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Abstract: Creep strain versus time curves (creep curves) have traditionally been described with the
help of empirical models where a number of adjustable parameters are involved. These models are
simple to use, but they cannot be applied for prediction. For understanding the general behavior
of primary and tertiary creep, they are still useful. In fact, the phi model can represent primary
creep, and the Omega model tertiary creep for a number of materials. However, in recent years,
basic analytical models have been formulated that can predict and describe creep strain data without
using fitting parameters. In the paper, a review of these models is given. A number of applications
of the models are also given. It is demonstrated that the basic models can quantitatively predict
observations. They also provide derivations of some empirical findings.

Keywords: creep strain; primary creep; tertiary creep; basic modeling

1. Introduction

Creep is a slow plastic deformation that takes place even at a constant load. This is
possible since, at high temperatures, dislocations can both glide and climb freely, and there
is nothing that stops the deformation. There is excellent literature on creep. The textbooks
by Kassner [1] and Zhang [2] can be recommended. Technically, creep is most important for
steel and nickel-base alloys operating above 500 ◦C. Since creep is a continuous deformation
process, it is of particular concern during long-term application. For fossil-fired and
concentrated solar power units, the design life is up to 30 years, and for nuclear power
plants up to 60 years. Since these types of plants are exposed to creep, it is critical to
have accurate creep data corresponding to these long design lives. This has always been
a challenge of almost prohibitive dimensions. However, with the new basic modeling of
creep, it is, in fact, possible to reach these long design lives. For a review, see [3]. Some
aspects of this basic modeling will be covered in the present paper.

The creep deformation is traditionally divided into three stages: primary, secondary,
and tertiary. At constant load, the deformation rate (creep rate) decreases in the primary
stage, it is approximately constant in the secondary stage, and it increases in the tertiary
stage. To analyze mechanisms of creep deformation, the focus has been on secondary
creep. The reasons are results that were formulated long ago. In two famous papers by
Weertman in 1957 [4,5], it was suggested that climb and glide of dislocation would give
stress exponents of 5 and 3, respectively, for the creep rate. In addition, it was already
known that diffusion creep was expected to be associated with a stress exponent of 1 [6].
However, more recent results demonstrate that the climb of dislocations can show stress
exponents of at least between 3 and 50, and it is still unclear if glide can be the controlling
mechanism during creep [3,7]. A problem with diffusion creep is that with the low stresses
involved, it is difficult to perform tests long enough to ensure that the secondary stage
has been reached. New findings illustrate that dislocation creep in the primary stage can
give rise to stress exponents down to 1 [8]. This demonstrates that the traditional way of
identifying the main operating creep mechanism from the stress exponent in secondary
creep is not very satisfactory. As will be shown in the paper, the analysis of primary creep
can be quite helpful in this respect.
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With modern finite element software, it is possible to design against creep with high
precision. Access to creep strain versus time curves (“creep curves”) is then of great value.
Important cases are when the components can allow for only small amounts of creep strain.
Well-known applications are blades for gas and steam turbines where the rotor and the
stator must absolutely not get in contact due to too much creep strain. Too much creep
strain can also give rise to unstable structures, which must always be avoided.

Creep strain curves can have many forms, for example, for superalloys [9]. However,
in most cases, they have a common form. The creep process is usually divided into three
stages: primary, secondary, and tertiary. In the primary stage, the creep rate decreases
with increasing time. This means that the slope of the creep versus time curve is gradually
reduced with time. When the secondary stage is reached, the creep rate takes a constant
value, and this also applies to the slope of the curve. For this reason, the secondary stage is
also referred to as the stationary stage. In this paper, these concepts will be considered as
synonyms. In the tertiary stage, the creep rate and the slope of the curve increase from the
minimum value in the secondary stage. In mathematical terms, the creep curve is concave
(downwards) in the primary stage, straight in the secondary stage, and convex (upwards)
in the tertiary stage.

The typical form of a creep strain curve is believed to be due to the variation of the
dislocation density during the creep process. For a material that is annealed and in a
soft condition, the initial dislocation density is low. During creep, there is a continuous
generation of new dislocations that are referred to as work hardening. In the primary stage,
there is a rapid increase in the dislocation density that slows down the creep deformation.
However, simultaneously with the work hardening, there is a recovery that annihilates
dislocations. With increasing dislocation density, the recovery is raised faster than the work
hardening. Eventually, there is a balance between work hardening and recovery. Then the
secondary stage is reached, and the dislocation density becomes constant, which also gives
a constant creep rate. There are many mechanisms that have been proposed to give rise
to the increase of the creep rate in the tertiary stage, such as coarsening of particles and
substructure and the formation of creep cavities. These mechanisms all contribute to the
increase in the creep rate. However, recent results suggest another mechanism can be the
main one. In the tertiary stage, the true stress in a creep specimen increases faster than the
back stress from the dislocations, and this gives rise to a pronounced increase in the creep
rate [10]. This will be further discussed in Section 4.

When high-temperature industrial plants exposed to creep reach their design life,
there is practically always a desire to extend the operating time of the plants. To do that, the
status of the creep-deformed material must be determined. This is referred to as assessing
the residual life of the materials. During the creep deformation, the microstructure of
the materials has changed. Practically all the changes in the microstructure reduce the
creep life, and therefore these changes are referred to as creep damage. The most direct
way of measuring the amount is to analyze creep curves in the tertiary stage. It is always
recommended to supplement such analyses with direct observations of the microstructure
to verify the findings.

The purpose of the present paper is to review basic models for creep curves that are
critically needed for the long-term prediction of creep deformation. In Section 2, some
empirical models for creep strain curves are presented. Both primary and tertiary stages
show characteristic features. A basic model for secondary creep is summarized in Section 3.
It is used in the basic models for primary and tertiary creep. The 2σmodel for both primary
and tertiary creep is presented in Section 4. A number of applications of the model are also
given. The stress adaption model for primary creep at low stresses is derived in Section 5.
The application of the model for Cu is presented in Section 6. The role of creep damage
during tertiary creep is analyzed in Section 7. A creep damage model taking nucleation,
growth, and linkage of cavities into account is given. It is used to reproduce the Omega
model behavior during the tertiary stage in the austenitic stainless steel Sanicro 25.
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2. Empirical Models for Creep Curves

Creep curves show a number of characteristic features for many materials. Before
modeling the creep curves, these features must be understood. Any realistic model must
be able to reproduce these features. In this section, results for two materials will be
analyzed. The first one is the martensitic 9Cr1Mo steel P91, which is probably the most
common creep-exposed steel in modern fossil-fired power plants. The second one is the
22Cr25Ni4W1.5Co3CuNbN austenitic stainless steel Sanicro 25. It is an advanced creep-
resistant steel. We will start with P91. Examples of creep curves are given in Figure 1.
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Figure 1. Creep strain versus time curves for the 9Cr1Mo steel P91 at 600 ◦C at the four stresses 110,
130, 150, and 180 MPa fitted with the φ and Ω models, Equations (1) and (2). Data from [11].

The curves in Figure 1 show a classical behavior with primary, secondary, and tertiary
stages. The primary stage is short, whereas the secondary and tertiary stages are well-
developed. The creep rate is plotted versus creep strain in Figure 2.
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Figure 2. Creep rate versus strain curves for the 9Cr1Mo steel P91 at 600 ◦C for the same tests as in
Figure 1. Double logarithmic scale.

The minimum creep rate in Figure 2 represents the secondary stage. For lower strains
in the primary stage, the creep rate decreases rapidly with increasing strain. For higher
strains, on the other hand, the creep rate increases in a pronounced way with increasing
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strain. This type of scaling obviously influences the appearance of the creep curves. In
Figure 1, the secondary and the tertiary stages seem to dominate, whereas, in Figure 2, the
role of the primary and tertiary stages tends to be the most important.

In the double logarithmic scale, the creep rate versus strain shows a linear behavior
in the primary stage. This is a characteristic feature for a number of materials but is
particularly well established for 9% and 12% Cr-steels [12,13]. It takes the following simple
mathematical form.

·
εprim = φ1ε

−φ2 phi (φ) model (1)

where
·
εprim is the creep rate in the primary stage, ε is the creep strain, and φ1 and φ2 are

constants. In some form, the model was proposed many years ago. It has been generalized,
and the author is now referring to it as the phi (φ) model [11,14]. An equally simple
behavior can be found in the tertiary stage. This is illustrated in Figure 3.
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Figure 3. Creep rate versus strain curves for the 9Cr1Mo steel P91 at 600 ◦C for the same tests as in
Figure 1. Semi logarithmic scale.

In Figure 3, the tertiary stage seems to be completely dominating. In the semi-
logarithmic scale, the creep rate versus strain is approximately straight in the tertiary
stage. This strain dependence can be described as:

·
εtert = Ω3eΩ4ε Omega model (2)

where
·
εtert is the creep rate in the tertiary stage, ε is the creep strain, and Ω3 and Ω4 are

constants. This model was proposed many years ago [15,16]. Later the model was called
the Omega (Ω) model [17].

There are many expressions with adjustable parameters that can be used to fit creep
curves. A survey can be found in [18]. However, it is recommended to use a combination
of Equations (1) and (2) because then the primary and the tertiary stages can be represented
separately, as well as the whole creep curves. This is shown in Figures 1–3, where fitted φ
and Ω models are included. However, if just the whole creep strain curve and nothing else
should be fitted, there are many possibilities. Some examples are given in Table 1. The θ
model is included since it is found in many papers in the literature. Thus, just to describe
the whole creep curve, any combination of a model for primary and tertiary creep can be
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applied, for example, the Ω model for primary creep and the φ model for tertiary creep.
However, such an approach is certainly not recommended.

Table 1. Empirical models for describing single creep curves [14]. Reproduced with the permission
of Elsevier.

Model Parameters Strain Rate versus Strain Strain Rate versus Time Strain versus Time Refs.

φmodel,
primary φ1, φ2

·
εprim = φ1ε

−φ2
·
εprim =

φ1(φ1(1 +φ2)t)
−φ2/(1+φ2)

(φ1(1 +φ2)t)
1/(1+φ2) [11,19]

φmodel,
tertiary φ3, φ4

·
εtert = φ3ε

φ4
·
εtert =

φ3(φ3(1−φ4)t)
φ4/(1−φ4)

(φ3(1−φ4)t)
1/(1−φ4) [19]

Ω model,
primary Ω1, Ω2

·
εprim = Ω1e−Ω2ε

·
εprim = Ω1

Ω1Ω2t+1
ln(Ω1Ω2t+1)

Ω2
[20]

Ω model,
tertiary Ω3, Ω4

·
εtert = Ω3eΩ4ε

·
εtert =

Ω3
1−Ω3Ω4t − ln(1−Ω3Ω4t)

Ω4
[15–17]

θmodel,
primary θ1, θ2

·
εprim = θ2(θ1 − ε)

·
εprim = θ1θ2e−θ2t θ1(1− e−θ2t) [21,22]

θmodel,
tertiary θ3, θ4

·
εtert = θ4(ε+ θ3)

·
εtert = θ3θ4eθ4t θ3(eθ4t − 1) [21,23]

ε is the creep strain,
·
ε the strain rate, and t the time.

Examples of creep curves for Sanicro 25 are shown in Figure 4. In this case, there
seems to be some secondary stage, but the diagram is dominated by tertiary creep.
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Figure 4. Creep strain versus time curves for the 22Cr25Ni4W1.5Co3CuNbN austenitic stainless steel
Sanicro 25 at 750 ◦C at the four stresses 180, 200, 220, and 240 MPa fitted with the φ and Ω models,
Equations (1) and (2). Experimental data from [24].

In Figure 5, the creep rate versus time is plotted. Straight lines are also obtained in
this case, where the time dependence is shown instead of the strain dependence in Figure 2.
It can be seen from Table 1 that the φmodel has the same type of exponential dependence
both as a function of time and as a function of strain.
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Figure 5. Creep rate versus time curves for the 22Cr25Ni4W1.5Co3CuNbN austenitic stainless steel
Sanicro 25 at 750 ◦C for the same tests as in Figure 4. Double logarithmic scale.

The behavior in the tertiary stage is given in Figure 6. It can be seen that the Ω model
is closely followed also for Sanicro 25.
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Figure 6. Creep rate versus strain curves for the 22Cr25Ni4W1.5Co3CuNbN austenitic stainless steel
Sanicro 25 at 750 ◦C for the same tests as in Figure 4. Semi-logarithmic scale. Redrawn from [25] with
permission from Taylor and Francis.

The φmodel is empirical, and for a good description, the parameters have to be fitted
to the experiments. However, approximate values of the parameters can be obtained in the
following way:

φ1 =
·
εsec(t/tsec)

−φ2 (3)
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where the creep rate
·
εsec is in the secondary stage, and tsec is the time when the secondary

stage is reached.
tsec = εsec/

·
εsec (4)

εsec is the strain at the start of the secondary stage. φ2 lies typically in the range
of 0.75 to 0.9, and a value of 0.8 can be a starting point. If εsec and

·
εsec are known, an

approximation of the parameters in the φmodel can be obtained.
For the Ω model, a simple estimate of the parameter values can be found. First, the

model in Equation (2) is rewritten in the following way:

·
εtert =

·
εseceΩ4(ε−εsec) (5)

This expression takes into account that the tertiary stage starts almost at the position
of the minimum creep rate. This is clearly illustrated in Figures 3 and 6. This means that

Ω3 =
·
εsece−Ω4εsec (6)

From Table 1, it can be seen that the creep strain is a logarithmic function of the time and
that the rupture can be expected to take place close to the time when the argument vanishes.

Ω4 =
1

Ω3tR
=

eΩ4εsec

·
εsectR

(7)

The product
·
εsectR can be expressed with the help of the rupture ductility factor λR

and the rupture ductility εR.
·
εsectR =

εR

λR
(8)

For P91, λR is about 5 [26]. Combining Equations (7) and (8) gives

Ω4 =
1

Ω3tR
=

λReΩ4εsec

εR
(9)

Results for fitting creep curves for 0.5Mo, 1Cr0.5Mo, and 2.25Cr1Mo gave the rela-
tion [16]

Ω4 = 5.6/εR (10)

which is in close agreement with Equation (9).

3. Basic Model for Secondary Creep

The starting point of models for primary and tertiary creep that will be discussed in
the paper is the creep rate in the secondary stage. For this reason, a brief summary of a
basic model for secondary creep will be given. The variation of the dislocation density ρ as
a function of strain can be written as [14]

dρ
dε

=
mT

bcL
ρ1/2 −ωρ− 2τLMcl ρ

2/
·
ε (11)

where ε is the strain,
·
ε the creep rate, cL a constant,ω the dynamic recovery constant, τL

the dislocation line tension, and Mcl is the dislocation climb mobility. The three terms on
the right-hand side of the equation represent work hardening, dynamic recovery, and static
recovery. In the secondary stage, the dislocation density is constant since the conditions are
stationary. To transfer the dislocation density to stresses, the Taylor equation is used.

σdisl = αmTGbρ1/2 (12)
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where α = 0.19 is a constant [27,28], mT the Taylor factor, G the shear modulus, and b
Burgers’ vector. The dislocation stress or strength in the secondary stage σdislsec can be
related to the applied stress σ.

σdisl sec = σ− σi (13)

Other strength contributions than dislocations are included in σi, for example, from
solid solution and precipitation hardening. Solid solution hardening is due to two effects.
There is a solute drag stress since the presence of solutes reduces the velocity of climbing
dislocations. In addition, there is an increase in the activation energy corresponding to the
maximum interaction between solutes and dislocations. The modeling of the influence of
solutes on creep is described in [3,29]. The modeling of the influence of precipitates on the
creep rate is a classical issue that has found a solution that was unexpected to many people.
In the past, it was assumed that there was an energy barrier that prevented dislocations
from passing the precipitates. However, the final estimates of the size of this barrier were so
small that they were negligible. Instead, it is the time it takes for dislocations to climb across
the particles that is the critical factor. This means that only larger particles are of importance
for the particle hardening since there is plenty of time for smaller particles to be passed.
Details of the models for precipitation hardening during creep can be found in [3,30]. From
Equations (11)–(13), the creep rate in the secondary stage can then be derived.

·
εsec = hsec(σ− σi) (14)

where

hsec(σ) = 2τLMcl
σ3

(αmTGb)3 /(
mT

bcL
−ω σ

αmTGb
) (15)

The climb mobility Mcl is given as [14]

Mcl =
Dsb
kBT

e
σb3
kBT exp

(
Qself
RGT

(
σ

Rmax
)

2
)

(16)

where Ds is the self-diffusion coefficient, kB Boltzmann’s constant, RG is the gas constant,
and T is the absolute temperature. Rmax is the tensile strength at ambient temperatures. The
last factor in Equation (16) gives strong stress dependence at high stresses. At low stresses,
the temperature dependence of the creep rate is from that of the self-diffusion coefficient Ds
in Equation (16). This temperature dependence is described by an Arrhenius expression in
the activation energy Qself for self-diffusion. The first two factors in Equation (16) represent
the classical expression from Hirth and Lothe [31] of the mobility of vacancies and, thereby,
the climb rate of dislocations.

From Equation (11), the Voce expression for a stress-strain curve can be derived, which
is needed below:

σ = σi + σdisl = σi +
αGmT

2

ωcL
(1− exp(−ωε/2)) (17)

where σi is the sum of other strength contributions. When deriving Equation (17), the last
term in Equation (11) can be neglected.

4. The 2σModel for Primary and Tertiary Creep

To model primary and tertiary creep, it is natural to try to derive expressions from the
creep rate in the secondary stage. The idea is to introduce effective stress that is combined
with the expression for the stress dependence of the secondary creep rate. The choice of the
effective stress σeff2σ is [3,10]

σeff 2σ = σ+ σtrue − 2σi − σdisl (18)
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where σ and σtrue are the nominal and true applied stress. If only primary creep is consid-
ered, σtrue can be taken as the nominal value σ. In the secondary stage, the effective stress
is then σ–σi using Equation (13). In this way, the correct stress in the secondary stress is
reproduced, cf. Equation (14). At the beginning of the primary stage, the dislocation stress
is zero, and the effective stress is twice the value in the secondary stage, which usually gives
quite a high creep rate. The introduction of σtrue in Equation (18) is necessary to handle
tertiary creep. The effective stress in Equation (18) takes a high value in the initial stages
of primary creep and in the later stages of tertiary creep, which is the desired behavior.
Since Equation (18) is not derived directly, its accuracy must be verified by comparison to
experimental results, which is done later in the section.

The relation between the true and the nominal stress is

σtrue = σ(1 + ε) (19)

When the correction for the true stress is taken into account, Equation (13) has to
be modified.

σdisl sec = σ(1 + εsec/2)− σi (20)

where εsec is the strain to reach the secondary stage. The dislocation stress in the secondary
stage can also be obtained from Equation (17)

σdisl sec =
αGmT

2

ωcL
(1− exp(−ωεsec/2)) (21)

One must ensure that the two values for the dislocation stress in Equations (20) and (21)
are the same by selecting an appropriate value for cL in Equation (21). This implies that the
expression for the dislocation stress in Equation (17) can be expressed as

σdisl = [σ(1 + εsec/2)− σi]
(1− exp(−ωε/2))

(1− exp(−ωεsec/2))
(22)

If ε = εsec, Equation (20) is recovered.
In much of the creep literature, there is no clear distinction between the nominal and

the true applied stress. Probably nominal stresses have been used in most cases. When the
stress exponent is below, say, 7, this distinction is not so critical. However, in the power-law
breakdown regime at lower temperatures, the stress exponent can reach a value of 50, and
then the distinction is very important. It turns out that when trying to understand the origin
of tertiary creep, the distinction is also crucial. The creep rate

·
εgen in the primary, secondary,

and tertiary stages can be obtained by inserting the effective stress in Equation (18) in the
expression for the secondary creep rate in Equation (15).

·
εgen = hsec(σeff 2σ) (23)

In Equation (23), the creep rate has been marked with the index “gen” to demonstrate
that it is valid in all three creep stages: primary, secondary, and tertiary.

The application of Equation (23) is illustrated in Figure 7 for Cu with 50 ppm P
(Cu-OFP). The primary and the secondary stages are covered. The model gives an initial
strain on loading of 0.15, in agreement with the observations in Figure 7a. There is a
continuous decrease of the strain rate with increasing time until the secondary stage is
reached when the curve flattens out in Figure 7b. In the primary stage, the straight curve
in Figure 7b illustrates that the φ model is satisfied. It should be pointed out that no
adjustable parameters are involved in the results from the basic models. All the parameters
are defined in the models.
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Figure 7. Creep test of Cu-OFP at 75 ◦C and 160 MPa. The creep test was interrupted after 12,000 h;
(a) Creep strain versus time; (b) Creep rate versus time; Equation (23). Redrawn from [32] with
permission from Elsevier.

In the primary stage, the dislocation stress σdisl is initially low and the effective stress
high, giving a high creep rate. Gradually the dislocation stress increases, and the creep rate
decreases until the secondary stress is reached when there is only a slow increase.

In the presence of a substructure with cells or subgrains, the distribution of dislocations
is not fully homogenous. The reason is that dislocation on a given slip plane with opposite
Burgers’ vectors or orientation moves in the opposite direction under applied stress. This
means that they end up at opposite ends of the cells creating a polarized dislocation
structure [10,33]. When only one type of dislocation is present, the dislocations are referred
to as unbalanced or otherwise balanced. The role of unbalanced dislocations is important
because they cannot meet any dislocation of the opposite type, which prevents static
recovery. Balanced and unbalanced dislocation densities can essentially be derived from
Equation (11), except that for unbalanced dislocation, the last term in the equation is
missing [10,32]. This means that the recovery rate is slower for unbalanced dislocations,
which increases the corresponding dislocation stress.

This is illustrated in Figure 8a for creep in Cu-OFP. As can be seen, the unbalanced
dislocation content increases faster than the balanced content. This means that the disloca-
tion stress for the unbalanced content gets larger than that of the balanced content. This is
demonstrated in Figure 8b.

The total contribution from both unbalanced and balanced dislocations is given as the
full line in Figure 8b, which is the total dislocation stress. The dashed line is σtrue–σi. σi
is essentially the yield strength which is 35 MPa. The difference between the true applied
stress and dislocation stresses is the effective stress in Equation (18) up to the constant term
σ–σi. The difference between the dashed line and the full line is:

σtrue − σi − σdisl = σeff 2σ − (σ− σi) (24)

where Equation (18) has been rewritten. Since σ–σi. is independent of strain, the difference
represents the variation of the effective stress. The effective stress is minimum in the
secondary stage; it is larger in the tertiary stage and, in particular, in the primary stage
giving the corresponding influence on the creep rate. The increase of the effective stress in
the tertiary stage is believed to be the main mechanism for the increase in the creep rate
for Cu.
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Figure 8. (a) Balanced and unbalanced dislocation densities versus time for Cu-OFP at 215 ◦C,
120 MPa; (b) Dislocation stress from balanced and unbalanced dislocation, their sum and the true
applied stress minus σi as a function of strain for Cu-OFP at 250 ◦C, 90 MPa. Reprinted from [34]
with permission of ASME.

The 2σmodel is compared to experimental creep curves in Figures 9 and 10 for Cu-OFP
at two different temperatures. Both the creep strain versus time and the creep rate versus
time curves can be reproduced in an approximate way. The cusps in the experimental creep
rate versus time curves are due to the necessity of reloading the creep machines after a
certain strain has been reached.
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Figure 9. Comparison between experimental data and the model in Equation (23) for Cu-OFP at
250 ◦C, 120 MPa; (a) Creep strain versus time; (b) Strain rate versus creep time. Reprinted from [34]
with permission of ASME.
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5. Primary Creep at Low Stresses; Stress Adaption

The 2σ model seems to work well, as demonstrated in Section 4. However, the model
has one limitation. The maximum value that the effective stress can take is twice the applied
stress. This is no problem at high stresses where the stress exponent is high. However, at
lower stresses and stress exponents, the 2σmodel may not be able to cover the full observed
range of creep rates in the primary stage. Fortunately, there is another model called stress
adaption that is suitable for such situations. Its original form can be found in [14]. The
original version involves singularities which makes it difficult to integrate. There is a new
form of the model that avoids these problems. A brief derivation of the new version of the
model will be given [8].

The starting point is the Voce Equation (17). It is rewritten in the following way:

σ = σi + (σsat − σi)(1− exp(−ωε/2)) (25)

where σsat is the maximum stress in the stress-strain curve, the saturation stress. The
difference between the saturation strength and other strength contributions σi than the
dislocation stress is called K. Both σi and K depend on the temperature T and the strain
rate

·
ε. Both the temperature and the strain rate dependence have been found to be similar.

Equation (25) is expressed in terms of a Norton expression, and the strain rate dependence
is extracted.

σ =
{
σi(T) + K(T)(1− e−ωmε/2)

}
(

·
ε
·
εk

)

1/n

(26)

The temperature dependence of σi and K is marked. n is approximately the stress
exponent in the Norton expansion.

·
εk is the strain rate given at a reference stress, which is

taken as the saturation stress σsat (=σi + K). For reasons that are explained below, the value
ofω in Equation (26) can be changed, and therefore a new designationωm is introduced.
A Norton expansion is also assumed for

·
εk

·
εk = An(σi(T) + K(T))n (27)
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An is a constant. If Equations (26) and (27) are combined, the following expression is
obtained.

·
ε = An

{
σ(σi(T) + K(T))

σi(T) + K(T)(1− e−ωmε/2)

}n
(28)

This is, again, a Norton expansion that can be assumed to represent the creep rate.
Now the Norton expression is replaced with the expression for the secondary creep rate,
Equation (15)

·
εprim SA = hsec(

σ(σi(T) + K(T))
σi(T) + K(T)(1− e−ωmε/2)

) (29)

From Equation (29), the effective stress for stress adaption is found.

σeff SA =
σ(σi(T) + K(T))

σi(T) + K(T)(1− e−ωmε/2)
(30)

If the strains during primary creep are sufficiently large, the value ofωm can be taken
as the dynamic recovery constant ω. However, if this is not the case, the value ofωm has
to be found in another way. From Equation (17), the work hardening at small strains can
be obtained.

dσdisl
dε

=
αGmT

2

2cL
(31)

The dislocation stress cannot exceed the applied stress. The dislocation stress reached
the applied stress at a strain that can be considered as a semi-stationary value.

εsemi stat = (σ− σi)
2cL

αGmT
2 (32)

At this stage, the exponential in Equation (30) must already be small, say 0.05. This
gives the following value forωm

ωm ≈
3

εsemi stat
=

3αGmT
2

2cL(σ− σi)
(33)

6. Application of Stress Adaption to Cu-OFP at Low Stresses

The creep of Cu-OFP at low stresses at 95 to 150 ◦C at stresses from 20 to 100 MPa was
studied by Ho [36]. The creep tests were typically run for about 5000 h and then interrupted.
The observed strain rates close to the time for interruption were 3× 10−13 to 1.0× 10−10 1/s.
As will be demonstrated below, the tests were never near stationary conditions. Creep
strain versus time is shown for four specimens at 95 ◦C and 20 MPa in Figure 11a. Model
prediction according to Equation (23) and to the φ model in Equation (1) is shown. In
Figure 11b, the corresponding curves for the creep rate versus time are presented. Both
Figure 11a,b demonstrate that the φmodel is followed.

In Figure 12, a parallel case to Figure 11 is presented at 95 ◦C, 60 MPa. At these
conditions, six creep tests were carried out. The results are quite similar to those in
Figure 11, showing that the φmodel is valid and that the primary creep model in Equation
(23) can reproduce the creep observations reasonably well. Comparisons have also been
made to the other creep tests performed by Ho [36], and similar conclusions can be drawn
from them.

With the help of Equations (14) and (15), the stationary creep rates can be estimated.
They are found to be 1.3 × 10−22 and 1.4 × 10−19 1/s corresponding to the conditions in
Figures 11 and 12, respectively. This is many orders of magnitude below the creep rates
after 3000 to 5000 h in the Figures of 3× 10−12 1/s and 5× 10−11 1/s. As pointed out above,
the creep curves in Figures 11 and 12 are very far from stationary conditions. Obviously,
the observations in these Figures represent data at a very early stage of primary creep. In
spite of this, the data follow the φ model quite well, and the stress adaption model can
reproduce the experiments.
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Figure 11. Primary creep in Cu-OFP at 95 ◦C, 20 MPa. Experimental data from [36]. Primary
creep model in Equation (23). φ model according to Equation (1) with parameter values from
Equations (3) and (4); (a) Creep strain versus time; (b) Creep strain rate versus time.
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Figure 12. Primary creep in Cu-OFP at 95 ◦C, 60 MPa. Experimental data from [36]. Primary
creep model in Equation (23). φ model according to Equation (1) with parameter values from
Equations (3) and (4); (a) Creep strain versus time; (b) Creep strain rate versus time.

7. Tertiary Creep with the Omega Model

There are several effects that can contribute to the increase of the creep rate in the
tertiary stage. One main effect that was discussed in Section 4 is that the increase of the true
stress is not fully balanced by an increase in the dislocation density. In the literature, there
is much more focus on other changes in the microstructure that influence the creep rate in
the tertiary stage. These changes are usually referred to as creep damage [37]. There are
many mechanisms that have been proposed to contribute to the creep damage, for example,
particle coarsening, increases in the subgrain size, and formation of creep cavities [38]. For
the martensitic 9% Cr steels, the coarsening of fine carbonitrides (e.g., MX) has been shown
to reduce the creep strength. Brittle phases such as Z-phase, Laves phase, and M6X carbides
can be formed and decrease the creep ductility, for example, by acting as nucleation sites
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for cracks. In addition, the formation of brittle phases consumes alloying elements, which
decreases the solid solution and precipitation hardening [39–41].

Quite a number of empirical or semi-empirical models to study the microstructural
effects on the creep curves have been suggested. These models are almost invariably
associated with a large number of adjustable parameters. This is systematized in terms of
what is referred to as continuum damage mechanics. For reviews, see [42,43]. Describing
the creep curves and rupture data with mathematical expressions involving a large number
of parameters is usually straightforward. However, since several models based on different
mechanisms can, in general, describe the experimental data fairly accurately, it gives little
insight into the operating mechanisms. It is essential to use basic models without adjustable
parameters to identify mechanisms. That this can be successful was illustrated for Cu in
Section 4. For the important group of martensitic 9% Cr steels, creep rupture, and primary
creep have been handled with basic models [44–46]. Unfortunately, it has not been possible
to model tertiary creep in the past.

There are some intrinsic difficulties in modeling tertiary creep. Some of these difficul-
ties will be analyzed in this section. The use of fine precipitates is the most effective way to
increase the creep strength for many materials. When the materials are exposed to high
temperatures, the precipitates coarsen, which reduces the creep strength. The driving force
for the coarsening is the reduction of the total surface energy of the particles. The process is
referred to as Ostwald ripening. For a single set of particles, its effect can be described with
a simple formula:

r3
p = r3

0,p + kpt (34)

where rp is the average particle radius, and r0,p is the corresponding initial value. kp
is a constant that can be precisely derived from thermodynamic properties [47]. It is
proportional to the diffusion coefficient for the element that is controlling the process.

Subgrains are also growing at high temperatures. This can be described by the follow-
ing equation [48]:

ddsub
dt

=
3MclimbτL

2dsub
·
[

1−
(

dsub
dsub lim

)2
]2

(35)

dsub is the subgrain diameter, and dsublim is the limiting subgrain size due to the
retarding force from particles in the sub-boundaries, which is referred to as Zener drag.
The limiting subgrain size is given by [48]:

dsub lim =
πrp

γ fp
(36)

rp is the radius of particles at the subgrain boundaries, and f p is their volume fraction.
The constant γ takes a value of about 0.5 [49]. If the subgrain size is less than its limit
value in Equation (36), Equation (35) is valid when the material is not exposed to stress.
During creep, the subgrain size is given by a general expression relating its value to the
dislocation stress.

dsub =
KsubGb
σdisl

(37)

Ksub is a dimensionless constant with values in the interval 2 to 20 for many alloys [50].
G is the shear modulus, and b is Burgers’ vector. However, dsub is also controlled by the
upper bound in Equation (36). By increasing the volume fraction of particles in the sub-
boundaries, the limiting subgrain size is reduced. In this way, the total dislocation density
can be increased, which is of importance for the creep strength. In 9% Cr steels, there are
M23C6 carbides in the sub-boundaries. These carbides are used to control the subgrain size
and, thereby, also the creep strength.

In Figures 3 and 6, the logarithm of the creep rate increases linearly with strain in the
tertiary stage. This is the characteristic feature of the Omega model. There are two origins
of this increase: the increase of the true stress and the presence of creep damage. The effect
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of the true stress is to give a slope corresponding to the creep stress exponent. In Figure 3,
the stress exponent is 12. However, the slope of the curves corresponds to exponents of
28, 39, 65, and 95 for the applied stresses of 180, 150, 130, and 110 MPa, respectively. The
stress exponent in Figure 6 is 5, whereas the slopes of the curves represent exponents of
9. Consequently, there is a considerable contribution from creep damage to the slope of
the curves.

It is well established that particle and subgrain coarsening is of major importance
for the creep damage of the 9% Cr steel P91 [51]. Equations (34) and (36) give a time-
dependent contribution to the creep damage that can be shown not to be consistent with the
strain dependence observed in Figure 3. Instead, strain-controlled creep damage must be
considered. During creep and other plastic deformation, the number of vacancies increases.
This raises the diffusion coefficient by a factor of fc in proportion to the increased number
of vacancies [52]. It can be described with the following equation [52]:

fc = 1 +
∆c
c0

= 1 + 0.5

√
2K2

sub
·
εb2

Dsel f

G
σ

(38)

where c0 is the equilibrium concentration of vacancies, ∆c is the increased concentration
of vacancies due to plastic deformation, Dself is the self-diffusion coefficient,

·
ε the creep

strain rate, and σ the applied stress. At lower temperatures, Equation (38) can give rise to
very large increases in the creep rate of many orders of magnitude [3]. However, when
Equation (38) is used in combination with the examples in Figures 3 and 6, the effect is
negligibly small.

Another important damage mechanism is cavitation. During brittle rupture, nucle-
ation, growth, and coalescence of creep cavities are believed to control the failure. A survey
of modeling of creep cavitation can be found in [53]. The nucleation of creep cavities
is assumed to be created by grain boundary sliding (GBS). The amount uGBS of GBS is
proportional to the creep strain ε

uGBS = Csε =
3Φ
2ξ

dgε (39)

where Cs is a constant, dg the grain size, Φ = 0.15 to 0.33 (the value increases with the creep
stress exponent), and ξ = 1.36 are other constants. According to the double ledge model [54],
cavities can be formed at particles in the grain boundaries and at subgrain-grain boundary
junctions, and this is thermodynamically feasible, meaning that energy is released when
a cavity is formed [55]. Assuming nucleation at both particles and subgrain corners, the
number of nucleated cavities can be expressed as:

ncav =
0.9Cs

dsub
(

gsub

d2
sub

+
gpart

λpart2 )ε = Bsε (40)

where λpart is the interparticle spacing in the grain boundaries. gsub and gpart are the frac-
tions of subgrain corners and particles where cavity nucleation takes place. Equation (40)
can be considered as a definition of the constant Bs. Equation (40) has been experimentally
verified, for example, for austenitic stainless steels and Cu [56]. It should be noted that
Equation (40) is strain and not time controlled.

The common form of the equation for the growth of cavities is time controlled.

dRcav

dt
=

2δDGBΩa

kBT
Kf(σ− σ0)

1
Rcav2 (41)

where Rcav is the cavity radius in the grain boundary plane, dRcav/dt the growth rate,
DGB the grain boundary self-diffusion coefficient, δ the grain boundary width, and Ωa
the atomic volume, kB Boltzmann’s constant, and T the absolute temperature. σ0 is the
minimum stress for cavity growth (sintering stress), 2γs sin(α)/Rcav, where γs is the surface
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energy of the cavity per unit area and α the cavity tip angle. Kf ≈ 0.2 is a constant that is a
function of the cavitated area fraction. Recently, a new equation for the strain dependence
of cavity growth has been proposed. It simply assumes that the cavity radius is equal to
the amount of GBS. This is natural since once a cavity has been opened up by GBS, it can
continue to grow due to continued GBS.

Rcav = Csε (42)

It is notable that it is the same constant Cs that appears in Equation (39), which is
known. It has been demonstrated in [57] that Equation (42) can reproduce observations for
steels. There are other equations for the strain-dependent growth of cavities. They are often
associated with two drawbacks. According to the principles of constrained growth, the
cavities cannot grow faster than the creep deformation, and this is often not satisfied. This
implies that the cavity growth rate can easily be overestimated for large cavities. On the
other hand, for small cavities, the situation is the opposite. If the nucleation size for cavities
is used, the cavity growth rate is negligible. If these drawbacks are present, quantitative
predictions are not possible.

With Equations (40) and (42), strain-controlled nucleation and growth of cavities can
be described. By combining Equations (40) and (42), the following expression for the
cavitated area fraction Acav can be obtained.

Acav = gAc(w/R)
∫ ε

0

dncav

dε′
(ε′)πR2

cav(ε, ε
′)dε′ (43)

Cavitation does not take place in all grain boundaries. The fraction of grain bound-
aries that are fully cavitated is referred to as gAc. Cavities are typically elongated, which
is taken into account with the ratio w/R, which is about 0.7. With the expression in
Equations (40) and (42), Equation (43) can be integrated directly.

Acav = gAc(w/R)
π

3
BsCs

2ε3 (44)

Equation (44) is valid for small strain. For larger strains, it must be considered that the
cavity radius cannot be larger than the spacing between cavities λcav

Rcav <
λcav

2
=

1
2
√

ncav
(45)

The strain dependence of the cavitated area fraction will be illustrated for Sanicro 25
for the case of 240 MPa in Figure 6. The data for Sanicro 25 are taken from [58], where
the same tests as in [24] are used. The grain size dg is 20 µm, and the distance between
particles in the grain boundaries λpart is 4 µm. The presence of cavitation is assumed to
be heterogeneous in accordance with common experience. In the most cavitated grain
boundaries where crack initiation will take place, it is assumed that every particle will
generate a cavity, but for the sub-boundary–grain boundary junctions, only a tenth of
them will form a cavity. The value of Φ is taken as 0.25 considering a stress exponent
of 5. With these data, Cs = 5.5 µm and Bs = 3.6 × 1011 m−2 are obtained according to
Equations (39) and (40).

The relations for the cavitated area fraction in Equations (43) and (44) are illustrated in
Figure 13 for a single boundary (gAc = 1). As pointed out above, Equation (44) is only valid
at lower strains, in Figure 13, up to a strain of 0.25.
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It is also of interest to estimate the total crack length. When the Rcav is longer than
what is specified with the criterion (45), a crack is assumed to form. The total length lcav of
cavities and cracks can be estimated from the following equation:

lcav = gAc

∫ ε
0

dncav

dε′
(ε′)Rcav(ε, ε

′)dε′ (46)

If the condition (45) is satisfied, lcav represents the length of cavities. If the condition is
ignored, lcav is the length of both cavities and cracks. If the condition (45) is not taken into
account, Equation (46) can be integrated.

lcav = gAc
1
2

BsCsε
2 (47)

Equations (46) and (47) are exemplified in Figure 14 for a single boundary (gAc = 1).
The length of cracks is also given. When cracks start to form by coalescence of cavities,
the total length of cavities decreases. This is the reason for the drop in cavity length once
cracks appear. The sum of the cavity length and the crack length is given by the expression
in Equation (47).

If the cavitated area fraction is taken into account when computing the creep rate, the
expression for the effective stress takes the form, cf. Equation (18)

σeff 2σ = σ
(1 + ε/2)
1− Acav

− 2σi − σdisl (48)

The dislocation stress is also influenced by Acav, cf. Equation (21)

σdisl =

[
σ
(1 + εsec/2)

1− Acav
− σi

]
(1− exp(−ωε/2))

(1− exp(−ωεsec/2))
(49)

The application of Equations (48) and (49) is demonstrated in Figure 15. The creep
rate as a function of strain is given for the same case, as in Figure 6. The model does not
reproduce the full strain dependence. In particular, the primary creep is much larger in
the model than in the experiments. One reason could be that the experimental data do not
include the strain on loading when the creep tests are started. It is taken into account in the
model giving a strain of about 0.1 to reach the secondary stage. The general behavior of the
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tertiary stage is reasonably well described. In particular, the linear increase of the creep
rate with increasing strain can be represented. The fraction of cavitated grain boundaries
has been assumed to be 10% (gAc = 0.1) from data for other austenitic stainless steels [59].
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8. Discussion

The creep rate in the primary stage has a characteristic time dependence. In a double
logarithmic diagram, it gives a linear behavior. The creep rate decreases exponentially with
increasing time. This behavior is particularly well established for martensitic 9% Cr steels,
as pointed out in Section 2, but it is observed for fcc alloys as well. This is referred to as the
φ model [11]. In its integrated form, the relation has been known for a long time [19]. It
was shown in Section 5 that the φmodel is also obeyed in the very early stages of primary
creep and could describe data over many orders of magnitude in time.

Two basic models for primary creep are described: the 2σ model and the stress
adaption model. The 2σ model is the more general one, but it has the limitation that it
cannot handle low stresses. Fortunately, the stress adaption model is suitable for low
stresses. Both models have a simple structure. It is assumed that the creep rate can
be computed from the stress dependence of the secondary creep rate by introducing an
effective stress. For a soft material, the initial creep rate is high, and that is taken into
account with a high value of the effective stress. With increasing time or strain, the effective
stress is reduced until the secondary stage is reached, when it takes the value of the applied
stress minus the strength contributions from other sources than the dislocations, such as
solid solution and particle hardening. During the primary stage, there is a continuous
increase in the dislocation density due to work hardening. The reduction of the effective
stress is due to this increase in the dislocation density. For materials that are initially hard
such as martensitic steels, the situation is more complex. At least two types of dislocation
densities have to be introduced, free and immobile dislocations. The former type decreases
with strain, but the latter type increases, making it possible to model the decreasing creep
rate during the primary stage [44].

Both the 2σ model and the stress adaption model can accurately reproduce the ob-
served decrease of the creep rate during the primary stage. The characteristic features of
the φmodel can be represented as well as the transition to the secondary stage. Even the
early stages of primary creep can be described.

The 2σmodel can also handle the transition to the tertiary stage and the tertiary stage
itself. During the tertiary creep, there is a faster increase of the true applied stress than of
the dislocation stress. In the 2σmodel, this is one main reason for the increase of the creep
rate in the tertiary stage.

During the tertiary stage, several changes in the microstructure take place, such as
coarsening of the dislocation network, the substructure, and the precipitates. These changes
are referred to as creep damage. Although there are numerous empirical models for creep
damage, it is fair to say that its formation is far from well understood. There are good
basic models for the changes in dislocation density, subgrain size, and radii of precipitates.
However, there is a problem. The classical models for these phenomena are all time based,
i.e., they are a function of time. For a number of materials, the logarithm of the creep rate is
approximately linear in the creep strain. These characteristics are referred to as the Omega
model. Thus, for these materials, the formation of the creep damage is strain-based, not
time-based. It remains to formulate strain-based models that work at high temperatures
typical for creep-exposed steels.

In the paper, a strain-based model has been formulated for one type of creep damage,
namely cavitation. If cavity nucleation based on grain boundary sliding (GBS) is assumed,
modeling suggests that the number of cavities formed is proportional to the creep strain.
Growth of cavities is normally considered to be time-based, but there are strain-based
models as well. A recent model has been applied where the cavity size is related to the
amount of GBS, which is proportional to the creep strain. When the cavity length reaches
the spacing distance between cavities, they are assumed to coalesce and form microcracks.
In this way, a fully strain-based model for the creep damage from the cavities is obtained. It
is demonstrated in the paper that if this damage model is applied to the creep model, it can
reproduce the general behavior of the strain dependence of the creep rate in the tertiary
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stage for Sanicro 25, as shown in Figure 15. This is a major step forward, but a number of
features remain to be solved, including the stress dependence of the damage in many cases.

9. Conclusions

Traditionally the time dependence of the creep strain and strain rate have been mod-
eled with empirical models involving a number of adjustable parameters. These models are,
in general, mathematical expressions with little or no physical background that are fitted
to the experimental data. Such models are simple to use, but they have drawbacks. The
results cannot be transferred from one material to another one or extrapolated. They cannot
be used to predict values outside the considered set of experimental data. In the paper,
basic models for the strain dependence of creep are presented that avoid these difficulties.
With the basic models, quantitative predictions can be made, and a direct comparison to
experimental data is possible.

• Both primary and tertiary creep show characteristic features for many materials.
During the primary stage, the creep rate decreases exponentially with time, and in
the tertiary stage, the logarithm of the creep rate is linear in the creep strain. These
relations are referred to as the phi (φ) model and the Omega (Ω) model, respectively.
They play a crucial role in the understanding of creep strain behavior.

• The basic 2σ model can represent primary creep and accurately describe the time
dependence of the creep rate in accordance with the φ model. It can also handle
tertiary creep, including the characteristics of the Ω model. However, it should be
pointed out that the description of tertiary creep has only been verified in a limited
number of cases.

• The stress adaption model is suitable to represent primary creep at low creep stresses
and replaces the 2σmodel in such situations. The stress adaption model also accurately
reproduces the observed behavior according to the φmodel. It is demonstrated in the
paper that the stress adaption model can handle very early stages of primary creep. In
this way, primary creep over many orders of magnitude in time can be described.

• The typical strain dependence in the tertiary stage, according to the Ω model, shows
that the creep damage is primarily controlled by the creep strain, not by the creep time.
Unfortunately, insufficient strain-dependent models are available at present. However,
a strain-dependent model for cavitation is presented in the paper. The creep damage,
in this case, is due to nucleation, growth, and linkage of creep cavities and, thereby,
the formation of microcracks. The results for this type of damage have been inserted
in the 2σ model by taking into account the role of the cavitated area fraction in the
grain boundaries. In this way, it has been possible to describe the observed behavior
of the creep rate in the tertiary stage for the austenitic creep-resistant steel Sanicro 25.
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