus of contacting surface, and thickness of contacting
surface, and the corresponding correlation coefficients are 0.688, 0.427, 0.412, −0.269, 0.188,
and −0.061, respectively, in which the content of air voids and thickness of contacting
surface have negative effects on the elastic modulus improvement in concrete. According
to the results of the Pilsch analysis, it can be found that the elastic modulus and content of
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coarse aggregate and the performance of cementing material have the greatest influence
on the elastic modulus of concrete. When construction waste is used to replace coarse
aggregate or part of fine aggregate in concrete, attention should be paid to the weakening
effect on the elastic modulus of concrete.
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Through the analysis of the stress nephogram after concrete compression, it can be
found that the influence of various influencing factors on the elastic modulus of concrete is
mainly reflected in the force transfer effect, the number of paths, and the integrity of the
“force chain”. The increase in the elastic modulus between coarse aggregate and contact
surface will improve the force transfer effect of the “force chain”. The increase in the coarse
aggregate content and the improvement in cementitious material properties will increase
the force transfer path and improve the deformation resistance of concrete. The increase in
the bubble and contact surface thickness will destroy the force transfer path and weaken
the deformation resistance of concrete.

In addition, it should also be observed that the cementing material consisted of cement
and fine aggregate, which were considered to be uniform materials in the manuscript.
However, it is nonuniform and influences the mechanical properties of concrete. Hence,
the method proposed in the manuscript is suitable for concrete, whose strength class is
smaller than the C60 level, and more studies will be conducted in the future.

5. Conclusions

In order to accurately predict the elastic modulus of recycled concrete by means
of numerical analysis, an IRSM method considering the geometric characteristics and
nonuniformity of the distribution of concrete was proposed, and the rationality of the
method was verified by comparison experiments, and parametric analysis was carried out
based on the main components of concrete. The main conclusions are as follows:

(1) An efficient identification and reconstruction method for the geometric character-
istics of concrete coarse aggregate is proposed, which can efficiently identify the
long-axis, short-axis, feature point, and feature length of coarse aggregate and accu-
rately construct the geometric model of the coarse aggregate with original structural
characteristics according to these parameters.

(2) A concrete elastic modulus prediction IRSM model is proposed, which can consider
the influence of coarse aggregate, contact surface, cementified material, bubbles,
and other factors, and the rationality of the model is verified through experimental
research (relative error is less than 5%).

(3) According to Pearson’s analysis, the influences of each influencing factor on the elastic
modulus of concrete are as follows: elastic modulus of cement, elastic modulus of
coarse aggregate, content of coarse aggregate, content of air voids, elastic modulus
of contacting surface, and thickness of contacting surface, and the corresponding
correlation coefficients are 0.688, 0.427, 0.412, −0.269, 0.188, and −0.061, respectively.
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(4) It is revealed that the influence of various influencing factors on the elastic modulus
of concrete is mainly reflected in the force transfer effect, the number of paths, and
the integrity of the “force chain”. The increase in elastic modulus between coarse
aggregate and the contact surface will improve the force transfer effect of the “force
chain”. The increase in coarse aggregate content and the improvement in cementitious
material properties will increase the force transfer path and improve the deformation
resistance of concrete. The increase in bubble and contact surface thickness will
destroy the force transfer path and weaken the deformation resistance of concrete.
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