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Abstract: Developing accurate and interpretable models to forecast concrete’s self-healing behavior
is of interest to material engineers, scientists, and civil engineering contractors. Machine learning
(ML) and artificial intelligence are powerful tools that allow constructing high-precision predictions,
yet often considered “black box” methods due to their complexity. Those approaches are commonly
used for the modeling of mechanical properties of concrete with exceptional accuracy; however, there
are few studies dealing with the application of ML for the self-healing of cementitious materials. This
paper proposes a pioneering study on the utilization of ML for predicting post-fire self-healing of
concrete. A large database is constructed based on the literature studies. Twelve input variables are
analyzed: w/c, age of concrete, amount of cement, fine aggregate, coarse aggregate, peak loading
temperature, duration of peak loading temperature, cooling regime, duration of cooling, curing
regime, duration of curing, and specimen volume. The output of the model is the compressive
strength recovery, being one of the self-healing efficiency indicators. Four ML methods are optimized
and compared based on their performance error: Support Vector Machines (SVM), Regression Trees
(RT), Artificial Neural Networks (ANN), and Ensemble of Regression Trees (ET). Monte Carlo analysis
is conducted to verify the stability of the selected model. All ML approaches demonstrate satisfying
precision, twice as good as linear regression. The ET model is found to be the most optimal with
the highest prediction accuracy and sufficient robustness. Model interpretation is performed using
Partial Dependence Plots and Individual Conditional Expectation Plots. Temperature, curing regime,
and amounts of aggregates are identified as the most significant predictors.

Keywords: autogenous self-healing; cementitious materials; high temperature; artificial neural
network; ensemble methods; mechanical properties; artificial intelligence

1. Introduction

The popularity of concrete as a building material stems from its high compressive
strength and versatility for structural applications [1,2]. Unfortunately, it is also a brittle
material that loses durability due to cracking caused by harsh environmental conditions [3],
e.g., high-temperature exposure [4]. On the other hand, cementitious materials have an
intrinsic auto-repair capacity, called autogenous self-healing, which enables them to seal
cracks and leads to their improved durability and recovered mechanical properties [5].
Concrete can also auto-repair damage after exposure to high temperatures, e.g., fire [6], the
efficiency of which depends on multiple factors: maximum temperature loading [7], mix
composition [8,9], and the application of post-fire cooling and curing [10–12]. During a fire,
concrete undergoes physical and chemical transformations, e.g., induced thermal stresses
and the evaporation of free water cause severe cracking [10]. Therefore, effective post-fire
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self-healing properties are a benefit that would increase the likelihood of concrete reuse in
the event of a fire. Regarding sustainability, concrete structures with self-healing properties
are an environmentally friendly option with less material needed for repair, resulting in
decreased carbon emissions and lower costs [5,13].

Accurate prediction of concrete’s self-healing, including its post-fire recovery behavior,
is of paramount importance as it would reduce costs of expensive destructive testing and
give an indication of the performance of “intelligent” cementitious materials. Unfortunately,
there were few attempts to model concrete’s post-fire auto-repair [14]. An analytical
model of the post-fire recovery of mechanical properties was proposed based on stress–
strain curve fitting [14]. Nevertheless, the model was applicable only to cement-lime
mortars. A multi-scale model was developed based on the physicochemical principles,
considering carbonation, decarbonation, and recarbonation processes [15]. A successful
prediction was obtained for the compressive and tensile strength recovery after high-
temperature loading; however, the complexity of the model was high. Concrete’s post-fire
behavior was also included in the current American Concrete Institute (ACI) and Eurocode
standards [16,17], yet, cooling or curing regimes were not considered [18]. Hence, it is
necessary to develop new models to facilitate designing post-fire self-healing materials,
analyzing their performance, and predicting the probability of recovery.

In the past decades, machine learning (ML) methods have been successfully applied
in the modeling of cementitious materials. ML algorithms enable the analysis of mul-
tiple variables and the processing of large amounts of data [19]. ML techniques have
proved to be successful in predicting the mechanical properties of concrete, e.g., com-
pressive strength [20,21], tensile strength [22,23], and elastic modulus [24] Furthermore,
ML is efficiently applied in analyzing durability and deterioration processes, e.g., sulfate
attack [25], chloride diffusion [26], and alkali–silica reaction [27]. Recently, applications in
more sophisticated areas were proposed, e.g., predicting hydration kinetics [28].

One of the significant drawbacks of ML modeling is a lack of interpretability [29]
leading to their limited applicability. Many ML models follow the so-called “black box”
approach, i.e., they exhibit high complexity and excellent prediction capacity, but they are
difficult to explain. Interpretability is essential because it facilitates finding patterns in
trained models and errors in less accurate predictions [30]. Several interpretation methods
have been proposed, including Partial Dependence Plots [31] and Individual Conditional
Expectation Plots [32]. These methods make it possible to study the response’s dependency
on the predictor variables and formulate a causal explanation of the ML “black box”.

Despite the popularity in other areas of concrete science, ML techniques are rarely
used to model the autogenous self-healing properties of concrete (Table 1). A recent
study proposed a mixed approach, utilizing meta-analysis and Artificial Neural Networks
(ANN) to evaluate the relationship between, e.g., mix composition and the self-healing
index [33]. In contrast to most studies, the self-healing output was a combination of
durability and mechanical performance recovery. Nevertheless, limited accuracy was
obtained, with a coefficient of determination (R2) of approximately 0.77 for the validation
and testing set [33]. The auto-repair capability of engineered cementitious materials was
successfully modeled with ensemble methods, i.e., AdaBoost, bagging, and stacking, to
increase prediction accuracy. Good precision was achieved, with R2 greater than 0.85;
however, only four input variables were employed: initial crack width, fly ash, silica
fume, and hydrated lime powder [34]. Six different ML algorithms, i.e., ANN, k-nearest
neighbors, decision tree regression, Support Vector Regression, and two ensemble models
(gradient boosting regression and Random Forest) were trained on an extensive database
of more than 1400 records to predict autogenous self-healing of concrete with very high
accuracy [35]. Sixteen predictors were included: type and dosage of healing material; fiber
diameter, length, and tensile strength; the initial cracking data and initial cracking width;
the time for healing; the healing condition (environmental exposure); the amount and type
of cement; the amount of superplasticizer; fine aggregates; fly ash; slag; and the water–
binder ratio [35]. The ensemble model achieved the highest coefficient of determination
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(R2) equal to 0.958. To the authors’ knowledge, there is no ML-based model of post-fire self-
healing. In addition, the autogenous self-healing ML models focus primarily on prediction
accuracy, paying less attention to sensitivity analysis and model interpretation, which
indicates a significant research gap in this area.

The objective of this paper was to develop an interpretable ML model for predicting
the post-fire recovery of the compressive strength of concrete. A detailed database with
197 records was prepared based on the available literature. Twelve input variables were
determined: w/c, age of concrete, amount of cement, fine aggregate, coarse aggregate, peak
loading temperature, duration of peak loading temperature, cooling regime, duration of
cooling, curing regime, duration of curing, and specimen volume. Four ML approaches
with basic architecture were evaluated, i.e., Artificial Neural Networks (ANN), Support
Vector Machines (SVM), Regression Trees (RT), and an Ensemble of Regression Trees (ET).
The final model was chosen based on four statistical measures, i.e., mean squared error
(MSE), root mean squared error (RMSE), mean absolute error (MAE), and the coefficient
of determination (R2). In addition, Partial Dependence Plots (PDP) and Individual Con-
ditional Expectation (ICE) Plots were used to study the effect of different predictors on
the response.
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Table 1. Examples of ML modeling of autogenous self-healing.

References ML Algorithm Database Size Inputs Outputs Accuracy Pros Cons

[36]

Ensemble methods:
AdaBoost regressor,
Decision Tree, and
bagging regressor

617 Fly ash, limestone powder, silica
fume, and initial crack width Crack width after healing R2 = 0.974 for bagging

Good prediction accuracy
Parameter importance
analysis performed

Applied only to engineered
cementitious composites
A small number of inputs
Output does not consider
durability/mechanical
performance Self-healing
exposure is not considered

[37]
Artificial Neural
Network with hybrid
genetic algorithm

1462

Cement content, w/c, type and
dosage of supplementary
cementitious materials,
bio-healing materials, expansive
and crystalline additives

Crack width after healing R2 > 0.99
Excellent accuracy
Many inputs
Large database

Output does not consider
durability/mechanical
performance Self-healing
exposure is not considered

[33] Artificial Neural
Network with 2786

Cement content, w/c,
supplementary cementitious
materials content, fiber content,
initial crack width,
age of treatment

Self-healing index,
including a combination
of crack size, permeability,
ultrasonic pulse velocity,
and mechanical strength
changes before
and after healing

R2 = 0.78 (validation
and testing dataset)

Model analysis
Comparison with
meta-analysis results
Extensive database
Output includes
several parameters

Relatively low accuracy
Self-healing exposure
is not considered

[35]

Artificial Neural
Network, k-nearest
neighbors, gradient
boosting regression,
decision tree regression,
Support Vector
Regression, and a
Random Forest

1417

Type and dosage of healing
materials, fiber diameter, length
and tensile strength, initial crack
width, the time for healing,
cracking age, the healing
condition, cement type and
content, superplasticizer, fine
aggregates, fly ash and slag
content, w/b

Crack width after healing
and resonance frequency R2 = 0.958

Good prediction accuracy
Many inputs
Large database
Parameter importance
analysis performed
Includes
exposure conditions

Output does not
consider durability/
mechanical performance

[34]

Artificial Neural
Network, Support
Vector Machines,
Classification and
Regression Tree, with
ensemble: bagging,
AdaBoost, and stacking

617 Fly ash, limestone powder, silica
fume, and initial crack width Crack width after healing R2 = 0.90 for bagging

Training on consistent
experimental data
Comparison of ensemble
and individual models

Applied only to engineered
cementitious composites
A small number of inputs
Output does not consider
durability/mechanical
performance Self-healing
exposure is not considered
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2. Research Significance

The design of materials adheres to the path paved by four principal elements: pro-
cessing, structure, properties, and performance (PSPP) [38]. Science aims to understand
how the materials’ performance depends on their processing and structure; it is the so-
called “forward” approach. Based on the results of scientific experiments, the forward
models, which facilitate the prediction of the material’s properties and performance, can be
formulated [39]. Furthermore, these models can be used to construct “inverse” problems,
enabling, e.g., optimization of the material structure to achieve the desired performance,
which is crucial from the engineering point of view. Data-driven modeling, such as machine
learning, facilitates the creation of both forward (e.g., [21]) and inverse models (e.g., [40]).
In concrete science, developing accurate models is essential since concrete is a complex
heterogenous material with infinite composition combinations, making the experimental
testing cumbersome and costly. Application of ML for the prediction of concrete properties,
similar to that attempted in this study, could facilitate optimization of the material proper-
ties, as well as the design of potential future experimental campaigns. Considering that
concrete, after water, is the second-most-used substance in the world [41] and the most
popular building material, the practical implication of this research is indubitable.

The novelty of this study involves a pioneering application of ML for the prediction
of self-healing of thermally cracked concrete. The literature review indicates that there
were no attempts to model the post-fire self-healing of concrete using artificial intelligence.
Therefore, the current study fills the research gaps through the following points: (i) the
paper compares several optimized ML methods, i.e., ANN, SVM, RT, and ET, with linear
regression, with the selected trained model with the best accuracy (ET) providing a very
good correlation (exceeding 90%) with the experimental data; (ii) a robustness analysis is
conducted with the use of Monte Carlo simulations to compare the stability of the selected
models; (iii) sensitivity analysis is performed by calculating the PDP and ICE plots, showing
the importance of the input variables with respect to the self-healing performance.

3. Database Description

In ML modeling, database transparency and data quality are critical [42]. At the same
time, the number of observations analyzed should be at least one order higher than the
number of variables [19]. Therefore, in this study, an extensive database was established
based on the current state-of-the-art on post-fire self-healing of concrete to maximize the
number and representativeness of the data.

The database was constructed by combining several smaller experimental datasets
available in the literature (Table 2).

Table 2. Sources used for the database construction.

No. References Samples in Dataset

1 [10] 2
2 [43] 56
3 [44] 3
4 [11] 4
5 [12] 8
6 [45] 4
7 [46] 11
8 [47] 48
9 [8] 5
10 [48] 24
11 [49] 4
12 [50] 28

Total 197
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In total, the database consisted of 197 records obtained from 12 experimental studies.
The maximum number of samples was equal to 56 from [43] and the minimum number
of samples was equal to 2 from [10]. The inclusion of several datasets has its limitations.
For example, raw materials used for concrete preparation, e.g., grading of aggregate, the
process and technology of specimen preparation and handling, or curing conditions, may
differ from study to study. Nevertheless, ML modeling requires big data and since testing
of concrete is expensive and time-consuming, using results from existing research is a
common practice for ML predictions of concrete properties [51,52].

In this study, the output of the model is the compressive strength recovery (CSR) due
to self-healing, which can be defined as follows:

CSR =
σh
σ0

[−] (1)

where σh is the compressive strength after the healing process and σ0 denotes the compres-
sive strength of the intact specimens before the temperature loading.

Based on the analyzed literature, 12 input variables were selected as factors potentially
affecting the strength recovery due to the self-healing process: w/c, age of concrete, amount
of cement, fine aggregate, coarse aggregate, peak loading temperature, duration of peak
loading temperature, cooling regime, duration of cooling, curing regime, duration of curing,
and specimen volume. Specimen volume was calculated based on the specimen type used
for compressive strength testing. When not specified, the cooling time was assumed to
be 120 min based on the data reported in several studies. Several datasets were excluded
from the database due to missing components, i.e., when no compressive strength was
reported, and when the curing process was absent (only cooling was applied). In addition,
samples with fibers and supplementary cementitious materials were omitted due to the
small amount of data. Statistical descriptors of each variable, including minimum (Min)
and maximum (Max) values, median, mean, standard deviation (Std), and skewness (Sk)
are listed in Table 3. The histograms and relationship of each input to the output are
presented in Figure 1.
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Figure 1. Relationship between the input and output variables, including histograms: (a) water-to-
cement ratio (I1), (b) age (I2), (c) cement amount (I3), (d) fine aggregate (I4), (e) coarse aggregate (I5),
(f) temperature (I6), (g) duration of peak temperature (I7), (h) cooling regime (I8), (i) cooling duration
(I9), (j) curing regime (I10), (k) curing duration (I11), (l) specimen volume (I12).
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Table 3. Statistical descriptors of the input and output parameters.

Input/
Output Name Unit Min Max Median Mean Std Sk

I1 w/c - 0.3 0.68 0.5 0.51 0.11 0.37
I2 Age days 3 90 28 43.65 30.70 0.45
I3 Cement kg/m3 300 767 392 422.80 84.87 2.24
I4 Fine aggregate kg/m3 638.04 1620 768 896.20 257.66 1.42
I5 Coarse aggregate kg/m3 0 1201.59 914 818.98 329.04 −1.56
I6 Peak loading temperature ◦C 400 1000 600 569.04 148.65 0.70

I7 Duration of peak
loading temperature min 60 200 120 92.49 33.51 0.44

I8 Cooling regime - 0 1 - - - -
I9 Duration of cooling min 10 4320 120 1146.50 1816.16 1.17

I10 Curing regime - 0 1 - - - -
I11 Duration of curing days 1 180 27 34.33 45.72 2.22
I12 Specimen volume cm3 64 21,205.8 1000.0 2823.5 3616.9 2.8

O Recovered
compressive strength - 0.018 1.03 0.66 0.65 0.22 0.74

Two categorical variables were assumed: cooling (I8) and curing regime (I10). Since
most of the literature does not detail curing and cooling conditions, e.g., the air’s relative
humidity (RH), a simplification was applied to construct the current database. In both
cases, two environmental conditions were assumed, air or water, encoded by values 0 and 1
in the database, respectively.

Correlation analysis of the variables indicated strong correlations (R ≥ 0.7) between
several input variables (Figure 2).
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Concrete mix composition parameters were found to be correlated, i.e., w/c (I1) and
cement amount (I3) (R = −0.7), cement mount (I3) and coarse aggregate (I5) (R = −0.7), and
fine aggregate (I4) and coarse aggregate (I5) (R = −0.9). In addition, a strong correlation
(R = 0.9) was found between the age (I2) and cooling duration (I9) variables.

It is known that for the regression analysis, e.g., ordinary least squares regression
models, the independence of the observations is assumed [53]. Nevertheless, despite the
presence of correlations between several input variables, all inputs are considered for
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the modeling stage to perform a complete model interpretation. A similar approach was
conducted by [51].

4. Methods
4.1. ML Approaches
4.1.1. Support Vector Machines (SVM)

A Support Vector Machine, developed by Vapnik based on statistical learning the-
ory [54], is a widely used supervised learning algorithm within the machine learning
domain to solve classification and regression problems [54]. The intended output of SVM
is the optimal n−1 subspace of the n-dimensional vector space, known as a hyperplane,
that generates the largest margins between the different classes’ boundary points [55].
Kernel functions are used to evaluate the data points by calculating the higher-dimensional
relationship between them as they become linearly separable [56]. Support Vector Re-
gression (SVR) can be used to make predictions for continuous datasets, where Vapnik’s
ε-insensitive loss function is used to determine the decision boundary [54,57]. SVM-based
models can predict values for previously unseen data with high accuracy while being less
resource intensive in terms of computation complexity.

4.1.2. Regression Tree (RT), Ensemble of Trees (ET)

A Regression Tree (decision tree) is a supervised learning algorithm that can be used
both for classification and regression problems. It is a popular algorithm due to its easy-to-
interpret output that is presented in a tree-like, hierarchical structure. The main elements
of a decision tree are the starting root point, interconnecting nodes, and single termination
points, known as leaves [58].

An ensemble Regression Tree, alternatively called a Random Forest, is a compilation of
multiple instances of decision trees. Consequently, it is also a supervised learning technique
that can be applied to classification and regression tasks. The predictive performance
increases compared to a single Regression Tree, utilizing a democratic voting process,
reducing the variance [56]. However, the tradeoff is the requirement of significantly higher
computational resources and harder interpretability.

Ensemble methods combine several independent learners to make an overall more
robust prediction compared to an individual model. The two general types of ensemble
learning techniques are bagging and boosting, where the former reduces variance and
the latter reduces bias. Bagging, or bootstrap aggregating, provides a prediction based
on the average of the combined predictions of all learners in the model [59]. On the other
hand, boosting, e.g., LSBoost algorithm [60], iteratively adjusts its hyperparameters to
compensate for the error in the previous learners’ prediction [56].

4.1.3. Artificial Neural Networks (ANN)

An Artificial Neural Network is a machine learning algorithm based on and modeled
after the human brain [61]. It is a supervised learning technique that is also extensively
used for classification and regression problems. ANNs consist of multiple layers, such as
input, hidden, and output layers, connected by neurons via axons. Each neuron represents
an input to the next process step, while the axon represents the weight and biases of the
associated input to the next layer. The more layers, the more complex the network. Neural
networks with many layers are considered a separate field of machine learning called Deep
Learning [56].

4.2. Performance Indices of Models

In this study, the mean squared error (MSE), mean absolute error (MAE), coefficient of
determination (R2), root mean squared error (RMSE), and normalized root mean squared
Error (NRMSE) are used as performance indices of the models. The coefficient of deter-
mination (R2) achieves values from 0 to 1, with higher values indicating better prediction
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accuracy. On the other hand, low values of MSE, MAE, and RMSE validate good precision
of the model.

Performance indices of models were calculated according to the following equations:

MSE =
∑n

i=1(t− y)2

n
[−] (2)

RMSE =

√
∑n

i=1(t− y)2

n
[−] (3)

MAE =
∑n

i=1|t− y|
n

[−] (4)

R2 = 1− ∑n
i=1(t− y)2

∑n
i=1
(
t− t

)2 [−] (5)

NRMSE =
RMSE

t
·100 [%] (6)

where n is the number of data points, t is the measured (target) value for the i-th specimen,
y is the predicted value from the model for the i-th specimen, and t is the mean value from
the measured data.

4.3. Monte Carlo Simulations

Monte Carlo simulations (MCS) are used to assess the robustness of the models. The
MCS is a sampling-based methodology introduced by [62]. It involves performing many
simulations of the same process to estimate the mean. It is based on the “law of large
numbers”, which states that the average of the large samples converges to the expected
value µwhen the number of samples n→∞.

In this study, the sampling method of the training and testing dataset is randomized
for selected models. Afterward, 800 simulations are performed with a different dataset
division for training and testing. Finally, t normalized statistical convergence C(N) is
calculated according to the following formula [63]:

C(N) =
1
X

1
N

N

∑
i=1

Xi (7)

where X is the mean value of the considered variable X and N is the number of Monte
Carlo simulations [63].

4.4. Model Interpretation

The purpose of regression analysis is to find the relationship between the input
variables X and the response Y, which can be described with the following equation [64]:

Y = f (X,∈) (8)

where the function f is the “law of nature” or the so-called “black box” and ∈ is the random
noise [64]. The ML algorithms produce a non-linear, high-dimensional function g(X)
which approximates function f (X) very well, making predictions of Y with maximum
accuracy [64]. Nevertheless, due to the complexity of the ML models, their interpretation is
often cumbersome, making it challenging to analyze the parameters of the model and the
input variables’ importance.

Calculating the importance of each predictor by evaluating their contribution to the
model’s accuracy is not the only purpose of this study. The goal is to obtain a causal
interpretation of the model to understand the “law of nature”, i.e., the mechanism of
post-fire self-healing, by verifying how changes in each input variable affect the changes of
the response when the other variables are fixed. In this paper, the causal interpretation is
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applied with the use of Partial Dependence Plots (PDPs) [31] and Individual Conditional
Expectation (ICE) Plots [32].

PDPs describe the average partial relationship between the input variables and the
response over the marginal distribution. For linear regression, the PDPs are linear functions
for each predictor. In the case of regression analysis, the average partial dependence
function f̂ xs

on the subset of input variables xs can be defined with Equation (9) [31,51]:

f̂ xs
(xs) =

∫
f̂ (xs, xc)dP(xc) (9)

where xs is the input variable under investigation and xc are the other predictors from
the model of function f̂ , such as xs ∪ xc = S and dP(xc) is the marginal effect of xc [31,51].
When the training dataset {Si, i = 1, 2, . . . , n} is considered, the f̂ xs

can be calculated
according to Equation (10) [65]:

f̂ xs
(xs) =

1
n

n

∑
i=1

f̂ (xs, xi,c) (10)

where xi,c is the actual value of the i-th variable in the training set and n is the total number
of samples [65].

A PDP demonstrates the relationship between the average response and particular
input. Nevertheless, in the case of strong dependencies of the analyzed variable on the other
predictors, PDP can give confusing results; therefore, ICE plots can be an alternative [32].
ICE shows the functional relationship for a single observation [66]. The ICE plots display
heterogeneity of the f̂ . When there is no influence between the xs and xc, the curves on the
ICE plot are on top of each other. However, when the relationship between f̂ is affected
by xc, the curves will differ [32].

5. Modeling Sequence

All ML modeling, Monte Carlo analysis, PDP, and ICE plot calculations were per-
formed in MATLAB software, version R2022b (Mathworks, Natick, MA, USA). Parts of the
statistical analysis were performed using OriginPro, version 2021 (OriginLab Corporation,
Northampton, MA, USA). Scientific color maps [67,68] were used for data visualization.

The modeling sequence comprised the following stages.

Stage 1. Data preparation

The database containing 197 data points was split into two sets: for training and
validation, 85% (167 records), and for testing, 15% (30 records). The testing data points
were randomly chosen from the dataset in the beginning and fed separately to the trained
and validated model. The 12 input variables were: w/c, age of concrete, amount of cement,
fine aggregate, coarse aggregate, peak loading temperature, duration of peak loading
temperature, cooling regime, duration of cooling, curing regime, duration of curing, and
specimen volume. The output variable was compressive strength recovery.

Stage 2. Model optimization and performance assessment

Four ML approaches were analyzed, i.e., SVM, RT, ET, and ANN. Each algorithm was
optimized with the hyperparameters listed in Table 4 to obtain a minimum MSE. The k-fold
cross-validation algorithm was used to prevent overfitting, which allowed the model to
be trained on several train–validation splits. The parameter “k” was equal to 5, which
was selected based on a trial-and-error approach. In other words, the data were randomly
shuffled and split five times, with 20% of the data used for validation in each fold. The
validation error scores were calculated as an average value of all splits.
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Table 4. Studied models’ hyperparameters.

Algorithm Support Vector Machine Regression Tree Ensemble of
Regression Trees

Artificial
Neural Network

Parameters of
the algorithm

Kernel function
(Gaussian, linear,
cubic, quadratic)
Kernel scale (1–15)
Box constraint—constant
Epsilon—constant

Minimum leaf
size (1–15)

Boosted/Bagged
Minimum leaf size (1–10)
Number of learners
(20–100)
Learning rate (0.01–1)

Number of layers (1–3)
Number of neurons in
the layer (2–12)
Activation function
(ReLu, tansig, sigmoid)

Training, validation, and testing were performed for 320 combinations. Model per-
formance was evaluated based on the performance indices MSE, RMSE, R2, MAE, and
NRMSE. The ML models were compared with the linear regression fitting (LR).

Stage 3: Robustness analysis of the five best-performing models

Monte Carlo simulations were used to evaluate how sensitive the models were to
the changes in training and testing datasets split. First, five models from Stage 2 with
the best performance were chosen. Next, input and output data were randomly split into
80% and 20% parts for training and testing, respectively. The models were then trained
again on the randomly split datasets; 800 Monte Carlo simulations were performed per
model (4000 simulations in total). Finally, statistical analysis was performed on the results
of the MSE and R2 for each model to assess the efficiency.

Stage 4. Model interpretation

Feature importance analysis was conducted on one of the models from Stage 3. First,
ICE plots and PDPs were calculated for each input variable. In addition, the model was
trained with a decreased number of variables to assess the effect of each input on the MSE
of the model.

6. Results and Discussion
6.1. Model Selection

The performance of four ML approaches, i.e., RT, SVM, ET, and ANN, for predicting
post-fire compressive strength recovery was compared. Each ML method was trained and
optimized by varying the hyperparameters (Table 4) to obtain the lowest possible MSE.
Results of the performance indices for the best model obtained for each ML approach are
shown in Table 5. The models were compared with linear regression analysis (LR). The
values of performance indices for validation represent an average value from the 5-fold
cross-validation.

The most accurate Regression Tree (RT) model was obtained for the minimum leaf
size 2, with the MSE for the testing dataset equal to 0.0067. In the case of SVM, the cubic
kernel function with a kernel size of 3 yielded the lowest MSE, equal to 0.0092. ANN
architecture with three hidden layers, with 8, 12, and 12 neurons, respectively, and sigmoid
activation function achieved an MSE of 0.0063. The best performance of all the model
combinations (MSE = 0.0031) was observed for the Ensemble of Trees with the LSBoost
algorithm, minimum leaf size equal to 3, the number of learners equal to 40, and 0.5 learning
rate. It is evident that this model also demonstrated the lowest MAE, equal to 0.0424, which
is less than 5% of the initial compressive strength, indicating very good accuracy for
this prediction.

Error analysis suggested that all analyzed ML approaches had superior accuracy
compared to linear regression for training and testing datasets (Figure 3a).



Materials 2023, 16, 1273 13 of 29

Table 5. Performance of the most accurate models for each ML approach.

ML
Approach Best Model Parameters Dataset MSE (-) MAE (-) R2 (-) RMSE (-) NRMSE (%)

RT Min. Leaf size 2
Validation 0.0079 * 0.0651 * 0.826 * 0.0889 * 13.7 *

Testing 0.0067 0.0667 0.892 0.0821 12.6

SVM Cubic kernel, Kernel size 3
Validation 0.0078 * 0.0672 * 0.827 * 0.0886 * 13.6 *

Testing 0.0092 0.0731 0.852 0.0960 14.8

ET

LSBoost algorithm,
Min. Leaf size 3,

Number of learners 40,
Learning rate 0.5

Validation 0.0044 * 0.0448 * 0.903 * 0.0664 * 10.2 *

Testing 0.0031 0.0424 0.950 0.0557 8.6

ANN
Layers 8:12:12,

Activation function:
sigmoid

Validation 0.0084 * 0.0617 * 0.815 * 0.0915 * 14.1 *

Testing 0.0063 0.0598 0.899 0.0795 12.2

LR - Validation 0.0149 * 0.0914 * 0.672 * 0.1219 * 18.8 *
Testing 0.0232 0.1119 0.628 0.1524 23.4

* The value is an average from 5-fold cross-validation.
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Overall, the ML MSE was in the range 0.0031–0.0092, which is half that of linear
regression, with the MSE of the testing dataset equal to 0.0232. Similarly, the coefficient
of determination (R2) was less than 0.7 for LR, whereas ML approaches an achieved R2

greater than 0.85 for the test dataset (Figure 3). In addition, linear regression obtained
an NRMSE equal to 18.8% and 23.4%, which was more than double e.g., the ET model
with an NRMSE of approximately 10% (Table 5). All the ML models displayed a moderate
linear correlation between predicted and true (measured) strength recovery values, with
R2 values greater than 0.8 (Figure 4). It is noticeable in some cases that the predicted
response values are less than zero. The actual values of the response are positive numbers;
nevertheless, the minimum value is very close to zero, equal to 0.018 (Table 2). The
proposed model is associated with the error, i.e., with NRMSE between 8–25%, depending
on the algorithm (Table 5). Therefore, the predicted values might oscillate around the
zero value. This indicates that there is presumably no self-healing for this particular set
of predictors.
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In addition, the models’ prediction speed and training time were compared (Figure 5).
The SVM model exhibited a fast prediction speed (approx. 10,000 observations/second) but
a relatively long training time (22 s). The slowest in terms of prediction speed was ANN
and LR, both with approx. 3000 observations/second. The fastest algorithm (14,000 obser-
vations/second) was the ET model, with the shortest training time of approximately 7 s.
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Figure 5. Comparison of the prediction speed and training time for the best model within different
ML approaches (RT, ET, ANN, and SVM) and linear regression (LR).

Considering the error indices and prediction speed, the ET approach with boosting
demonstrated the most accurate and optimal prediction performance. Of all the analyzed
model combinations, the five with the lowest MSE error, approximately 0.0045, were the
ET models (Table 6).

All of those models achieved a comparable MSE of approximately 0.0045 and MAE
equal to 0.05, as well as R2 greater than 0.9. The models were highly dependent on the
learning rate parameter (Figure 6). For the learning rate above 0.5, a smaller number of
learners were sufficient to achieve a low MSE. A low learning rate, less than 0.1, was
optimal for the number of learners above 80. In the next step, Monte Carlo simulations
were performed to assess the selected models’ stability and robustness.
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Table 6. Prediction performance of five best-performing models.

Model Model Parameters Dataset MSE (-) MAE (-) R2 (-) RMSE (-) NRMSE (%)

ET1

LSBoost algorithm,
Min. Leaf size 3,

Number of learners 40,
Learning rate 0.5

Validation 0.0044 * 0.0448 * 0.903 * 0.0664 * 10.2 *

Testing 0.0031 0.0424 0.950 0.0557 8.6

ET2

LSBoost algorithm,
Min. Leaf size 5,

Number of learners 100,
Learning rate 0.1

Validation 0.0044 * 0.0483 * 0.903 * 0.0662 * 10.2 *

Testing 0.0048 0.0519 0.923 0.0692 10.6

ET3

LSBoost algorithm,
Min. Leaf size 3,

Number of learners 20,
Learning rate 0.5

Validation 0.0044 * 0.0463 * 0.902 * 0.0666 * 10.2 *

Testing 0.0043 0.0476 0.931 0.0657 10.1

ET4

LSBoost algorithm,
Min. Leaf size 2,

Number of learners 100,
Learning rate 0.1

Validation 0.0045 * 0.0485 * 0.901 * 0.0669 * 10.3 *

Testing 0.0045 0.0491 0.928 0.0669 10.3

ET5

LSBoost algorithm,
Min. Leaf size 5,

Number of learners 80,
Learning rate 0.1

Validation 0.0045 * 0.0492 * 0.901 * 0.0671 * 10.3 *

Testing 0.0045 0.0543 0.915 0.0728 11.2

* The value is an average from 5-fold cross-validation.
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Figure 6. Hyperparameters’ effect on the ET model with the LSBoost algorithm MSE for the training
and validation dataset: (a) minimum leaf size vs. number of learners, (b) number of learners vs. log
of the learning rate.

6.2. Robustness Analysis

The robustness analysis was performed using MCS on the models listed in Table 6. The
database was split into training and testing parts, comprising 80% and 20%, respectively.
No cross-validation was applied. The random sampling effect of the training and testing
dataset on the changes of MSE and R2 was studied. The initial evaluation suggested that
fewer than 800 Monte Carlo realizations seem to warrant a stable solution for the testing
dataset (Figure 7a,c). Normal distributions for each model are presented in Figure 8b,d.
Model ET1 demonstrated slightly better accuracy than the rest of the models with respect to
the mean MSE and R2 (Table 7). The standard deviation was comparable for all the models,
with values between 0.043–0.049 for R2 and 0.0016–0.0018 for MSE (Table 7).



Materials 2023, 16, 1273 17 of 29

Materials 2023, 16, x FOR PEER REVIEW 18 of 31 
 

 

respectively. No cross-validation was applied. The random sampling effect of the training 
and testing dataset on the changes of MSE and R2 was studied. The initial evaluation sug-
gested that fewer than 800 Monte Carlo realizations seem to warrant a stable solution for 
the testing dataset (Figure 7a,c). Normal distributions for each model are presented in 
Figure 8b,d. Model ET1 demonstrated slightly better accuracy than the rest of the models 
with respect to the mean MSE and R2 (Table 7). The standard deviation was comparable 
for all the models, with values between 0.043–0.049 for R2 and 0.0016–0.0018 for MSE (Ta-
ble 7). 

  

  

Figure 7. Results of the Monte Carlo simulations for models ET1–ET5: (a) changes of MSE for testing 
dataset, (b) normal distribution fitting of MSE, (c) changes of R2 for testing dataset, (d) normal dis-
tribution fitting of R2. 

Table 7. Summary of error criteria of the MCS for the testing dataset. 

Model 
R2 (-) MSE (-) 

Min Max Mean Std Min Max Mean Std 
ET1 0.437 0.979 0.907 0.049 0.0012 0.013 0.0042 0.0018 
ET2 0.690 0.974 0.901 0.043 0.0010 0.012 0.0045 0.0016 
ET3 0.537 0.977 0.900 0.047 0.0012 0.012 0.0045 0.0017 
ET4 0.585 0.970 0.901 0.046 0.0016 0.015 0.0044 0.0017 
ET5 0.512 0.972 0.895 0.048 0.0016 0.012 0.0047 0.0017 

The normalized convergence of testing set MSE and R2 calculated according to Equa-
tion (5) is shown in Figure 8. The mean value from the 800 realizations and its 95% confi-
dence interval (CI) bounds were marked in blue for each model. It is noticeable that R2 

Figure 7. Results of the Monte Carlo simulations for models ET1–ET5: (a) changes of MSE for testing
dataset, (b) normal distribution fitting of MSE, (c) changes of R2 for testing dataset, (d) normal
distribution fitting of R2.

Table 7. Summary of error criteria of the MCS for the testing dataset.

Model
R2 (-) MSE (-)

Min Max Mean Std Min Max Mean Std

ET1 0.437 0.979 0.907 0.049 0.0012 0.013 0.0042 0.0018

ET2 0.690 0.974 0.901 0.043 0.0010 0.012 0.0045 0.0016

ET3 0.537 0.977 0.900 0.047 0.0012 0.012 0.0045 0.0017

ET4 0.585 0.970 0.901 0.046 0.0016 0.015 0.0044 0.0017

ET5 0.512 0.972 0.895 0.048 0.0016 0.012 0.0047 0.0017

The normalized convergence of testing set MSE and R2 calculated according to
Equation (5) is shown in Figure 8. The mean value from the 800 realizations and its
95% confidence interval (CI) bounds were marked in blue for each model. It is noticeable
that R2 values converge only after approximately 100 simulations to the 800-realization
average, marked as “Mean (800)”, for all the models (Figure 8b,d,f,h,j). On the other hand,
the MSE values display higher variability. For example, for models ET1 and ET4, the
convergence (approximately within 95% CI) is achieved at around 350 realizations, while
for ET2, it was achieved at 700 realizations, and for ET3 and ET5, 500 realizations.
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To reduce the error, more realizations of MCS could be executed; however, the accuracy
and robustness of model ET1 are sufficient for the accurate prediction of post-fire self-
healing strength recovery.

Materials 2023, 16, x FOR PEER REVIEW 19 of 31 
 

 

values converge only after approximately 100 simulations to the 800-realization average, 
marked as “Mean (800)”, for all the models (Figure 8b,d,f,h,j). On the other hand, the MSE 
values display higher variability. For example, for models ET1 and ET4, the convergence 
(approximately within 95% CI) is achieved at around 350 realizations, while for ET2, it 
was achieved at 700 realizations, and for ET3 and ET5, 500 realizations. 

To reduce the error, more realizations of MCS could be executed; however, the accu-
racy and robustness of model ET1 are sufficient for the accurate prediction of post-fire 
self-healing strength recovery. 

 

 

 

Materials 2023, 16, x FOR PEER REVIEW 20 of 31 
 

 

 

 
Figure 8. Comparison of the Monte Carlo normalized convergence of testing set MSE and R2 for 
selected models: (a,b) ET1, (c,d) ET2, (e,f) ET3, (g,h) ET4, (i,j) ET5. 

6.3. Model Interpretation 
Based on the previous sections, model ET1 (Table 6) was considered for further anal-

ysis. This model was used for the variable importance analysis and model interpretation. 
The PDP (Figure 9) and ICE plots (Figure 10) were calculated for each input variable. It 
should be noted that the scale in Figure 9 is different for each variable to show the re-
sponse changes in detail. On the other hand, in Figure 10, the scale is the same for all 
variables. The red line indicates the PDP as an average of all the curves (Figure 10). 

 

Figure 8. Cont.



Materials 2023, 16, 1273 19 of 29

Materials 2023, 16, x FOR PEER REVIEW 20 of 31 
 

 

 

 
Figure 8. Comparison of the Monte Carlo normalized convergence of testing set MSE and R2 for 
selected models: (a,b) ET1, (c,d) ET2, (e,f) ET3, (g,h) ET4, (i,j) ET5. 

6.3. Model Interpretation 
Based on the previous sections, model ET1 (Table 6) was considered for further anal-

ysis. This model was used for the variable importance analysis and model interpretation. 
The PDP (Figure 9) and ICE plots (Figure 10) were calculated for each input variable. It 
should be noted that the scale in Figure 9 is different for each variable to show the re-
sponse changes in detail. On the other hand, in Figure 10, the scale is the same for all 
variables. The red line indicates the PDP as an average of all the curves (Figure 10). 

 

Figure 8. Comparison of the Monte Carlo normalized convergence of testing set MSE and R2 for
selected models: (a,b) ET1, (c,d) ET2, (e,f) ET3, (g,h) ET4, (i,j) ET5.

6.3. Model Interpretation

Based on the previous sections, model ET1 (Table 6) was considered for further analysis.
This model was used for the variable importance analysis and model interpretation. The
PDP (Figure 9) and ICE plots (Figure 10) were calculated for each input variable. It should
be noted that the scale in Figure 9 is different for each variable to show the response changes
in detail. On the other hand, in Figure 10, the scale is the same for all variables. The red
line indicates the PDP as an average of all the curves (Figure 10).

The PDP of the temperature variable demonstrates a significant negative impact of
increasing loading temperature on self-healing strength recovery, with the values changing
between 0.4 and 0.8 (Figures 9f and 10f). This finding is in good coherence with previous
results [7]. It is possibly caused by the chemical and physical changes occurring in concrete
at different temperatures. Figure 9f shows two considerable drops in strength recovery at
approximately 500 ◦C and 700 ◦C. The former can be associated with the decomposition
of Portlandite at approximately 400–500 ◦C, while the latter is associated with the contin-
ued disintegration of calcite and calcium silicate hydrate (C–S–H) at 700–900 ◦C [69]. In
addition, with increasing loading temperature, the material has a higher porosity, and the
microcracking escalates with the increasing crack width. Wider cracks are more challenging
to heal without additional stimulants [70]. Therefore, they cause discontinuities in the
cement binder, presumably contributing to an “unrecoverable” compressive strength.

Strength recovery seems to exhibit limited dependency on the concrete’s age
(Figures 9b and 10b), with the values ranging between approximately 0.63 and 0.71. There
is a slight increase for the early-age concrete, followed by a decrease at approximately
20 days. Afterward, there is no change in strength recovery with respect to the concrete’s
age. This observation was confirmed by [43]. Early-age concrete has more unhydrated
cement, which in the presence of moisture, further hydrates after temperature exposure,
possibly contributing to more efficient post-fire self-healing [43].

It is evident that binder-related variables, i.e., w/c and cement amount, could have
a negligible effect on the post-fire strength recovery (Figures 9a,c and 10a,c). This is in
agreement with several experimental studies on post-fire healing [47,71], as well as for
mechanically cracked concrete healing [72]. The higher the w/c, the lower the strength
recovery (Figure 9a); however, the difference in the response is only approximately 5% of
the intact specimen’s strength. For the cement amount, there is a noticeable decrease
between 500–600 kg/m3 of cement, followed by a slight increase for the cement amount
above 700 kg/m3 (Figure 9c). Nevertheless, the relative difference in strength recovery is
less than 5% (Figures 9c and 10c). Comparing the single observation curves on the ICE plot
(Figure 10a,c), some inhomogeneities are noticeable, which could mean that both variables
could be affected by an interaction with the other predictors [32].
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duration (I11), (l) specimen volume (I12).

The PDP indicates that specimen volume’s effect is unimportant for the post-fire
self-healing strength recovery, causing changes smaller than 1% (Figure 9l). Therefore,
the conclusions of the developed model could presumably be also applied to large-scale
elements. Some experimental [44,73] and modeling [51] studies also observed a minor
dependency of the compressive strength on the specimen size, but no experimental results
validated this hypothesis for the post-fire self-healing strength recovery.

The PDP of the cooling regime (Figure 9h) indicates that strength recovery could be
causally insensitive to the cooling type, with a change in strength recovery parameter less
than 2%. However, the ICE plot (Figure 10h) shows that the cooling regime variable may
interact with other predictors, i.e., some curves decrease while others increase. Similar
ambiguity was observed from experimental results. For example, cooling caused further
compressive strength reduction, while water cooling led to strength recovery [46]; however,
water cooling also generated more damage [8]. The cooling time (Figure 9i) has a negative
effect on the strength recovery; however, its significance is relatively small, with strength
recovery changes of approximately 3–4%. Furthermore, the ICE plot indicates that the effect
of the cooling time is roughly additive, i.e., the curves for each observation are parallel to
each other [32].

The effect of the curing regime is relatively powerful, with the strength recovery param-
eter changing between approximately 0.5 and 0.75 (Figures 9j and 10j). Such observation is
in agreement with the literature; water curing (here marked as “1”) after high-temperature
exposure was found to give the highest strength and durability recovery [10,12,47] in
comparison with air curing (here marked as “0”). Nevertheless, in this study, the curing
regimes were divided into two groups, i.e., with air and water. The effect could be expected
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to be even more significant in the case of different types of treatments or a more detailed
data split with varied curing categories, e.g., specified relative humidity.
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recovery at approximately 500 °C and 700 °C. The former can be associated with the de-
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Figure 10. ICE plots for each input variable. The thick red curve depicts the PDP, i.e., the average of
all the individual gray curves. Dots represent the measured value of the specific variable. (a) Water-to-
cement ratio (I1), (b) age (I2), (c) cement amount (I3), (d) fine aggregate (I4), (e) coarse aggregate (I5),
(f) temperature (I6), (g) duration of peak temperature (I7), (h) cooling regime (I8), (i) cooling dura-
tion (I9), (j) curing regime (I10), (k) curing duration (I11), (l) specimen volume (I12).

Similarly, the PDP indicates that strength recovery could be causally sensitive to the
curing time for approximately the first 50 days, with the highest self-healing during the
first 25 days (Figure 9k). The strength recovery values range between 0.58 and 0.7 for this
period. After 50 days, there is a negligible change in the strength recovery, less than 2%.

The influence of aggregate-based variables, namely, fine (Figures 9d and 10d) and
coarse (Figures 9e and 10e) aggregates, is pronounced, with the changes of values in strength
recovery between 0.61–0.69 and 0.62–0.72, respectively. There is a notable decrease in
strength recovery for fine aggregate until approximately 1000 kg/m3, with a slight increase
above this value. On the contrary, the amount of coarse aggregate could positively influence
the strength recovery. To the authors’ best knowledge, there are no experimental studies
on the effect of aggregate types and amounts on post-fire curing. In their review, [6] noted
that mortar and concrete generally exhibit better post-fire healing than cement paste. In the
case of aggregate-based variables, the recovery results could be attributed to the physical
changes under temperature loading, i.e., cracks caused by different thermal expansion
coefficients of aggregates [6,74]. These high-temperature cracks form a permeable network
which presumably gives more space for the self-healing products [6] and facilitates the
transport of moisture and chemical substances into the crack. Analysis of the 2D heatmap
PDP for two variables, fine and coarse aggregate (Figure 11), suggests that the most optimal
mix composition for the post-fire self-healing strength recovery is a fine aggregate amount of
approximately 600 kg/m3 and coarse aggregate between 1000–1200 kg/m3. However, this
relationship can also be affected by these predictors’ high correlation (R = −0.9) (Figure 2).



Materials 2023, 16, 1273 24 of 29

Materials 2023, 16, x FOR PEER REVIEW 26 of 31 
 

 

suggests that the most optimal mix composition for the post-fire self-healing strength re-
covery is a fine aggregate amount of approximately 600 kg/m3 and coarse aggregate be-
tween 1000–1200 kg/m3. However, this relationship can also be affected by these predic-
tors’ high correlation (R = −0.9) (Figure 2). 

 
Figure 11. Heatmap PDP for the two variables: coarse and fine aggregate vs. strength recovery. 
Colors correspond to different values of strength recovery. 

In addition to the PDP and ICE plot analysis, the estimates of predictor importance 
for model ET1 were calculated (Figure 12). The algorithm calculates the sum of changes 
in the node risk due to splits on every variable. Subsequently, it divides this sum by the 
total number of branch nodes [75]. The results suggest that the loading temperature, cur-
ing regime, and curing time are the most significant input variables. In addition, fine and 
coarse aggregate also achieved high importance scores (Figure 12). These results agree 
with the PDP analysis.  

 
Figure 12. Feature importance results. 

Figure 11. Heatmap PDP for the two variables: coarse and fine aggregate vs. strength recovery.
Colors correspond to different values of strength recovery.

In addition to the PDP and ICE plot analysis, the estimates of predictor importance
for model ET1 were calculated (Figure 12). The algorithm calculates the sum of changes
in the node risk due to splits on every variable. Subsequently, it divides this sum by the
total number of branch nodes [75]. The results suggest that the loading temperature, curing
regime, and curing time are the most significant input variables. In addition, fine and
coarse aggregate also achieved high importance scores (Figure 12). These results agree with
the PDP analysis.
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Another approach to assess the feature importance, which is not dependent on the
model type, is measuring the performance drop after retraining with a different number
of input variables. Here, two cases were analyzed, one by removing each of the twelve
variables and the second by training the model with just one variable. The results of the
MSE for those cases for both the training and testing set are presented in Figure 13. Again,
it is evident that temperature, curing regime, and curing time show the most significant
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change in MSE for both analyzed cases, which supports the causal model interpretation
performed earlier.
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7. Conclusions and Future Research

In this paper, for the first time, machine learning modeling was used to predict the
compressive strength recovery due to self-healing for the high-temperature damaged
concrete. Twelve variables were taken into consideration based on thorough literature
studies: w/c, age of concrete, amount of cement, fine aggregate, coarse aggregate, peak
loading temperature, duration of peak loading temperature, cooling regime, duration of
cooling, curing regime, duration of curing, and specimen volume. The post-fire compressive
strength recovery prediction was built with four ML approaches, i.e., SVM, ANN, RT, and
ET. An exhaustive analysis of the model was performed using PDP and ICE plots. The
following major conclusions can be drawn from this study:

• All four ML approaches demonstrated higher accuracy than linear regression in
terms of MSE, MAE, RMSE, and R2. Optimized ET with boosting achieved the best
performance concerning prediction precision (NRMSE of approximately 10% and
R2 greater than 0.9) and speed. The model showed a high dependency on the learning
rate. The robustness analysis with the use of MCS confirmed the stability of the
model’s prediction capacity.
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• Prediction analysis revealed that temperature, curing regime and curing time, and
aggregates’ amounts are the critical input variables. Mix composition parameters, such
as cement amount and w/c ratio, presumably play a secondary role in the healing
mechanism. Nevertheless, additional experiments should be performed to confirm
this relationship.

• The model indicated that the optimal amount of fine and coarse aggregate to achieve
strength recovery greater than 74% is presumably equal to 600 kg/m3 and 1000–1200 kg/m3,
respectively. Water exposure was found to be the most efficient. The curing was significant
only during the first 50 days of healing.

The study showed that ensemble ML algorithms could successfully predict the post-
fire self-healing of concrete. Furthermore, the causal interpretation performed using ICE
plots and PDPs suggested that future experiments on self-healing of thermally cracked
concrete could focus on improving the curing treatment since it had a significant effect
on strength recovery. The model can be potentially applied to solve an inverse problem,
i.e., optimizing concrete mix composition to obtain a high compressive strength recovery.
Nevertheless, the following limitations and potential advancements can be proposed for
this study:

• This paper assumes only compressive strength recovery as the post-fire healing re-
sponse. Analyzing other outputs, such as crack closure and durability recovery, could
give further insights into the recovery mechanism. However, there are sparse data
regarding these parameters in the literature; therefore, more experimental work should
be conducted.

• Performed analysis was limited to only two types of curing and cooling regimes,
i.e., air and water. Other types of curing and cooling regimes could be “encoded”
with categorical variables, e.g., wet–dry cycles, different levels of RH, etc.; the effect of
cement replacement with supplementary cementitious materials should be studied to
verify the binder blending importance on the post-fire self-healing. To date, there are
limited results on this topic; therefore, the database should be expanded.

• Additional sensitivity analysis could be performed using Monte Carlo simulations with
permutation feature importance [63]. Finally, the effect of multicorrelations between
input variables should be studied as it might obscure actual relationships between
inputs and output. A reduction of the number of predictors should be considered.
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