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Abstract: Accurate and rapid thermal load identification based on limited measurement points is
crucial for spacecraft on-orbit monitoring. This study proposes a stepwise identification method based
on deep learning for identifying structural thermal loads that efficiently map the local responses and
overall thermal load of a box structure. To determine the location and magnitude of the thermal load
accurately, the proposed method segments a structure into several subregions and applies a cascade
of deep learning models to gradually reduce the solution domain. The generalization ability of the
model is significantly enhanced by the inclusion of boundary conditions in the deep learning models.
In this study, a large simulated dataset was generated by varying the load application position and
intensity for each sample. The input variables encompass a small set of structural displacements,
while the outputs include parameters related to the thermal load, such as the position and magnitude
of the load. Ablation experiments are conducted to validate the effectiveness of this approach. The
results show that this method reduces the identification error of the thermal load parameters by more
than 45% compared with a single deep learning network. The proposed method holds promise for
optimizing the design and analysis of spacecraft structures, contributing to improved performance
and reliability in future space missions.

Keywords: thermal load identification; stepwise identification method; deep learning; boundary
condition encoding

1. Introduction

As the most common structural form in spacecrafts, the box-type structure, accurate
real-time acquisition of its thermal environment is meaningful to intelligently assessing
the service status of on-orbit structures and is crucial in equipment health monitoring
and fault diagnosis [1]. Additionally, real-time acquisition of structural thermal load
information can assist engineers in offline maintenance and online feedback control [2,3]
as well as applicable to aerospace engineering [4–6], flight vehicles [7], high-performance
machining [8], and thermal experimental device development [9]. However, one may not
be able to directly measure the thermal loads on a structure owing to the severity of the
environment or the inaccessibility of heat sources [10], which implies that only a few local
responses can be obtained. The precise thermal load exerting on the structure must be
determined despite the limited local response data.

Thermal load identification is an inverse problem that differs significantly from other
forward structural computations. When the local responses reach the overall load in the
inverse analysis, slight random errors in the data are magnified, thus resulting in significant
inaccuracies and unsatisfactory conditioning [6,10]. This phenomenon is of interest to many
researchers because it is challenging and useful in practical applications. For materials
with simple and regular shapes, precise solutions can be obtained by solving inverse heat
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conduction [7,11,12] and inverse thermoelasticity problems [10,13,14]. However, as the
geometrical complexity of the structures increases, the solution process necessitates lengthy
and complicated mathematical derivations, extensive numerical computations, and high-
quality response measurements [15]. Real-time and accurate thermal load identification of
complex structures remains a formidable challenge in engineering applications.

Owing to their ease of implementation and rapid online computation, machine learn-
ing algorithms offer a new approach for rapidly identifying complex structural loads by
directly uncovering the underlying relationship between responses and loads from data.
Academics began investigating load identification based on machine learning as early as
the 1990s [16], where they employed artificial neural networks to model the strain–load
relationship of structures and perform load identification. Subsequently, other machine
learning algorithms, such as Monte Carlo simulation methods [17], random forests [18],
Elman networks [19], and backpropagation neural networks [20–23] have been shown to
successfully identify loads. However, classical machine learning algorithms tend to manage
individual tasks separately, thus rendering it challenging to satisfy the accuracy require-
ments of tasks involving the simultaneous identification of load locations and magnitudes.

Deep learning algorithms allow the designs of several neural network modules to be
combined, thus enabling the deep abstraction of input features and providing greater non-
linear analytical capabilities for addressing more challenging load identification problems.
Ren et al. [24] proposed a deep learning algorithm that directly determines the structural
damage load parameters from residual plastic deformations. Wada et al. [25] achieved the
recognition of the complex distributed static load by performing shape function interpola-
tion on the output nodes gained by neural networks. Feng et al. [26] utilized convolutional
neural networks (CNNs) to automatically extract features from the time-frequency signals
of guided wave data, thereby achieving low-velocity impact load localization for structures.
Yang et al. [27] discovered that convolutional layers can be regarded as filters in dynamic
load identification and that their proposed deep CNN exhibited high resistance to noise. In
other studies, recurrent neural networks (RNNs) for load detection were investigated [28],
and the results showed that the RNN algorithm was not affected significantly by sensor
arrangement and measurement errors [29]. Du et al. [30] employed the full-field temper-
ature gradient and temperature variation rate of honeycomb sandwich structures under
laser irradiation as input parameters for a deep learning model. They established a loss
function guided by physical information through the introduction of a laser power density
function, enabling high-precision identification of thermal load parameters (laser diameter
and power). Deep learning algorithms have been demonstrated to be advantageous over
conventional machine learning approaches. In addition, distributing a challenging load
identification task to several deep learning models for regressing load parameters has
been shown to yield high accuracy. However, in the aforementioned studies, the interrela-
tionships between the load parameters and the geometric boundary characteristics of the
structure were not considered. In fact, each deep learning model was individually trained
and tested, which reduced the efficiency of the method construction and generalization
performance on different structures. Furthermore, to the best of our knowledge, the ap-
plication of a deep learning approach for identifying thermal loads has not been reported.
Thus, this study was conducted to address this gap.

Herein, a stepwise identification method based on deep learning for the inverse iden-
tification of structural thermal loads is proposed, which includes the localization of the
load position and the estimation of its magnitude. Prior knowledge regarding the bound-
ary conditions (BCs) is incorporated into a cascaded deep learning model to gradually
achieve more accurate thermal load identification while considering the geometric bound-
ary characteristics of various regions and the relationships among the different thermal
load parameters.



Materials 2024, 17, 357 3 of 19

2. Method: Stepwise Identification Method Based on Deep Learning
2.1. Method Description

For a structural instance and response data U ∈ Rn measured from n locations, the
overall thermal load Q(x, q) exerting on the structure must be determined, including the
position x ∈ Rd and magnitude q ∈ R1 of the load, where x and q are a d-dimensional
vector (d is the geometric dimension of the structure) and scalar, respectively. Determining
the inverse relationship F−1(·) between U and Q and then entering the response data to
identify the global load Q = F−1(U) is the primary goal of load identification. Therefore,
the accuracy and efficiency of load identification significantly depend on the inverse
relationship model F−1(·).

A complicated inverse relationship exists between the structural responses and thermal
load, as shown in Figure 1, considering the complexity of industrial equipment and the
discontinuity of thermal load positions throughout the entire structural domain, which is
caused by the inaccessibility of heat sources under certain operating conditions. Moreover,
heat sources only affect a small portion of large-scale industrial equipment. Sensors close
to the load application region exhibit significant changes throughout the actual response
measurement procedure, whereas sensors located farther from the load area detect slight or
no change. Consequently, the local optima can be obtained by solving this problem using
conventional direct identification techniques. In this study, the structure was partitioned
into m subregions, and the challenging task of identifying thermal loads throughout the
entire structure was segmented into a number of easier tasks to address load localization
and magnitude evaluation across each subregion. The process is expressed as follows:

label = fG(U) (1)

x = fL1(BClabel , Ulabel) (2)

q = fL2(x, BClabel , Ulabel), (3)

where label = 1, 2, · · · , m represents the subregion label, and Ulabel ∈ Rp is the vector
of response data from p sensors in the subregion label. Furthermore, p · m ≥ n because
of sensor sharing across nearby subregions. A k-dimensional vector, i.e., BClabel ∈ Rk,
represents the boundary information of the label-th subregion. The inclusion of boundary
characteristics is supported by the fact that the subregions serve various functions, are
positioned differently in the structure, and have distinct boundary characteristics during
thermodynamic and mechanical inspections.
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Figure 2 shows the three steps of the structural thermal load identification process based
on the stepwise identification method: localization, identification, and estimation. These
modules are used to determine the subregion, position, and intensity of the load, respectively.
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Figure 2. Flowchart of stepwise identification method.

Step 1: Segment the structure into m geometrically similar subregions.
Step 2: To identify the subregion where thermal load is exerted, input the measured

responses U from all the sensors into the global classification neural network fG. The
output is the corresponding subregion label.

Step 3: Select the appropriate measured responses Ulabel of the subregion from U based
on the label obtained in Step 2.

Step 4: Identify the thermal load position x; enter Ulabel and the subregion boundary
features BClabel into the local regression network fL1.

Step 5: Estimate the magnitude of thermal load q, input x, BClabel , and Ulabel into the
local regression network fL2.

This method requires only three neural networks because the local regression networks
fL1 and fL2 are shared by all subregions. In this case, the following aspects are noteworthy:
(1) All subregions exhibit shape consistency, i.e., all subregions have the same shape and
size ratio (Figure 3a). (2) The sensor layout of the subregions shows distribution consistency,
which indicates that each subregion has the same number and placement of monitoring
points (Figure 3b).
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2.2. Model Architecture

In this study, three deep neural networks were developed to determine the thermal
load parameters (see Figure 4), i.e., a global classification neural network fG (Figure 4a)
and local regression neural networks fL1 (Figure 4b) and fL2 (Figure 4c).

fG locates the subregions of the thermal load exerted by sensing the change in data
characteristics between measurements U and outputting the subregion label, in which label
is an m-dimensional one-hot encoded vector. To enhance the feature extraction ability of
the model for the input variables in the deep learning model, we introduce a multi-head
attention layer, which is expressed as follows:

label = Softmax(FCout(η+ U)) (4)

η = FC2:NG (Atten(FC1(U))) (5)

where Softmax(·) is the softmax activation function, Atten(·) is the multihead attention
layer, FC(·) is the fully connected layer, NG is the number of hidden layers, and η is the
latent feature of the NG-th hidden layer. FC1(·) does not follow an activation function, and
local regression neural networks fL1 and fL2 also perform this operation.

fL1 is used to identify the thermal load position by inputting the boundary information

BClabel and normalized response Ũ
label

of the subregion, as well as the output of the nor-
malized coordinate x̃ of the thermal load. It can focus more on the relative changes between
the structural responses and thus the structural response in this case is normalized. To
unify the variation range of the load position, x̃ must be normalized because the subregion
exhibits different variation ranges in different sections of the structure.

fL2 quantitatively estimates the magnitude q of the thermal load by providing the
thermal load coordinate x̃, boundary information BClabel , and response Ulabel . Because
q is related to the absolute change trend of the monitoring response history and not the
relative change between the responses of each sample, the original response data Ulabel are
utilized as the input variable. To achieve the best performance, the input variables must be
converted based on the different task requirements.
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3. Performance Evaluation

In this section, two examples are presented: the point heat source identification
of a two-dimensional (2D) plate and the distributed heat load identification of a three-
dimensional (3D) box structure. They were used to demonstrate the efficacy of the multi-
neural network approach and stepwise identification method proposed herein in solving
the inverse problem compared with a single neural network for identifying thermal loads.
The most significant difference between the multi-neural network method and the stepwise
identification method is that the former requires m+ 1 neural networks (i.e., each subregion
corresponds to a regression neural network), while the latter only needs to build three
neural networks (the fL1 and fL2 are shared on all subregions).

The global relative error (GRE) and coefficient of determination (R2) were used to
evaluate the performance of the neural network on the test dataset. The GRE and R2 are
defined as follows:

GRE =
∑N

i=1|yi − ỹi|
∑N

i=1|yi|
(6)

R2 =
N ∑N

i=1 yi ỹi − ∑N
i=1 yi ∑N

i=1 ỹi√
(N ∑N

i=1(yi)2 − (∑N
i=1 yi)2)(N ∑N

i=1(ỹi)2 − (∑N
i=1 ỹi)2)

(7)

where ỹi and yi represent the predicted values of the deep learning model and the target
value, respectively, and N denotes the capacity of the dataset. The degree of difference
between predictions and targets was determined based on R2, which ranges from 0 to 1,
where a value closer to 1 indicates a greater degree of correlation and a less significant
difference between predictions and targets.

3.1. Example 1: Identification of a Point Heat Source on a 2D Plate

To perform sample accumulation, finite element simulations are necessary. As shown
in Figure 5, a point heat source was identified on a plate with four clamped edges. The
structure measured 800 mm × 600 mm × 5 mm, and the material parameters used were as
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follows: elastic modulus E = 70 × 103 MPa, Poisson’s ratio µ = 0.33, coefficient of linear
thermal expansion α = 23.5 × 10−6 ◦C−1, and thermal conductivity λ = 0.237 W/(mm·K).
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1⃝ represents the first measurement point).

Using the commercial finite element software ABAQUS v6.14.4, a thermal–mechanical
coupled analysis of the structure was performed under an ambient temperature of 20 ◦C.
To obtain the structural displacement response, 11 measurement points on the structure
were selected, as shown in Figure 5, and their detailed placements are listed in Table 1.

Table 1. Sensor layout of panel subregions.

Subregion Measurements

A 1⃝ 2⃝ 5⃝ 6⃝ 9⃝
B 2⃝ 3⃝ 6⃝ 5⃝
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Sampling was not performed at the junctions of the subregions to prevent numerical er-
rors in the global classification neural network 𝑓 . In total, 12,969 training set samples 
were generated. The test set is shown schematically in Figure 6b. The point heat source 
generated 100, 100, and 400 random loading positions on subregions A, B, and C, respec-
tively. A temperature (between 50 °C and 150 °C) was randomly selected as the thermal 
load magnitude at each loading position, which resulted in 600 samples in the test set. 

The direct method of the classical single-neural network and the multi-neural network 
combination method were used to identify the thermal load. The direct method is required 
to establish a neural network. All displacement response data of the structure were used as 
the input, and the outputs were the position (𝑥 , 𝑥 )  and magnitude 𝑞  of the load. The 

C 4⃝ 6⃝ 8⃝ 7⃝

Materials 2024, 17, 357 7 of 19 
 

 

of linear thermal expansion 𝛼 = 23.5 × 10  ℃  , and thermal conductivity 𝜆 =0.237 W/(mm · K).  

 
Figure 5. Plate with sensor layout. (Letters A, B, and C represent the division of the structure into 
three subregions, and the numbers indicate the labels of the measurement points. For example, ① 
represents the first measurement point). 

Using the commercial finite element software ABAQUS v6.14.4, a thermal–mechanical 
coupled analysis of the structure was performed under an ambient temperature of 20 °C. To 
obtain the structural displacement response, 11 measurement points on the structure were 
selected, as shown in Figure 5, and their detailed placements are listed in Table 1. 

Table 1. Sensor layout of panel subregions. 

Subregion Measurements A ①②⑤⑥⑨ 

B 

②③⑥⑤      ⑩ 
 

C 

④⑥⑧⑦      ⑪ 
 

To demonstrate the completeness of the training dataset and the randomness of the 
testing dataset, two sampling methods were used, as shown in Figure 6. Equidistant sam-
pling was employed for the training set, as shown in Figure 6a. The load position sampling 
interval was 20 mm, the load intensity sampling interval was 10 °C (from 50 °C to 150 °C). 
Sampling was not performed at the junctions of the subregions to prevent numerical er-
rors in the global classification neural network 𝑓 . In total, 12,969 training set samples 
were generated. The test set is shown schematically in Figure 6b. The point heat source 
generated 100, 100, and 400 random loading positions on subregions A, B, and C, respec-
tively. A temperature (between 50 °C and 150 °C) was randomly selected as the thermal 
load magnitude at each loading position, which resulted in 600 samples in the test set. 

The direct method of the classical single-neural network and the multi-neural network 
combination method were used to identify the thermal load. The direct method is required 
to establish a neural network. All displacement response data of the structure were used as 
the input, and the outputs were the position (𝑥 , 𝑥 )  and magnitude 𝑞  of the load. The 

To demonstrate the completeness of the training dataset and the randomness of the
testing dataset, two sampling methods were used, as shown in Figure 6. Equidistant
sampling was employed for the training set, as shown in Figure 6a. The load position
sampling interval was 20 mm, the load intensity sampling interval was 10 ◦C (from 50 ◦C
to 150 ◦C). Sampling was not performed at the junctions of the subregions to prevent
numerical errors in the global classification neural network fG. In total, 12,969 training
set samples were generated. The test set is shown schematically in Figure 6b. The point
heat source generated 100, 100, and 400 random loading positions on subregions A, B, and
C, respectively. A temperature (between 50 ◦C and 150 ◦C) was randomly selected as the
thermal load magnitude at each loading position, which resulted in 600 samples in the
test set.

The direct method of the classical single-neural network and the multi-neural network
combination method were used to identify the thermal load. The direct method is required
to establish a neural network. All displacement response data of the structure were used
as the input, and the outputs were the position (x1, x2) and magnitude q of the load. The
multi-neural network combination method can be categorized into two steps. First, a global
classification neural network fG was used to locate the subregion; subsequently, a neural
network associated with that subregion was activated to output the position (x1, x2) and
magnitude q of the load. Therefore, four neural networks were established. The detailed
neural network hyperparameters are listed in Appendix A Table A1.
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Table 2 presents the localization results of the classification neural network using a 
combination of multiple neural networks. The rows represent the predicted classes (the 
output of the deep learning model), whereas the columns represent the actual classes (the 
target output). The diagonal entries indicate the consistency between the predictions and 
targets. As shown, the accuracy reached 100%, which demonstrates the excellent perfor-
mance of the established global classification neural network. Figure 7 presents the actual 
and predicted values of the load position and magnitude, where “Prediction-D” and “Pre-
diction-M” represent the results of the direct method with a single neural network and 
the multi-neural network method, respectively. The load position and magnitude pre-
dicted by the multi-neural network method were more similar to the actual results com-
pared with those predicted by the direct method. 
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Table 2 presents the localization results of the classification neural network using a
combination of multiple neural networks. The rows represent the predicted classes (the
output of the deep learning model), whereas the columns represent the actual classes
(the target output). The diagonal entries indicate the consistency between the predictions
and targets. As shown, the accuracy reached 100%, which demonstrates the excellent
performance of the established global classification neural network. Figure 7 presents the
actual and predicted values of the load position and magnitude, where “Prediction-D” and
“Prediction-M” represent the results of the direct method with a single neural network and
the multi-neural network method, respectively. The load position and magnitude predicted
by the multi-neural network method were more similar to the actual results compared with
those predicted by the direct method.

Table 2. Prediction results of global classification neural network fG in example 1.

Output A Output B Output C

Target A 100 - -
Target B - 100 -
Target C - - 400
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Figure 7. Comparison of thermal load identification between direct method (Prediction-D) and 
multi-neural network combination method (Prediction-M). (a) Thermal load coordinate 𝑥 ; (b) ther-
mal load coordinate 𝑥 ; (c) thermal load amplitude 𝑞. 

The results of the error analysis for both methods are listed in Table 3. As shown, 
both methods indicated identification errors of less than 8%, with the identification errors 
for the load position being approximately 3%. This shows that the neural networks can 
model the relationship between local responses and the overall thermal load. The GRE 
decreased from 2.65% (Prediction-D) to 2.24% (Prediction-M), based on a comparison of 
the identification results for the load position coordinate 𝑥 . The multi-neural network 
method increased the identification accuracy by 15.47% compared with the direct method. 
Additionally, the multi-neural network method increased the identification accuracy by 
25.76% for the load position coordinate 𝑥  and by 15.72% for the magnitude 𝑞. Hence, a 
substantial advantage of the multi-neural network method using multiple neural net-
works over the use of a single neural network for load identification was demonstrated. 
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method (Prediction-M). 
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Figure 7. Comparison of thermal load identification between direct method (Prediction-D) and multi-
neural network combination method (Prediction-M). (a) Thermal load coordinate x1; (b) thermal load
coordinate x2; (c) thermal load amplitude q.

The results of the error analysis for both methods are listed in Table 3. As shown,
both methods indicated identification errors of less than 8%, with the identification errors
for the load position being approximately 3%. This shows that the neural networks can
model the relationship between local responses and the overall thermal load. The GRE
decreased from 2.65% (Prediction-D) to 2.24% (Prediction-M), based on a comparison of
the identification results for the load position coordinate x1. The multi-neural network
method increased the identification accuracy by 15.47% compared with the direct method.
Additionally, the multi-neural network method increased the identification accuracy by
25.76% for the load position coordinate x2 and by 15.72% for the magnitude q. Hence, a
substantial advantage of the multi-neural network method using multiple neural networks
over the use of a single neural network for load identification was demonstrated.

Table 3. GRE comparison of direct method (Prediction-D) and multi-neural network combination
method (Prediction-M).

GRE x1 x2 q

Prediction-D 2.65% 3.30% 7.89%
Prediction-M 2.24% 2.45% 6.65%
Improvement 15.47% 25.76% 15.72%
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However, as shown in Table A1, the number of neural networks that must be estab-
lished by a multi-neural network is the same as the number of subregions, which renders
the application of this method to complex large-scale structures challenging. When ap-
plying deep learning, the training of neural networks is the most time-consuming and
resource-intensive task. In addition, the identification errors of the load position and mag-
nitude differ significantly. In this study, the magnitude of the identification error was 6.65%,
whereas the position identification errors of the multiple neural networks were less than
3%. This is because the neural network cannot easily balance the two types of variables
when they are used as outputs. Therefore, the multi-neural network combination method
must be improved, which includes reducing the number of required neural networks
and addressing the imbalance between the different output requirements. This is another
motivation for this study.

3.2. Example 2: Distributed Thermal Load Identification for a Box Structure

This section focuses on the identification of a uniformly distributed thermal load on
the external surface of a box-type structure. The center position (x1, x2, x3) and intensity
q of the uniformly distributed thermal load are parameters that need to be identified. As
shown in Figure 8a, the structure comprises a top panel, a fixed boundary at the bottom,
and four side panels. The four side panels and the top panel were the only panels used
as the thermal load application area and for selecting displacement monitoring points.
The structure measured 1000 mm × 1000 mm × 1000 mm, and each side panel featured a
thickness of 10 mm. A uniformly distributed heat load was applied over a 2 mm × 2 mm
area at a certain temperature. The material parameters of the structure were consistent
with those described in Section 3.1. The environmental temperature was set to 20 ◦C, and a
steady-state thermal-structural finite element analysis was performed to generate samples.
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Monitoring points were specified on the four side panels and the top panel, as shown 
in Figure 8b. A total of 13 displacement measurement points were selected, with the four 
points near the bottom set at a distance of 70mm from the bottom. The other nine meas-
urement points are placed at the upper four corners, midpoints of the four sides, and the 
midpoint of the top surface of the structure. The detailed monitoring point layout for each 
subregion is shown in Figure 9. The encoding principle for the BCs is as follows: Beginning 
from the bottom side and moving anticlockwise, each of the four sides of the subregion 

Figure 8. D structure and its subregions with sensor layout. (Letters A, B, C, D and E represent the
division of the structure into five subregions, and the numbers indicate the labels of the measure-
ment points. For example, 1⃝ represents the first measurement point) (a) 3D box-shaped structure.
(b) Subregion expansion.

Monitoring points were specified on the four side panels and the top panel, as shown
in Figure 8b. A total of 13 displacement measurement points were selected, with the
four points near the bottom set at a distance of 70 mm from the bottom. The other nine
measurement points are placed at the upper four corners, midpoints of the four sides, and
the midpoint of the top surface of the structure. The detailed monitoring point layout for
each subregion is shown in Figure 9. The encoding principle for the BCs is as follows:
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Beginning from the bottom side and moving anticlockwise, each of the four sides of the
subregion correspond to a component of the encoding vector. The others are encoded as 0,
whereas the fixed boundary is encoded as 1.
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As shown in Figure 10, two sampling methods, i.e., equidistant and random sam-
pling, were used to accumulate the training and testing samples. The sampling area for 
the thermal load was set 40 mm from the boundary of the subregion. As shown in Figure 
10a, the sampling interval of the training set for the heat load position was 20 mm, and 
the magnitude was sampled at intervals of 20 °C between 300 °C and 400 °C. Therefore, 
the training set contained 28,830 samples. As for the test set, in each subregion’s loading 
area, 200 thermal load loading positions were randomly selected (Figure 10b), and one 
value for the load magnitude was selected between 300 °C and 400 °C. The test set con-
tained 1000 samples. 

The results of using the global classification neural network 𝑓  for thermal load lo-
calization in the stepwise method are presented in Table 4. Based on the findings, the es-
tablished model achieved an accuracy of 99.8%. However, after examining the predicted 
results, we discovered that the remaining 0.2% was caused by two samples whose thermal 
load was in close proximity to subregions C and E at relatively low heat load magnitudes. 
The displacement responses at the measurement points on these two subregions exhibited 
similar fluctuation patterns. 

Figure 9. Boundary conditions and measurement point placement of five subregions. (Letters A, B, C,
D and E represent the division of the structure into five subregions, and the numbers indicate the
labels of the measurement points. For example, 1⃝ represents the first measurement point).

As shown in Figure 10, two sampling methods, i.e., equidistant and random sampling,
were used to accumulate the training and testing samples. The sampling area for the
thermal load was set 40 mm from the boundary of the subregion. As shown in Figure 10a,
the sampling interval of the training set for the heat load position was 20 mm, and the
magnitude was sampled at intervals of 20 ◦C between 300 ◦C and 400 ◦C. Therefore, the
training set contained 28,830 samples. As for the test set, in each subregion’s loading area,
200 thermal load loading positions were randomly selected (Figure 10b), and one value
for the load magnitude was selected between 300 ◦C and 400 ◦C. The test set contained
1000 samples.

The results of using the global classification neural network fG for thermal load
localization in the stepwise method are presented in Table 4. Based on the findings, the
established model achieved an accuracy of 99.8%. However, after examining the predicted
results, we discovered that the remaining 0.2% was caused by two samples whose thermal
load was in close proximity to subregions C and E at relatively low heat load magnitudes.
The displacement responses at the measurement points on these two subregions exhibited
similar fluctuation patterns.
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Figure 10. Sampling of training and test sets in example 2. (Letters A, B, C, D and E represent the 
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Table 4. Prediction results of global classification neural network 𝑓  in example 2. 
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Figure 10. Sampling of training and test sets in example 2. (Letters A, B, C, D and E represent the
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Table 4. Prediction results of global classification neural network fG in example 2.

Output A Output B Output C Output D Output E

Target A 200 - - - -
Target B - 200 - - -
Target C - - 200 - -
Target D - - - 200 -
Target E - - 2 - 198

Table 5 presents the recognition results of the uniform thermal load using the direct,
multi-neural network combination, and stepwise identification methods. Detailed regres-
sion analysis plots are shown in Figure A1 in the Appendix A. Here, “Prediction-MBCN” is
used as the stepwise identification method because it incorporates multiple neural network
modules, BC encoding modules, cascaded neural network modules for heat load position
and intensity estimation, and noise injection training for the intensity estimation network.
As shown in Figure 4c, noise was introduced to enhance the robustness of the deep learning
model during the estimation of the thermal load magnitude. This is because, to estimate
the magnitude of the thermal load, the output variable of fL1 was used as the input variable
of fL2, which necessitates the introduction of 0.5% Gaussian noise into x̃ during the training
of fL2.

Table 5. Thermal load identification accuracy of direct method (Prediction-D), multi-neural network
combination method (Prediction-M), and stepwise identification method (Prediction-MBCN).

GRE R2

x1 x2 x3 q x1 x2 x3 q

Prediction-D 4.46% 4.81% 3.02% 3.99% 0.997 0.997 0.994 0.613
Prediction-M 1.14% 1.58% 1.58% 1.84% 1.000 1.000 0.997 0.896

Prediction-MBCN 1.74% 1.51% 1.65% 1.65% 0.998 0.999 0.994 0.841

Table A2 in the Appendix A lists the specific hyperparameters of the neural network.
Table A2 shows that, in contrast to the multi-neural network method, the local regression
neural network fL1 of the stepwise identification method requires only two output variables
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to identify the thermal load on the subregions. This is because, when analyzing the external
load identification problem of a box structure, partitioning the structure into smaller
segments allows the 3D overall thermal load localization problem to be transformed into
a 2D subregion problem (Figure 8), thereby necessitating the identification of only two
coordinates of the load position. All the subregions shared the local regression neural
networks fL1 and fL2 after the load parameters were normalized, as compared with the
result of the multi-neural network method. Therefore, the construction and training costs
of the deep learning model decreased significantly. In particular, the stepwise identification
method significantly reduced the learning rate and training epochs during the training of
deep learning models, as well as the number of deep learning models required.

As shown in Table 5, the stepwise identification method and multi-neural network
method achieved similar identification accuracies, which were significantly higher than
that of the direct method. This confirms the effectiveness of using multiple neural net-
works to address complex problems. The stepwise identification method significantly
outperformed the direct method in terms of both the GRE and R2. The thermal load pa-
rameters x1, x2, x3, and q reduced by 60.99%, 68.61%, 45.36%, and 58.65%, respectively.
However, compared with the multi-neural network approach, in which each subregion
has its own neural network, the stepwise identification method utilizes fewer shareable
neural networks for thermal load identification. Although a slight decrease in accuracy
is indicated, this method significantly reduces the model construction and training time,
thereby improving the prediction efficiency. Additionally, the identification errors for the
load position and magnitude based on the stepwise identification method were within 1.5%
and 2%, respectively, which indicates insignificant differences among them. In conclusion,
the proposed stepwise identification method achieved high-precision identification of dis-
tributed thermal loads on the box structure. It can also solve numerous neural network
training problems via the multi-neural network method and ensure that the prediction
accuracy of different types of output variables under the same framework is similar.

4. Ablation Analysis

To investigate the specific performance of several components of the proposed method,
an ablation experiment was performed. Each component was removed from the stepwise
identification method (Prediction-MBCN), as shown in Figure 11, and its performance
was compared with that of the original architecture. The hyperparameters of the neural
networks presented in this section are listed in Table A3.

Multiple neural networks: As shown in the previous section, the accuracy of the
multiple neural networks in identifying thermal loads is significantly higher than that
of direct prediction via a single neural network (Prediction-D); therefore, it will not be
addressed in detail in this section.

Coding of BCs: As shown in Figure 11a,b, ablation was performed by removing the
BC data from the input variables of the local regression network.

Cascaded neural network: By combining the outputs of local regression networks
fL1 and fL2, a local regression neural network fL was designed to directly output the load
position and magnitude (refer to Figure 11c).

Noise introduced into network training: The structural heat load position from the
training set was used directly as the network input without any noise perturbation during
the training of the magnitude-estimation neural network (Figure 4c).
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Figure 12 shows that the original architecture of the stepwise identification method 
outperformed other deep learning models with removed components in most of the ther-
mal load parameter identification tasks. In particular, the errors were between 1.5% and 
2%, which were similar to those generated when the cascaded neural network was used 
to separately estimate the position and magnitude of the thermal load. However, when a 
non-cascaded neural network (Figure 11c) was used, the identification error of the load 
position was much larger than that of the load magnitude. 

 
Figure 12. Changes in GRE across ablation tests. 

To quantitatively analyze whether the ablation experiments affected the proposed 
deep learning model, the GRE for each neural network is shown in Table 6. The identifying 
errors for load positions 𝑥 , 𝑥 , and 𝑥   and magnitude 𝑞  increased by 18.97%, 36.42%, 
16.97%, and 58.18%, respectively, without the BCs. The primary reason for this difference 
is that different deformation patterns exist when the boundary conditions of subregions 
differ. In other words, even if two substructures have the same thermal load position and 
magnitude, the observed responses may differ, and vice versa. As a result, even though 
the relevant input variables are the same, the output variables are not unique. Therefore, 
the absence of boundary conditions would lead to an increase in identification errors for 

Figure 11. Deep learning model architecture with removed modules. (a) Local regression network
fL1 without BCs. (b) Local regression network fL2 without BCs. (c) Local regression network fL

without cascading.

Figure 12 shows that the original architecture of the stepwise identification method
outperformed other deep learning models with removed components in most of the thermal
load parameter identification tasks. In particular, the errors were between 1.5% and 2%,
which were similar to those generated when the cascaded neural network was used to
separately estimate the position and magnitude of the thermal load. However, when a
non-cascaded neural network (Figure 11c) was used, the identification error of the load
position was much larger than that of the load magnitude.
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To quantitatively analyze whether the ablation experiments affected the proposed deep
learning model, the GRE for each neural network is shown in Table 6. The identifying errors
for load positions x1, x2, and x3 and magnitude q increased by 18.97%, 36.42%, 16.97%,
and 58.18%, respectively, without the BCs. The primary reason for this difference is that
different deformation patterns exist when the boundary conditions of subregions differ. In
other words, even if two substructures have the same thermal load position and magnitude,
the observed responses may differ, and vice versa. As a result, even though the relevant
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input variables are the same, the output variables are not unique. Therefore, the absence of
boundary conditions would lead to an increase in identification errors for thermal loads.
When the cascaded neural network was not used, the recognition errors for thermal load
positions x1, x2, and x3 increased by 128.16%, 160.93%, and 38.79%, respectively, whereas
the estimation error for the thermal load magnitude q decreased slightly. This is because
developing a cascaded neural network to account for the coupling output of two different
variables inevitably causes the prediction errors to propagate from one neural network
to the next. However, using the cascaded neural network significantly increased the
position identification accuracy while only marginally deteriorating the performance of the
magnitude estimation by 3.64%. Similarly, the recognition error decreased by 15.76% when
Gaussian noise was introduced to the input variables of the load positions during the deep
learning model training for thermal magnitude estimation. The reason for this is that when
fL2 performs thermal load magnitude estimation, its input variables include the predicted
values of thermal load positions (refer to Figure 2). Introducing Gaussian noise is used to
simulate the prediction error of the thermal load positions of fL1, significantly enhancing
the robustness of fL2. In general, all the components enhanced the overall performance of
the model and achieved high accuracies in thermal load identification.

Table 6. Thermal load identification error after component removal in ablation tests.

x1 x2 x3 q

No BCs 2.07% 2.06% 1.93% 2.61%
No cascading 3.97% 3.94% 2.29% 1.59%

No noise - - - 1.91%
Prediction-MBCN 1.74% 1.51% 1.65% 1.65%

5. Conclusions and Outlooks

A stepwise identification method for the high-precision identification of structural
thermal loads, including their location and magnitude, was proposed herein. By combining
several deep learning models and examining the potential correlation between a few
structural responses and the overall load, the method derived from a data-driven paradigm
solved the load identification inverse problem. Two examples were presented to evaluate
the proposed method, i.e., the identification of a point thermal source for a 2D plate and
the identification of a uniformly distributed thermal load for a 3D box-shaped structure.
The main conclusions obtained were as follows:

The stepwise identification method significantly improved the identification accu-
racy of structural thermal loads, including their positions and magnitudes. Compared
with direct methods for a single deep learning model, the stepwise identification method
improved the accuracy by more than 45%.

The introduction of a cascaded neural network reduces imbalances in prediction errors
among multiple types of output variables. In the thermal load identification of a 3D box-
type structure, the identification errors for thermal load positions and intensity parameters
using the stepwise identification method are both around 1.6%.

The generalization ability of the algorithm can be improved by encoding the boundary
information of the subregion into a deep learning model. This allows the subregions in
different sections of the overall structure to be considered and the use of different connection
functions. In the ablation analysis section, it was observed that the identification errors for
thermal load positions and magnitude parameters decreased by approximately 15.94%,
26.70%, 14.51%, and 36.78%.

However, there are still areas that provide opportunities for further exploration, such
as the research on thermal load identification for structures with complex geometric shapes
and practical engineering application issues of the proposed method. Some preliminary
insights are as follows:

Due to the current method being applicable only to spacecraft structures that can be
divided into multiple geometrically similar subregions, there is a need for improvement
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in the subregion subdivision approach. It is imperative to propose a subregion mapping
method suitable for complex geometric shapes. This method should enable the subdivision
of structures with any complex shape into several regular subregions.

The current neural network model relies on finite element simulation data, which
ensures high data purity. Therefore, it is essential to conduct thermal load tests on real
satellite structures and establish a dataset based on experimental data. To strengthen the
robustness of the thermal load identification model and apply it in real engineering, this
step is essential.
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Appendix A

Table A1. The hyperparameters of the neural networks in Section 3.1.

Hyperparameters
Structure Hyperparameters Training Hyperparameters

Activation
Function Hidden Layers Input

Size
Output
Size

Head
Number

Batch
Size

Learning
Rate Epochs

Direct method - Sigmoid (8, 15, 20, 10) 11 3 - 128 0.01 2500

Multiple networks
combined

fG Sigmoid (8, 16, 20, 11) 11 3 8 128 0.001 2500

fLA
Sigmoid

(8, 15, 26, 10)
5 3 - 128 0.01

2500
fLB (8, 15, 25, 10) 3000
fLC (8, 15, 30, 10) 2500
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Figure A1. Correlation analysis between the predictions and the target values. (a) Thermal load
coordinate x1. (b) Thermal load coordinate x2. (c) Thermal load coordinate x3. (d) Thermal load
magnitude q.

Table A2. The hyperparameters of the neural networks in Section 3.2.

Hyperparameters
Structure Hyperparameters Training Hyperparameters

Activation
Function Hidden Layers Input

Size
Output
Size

Head
Number

Batch
Size

Learning
Rate Epochs

Direct method - ReLU (15, 20, 10] 13 4 - 128 0.0005 5000

Multi-neural
networks method

fG Sigmoid (16, 20, 11] 13 5 8 256 0.001 3300

fLA

LeakyReLU

(15, 30, 25, 10)

5 3 - 64

0.003 8000
fLB (15, 30, 25, 10) 0.0005 10,000
fLC (15, 30, 20, 10) 0.003 8000
fLD (15, 30, 25, 10) 0.003 8000
fLE (15, 30, 25, 10) 0.003 9000

Stepwise
identification

method

fG Sigmoid (16, 20, 11) 13 5 8 256 0.001 3300
fL1 ReLU (16, 30, 25, 10) 5 + 4 2 8 128 0.002 2000
fL2 ReLU (16, 30, 25, 10) 5 + 2 + 4 1 8 128 0.001 4000
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Table A3. The hyperparameters of the neural networks in Section 4.

Hyperparameters
Structure Hyperparameters Training Hyperparameters

Activation
Function Hidden Layers Input

Size
Output
Size

Head
Number

Batch
Size

Learning
Rate Epochs

No BCs
fL1 ReLU (16, 30, 25, 10) 5 2 8 128 0.002 2000

fL2 LeakyReLU (16, 30, 25, 10) 5 + 2 1 8 128 0.0001 4000

No cascading fL ReLU (16, 30, 25, 10) 5 + 4 3 8 128 0.002 2000

No noise fL2 ReLU (16, 30, 25, 10) 5 + 4 + 2 1 8 128 0.001 4000
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