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Abstract: With the special porous structure and super-long carbon sequestration characteristic, the
biochar has shown to have potential in improving soil fertility, reducing carbon emissions and
increasing soil carbon sequestration. However, the biochar technology has not been applied on a large
scale, due to the complex structure, long transportation distance of raw materials, and high cost. To
overcome these issues, the brazier-type gasification and carbonization furnace is designed to carry out
dry distillation, anaerobic carbonization and have a high carbonization rate under high-temperature
conditions. To improve the operation and maintenance efficiency, we formulate the operation of
the brazier-type gasification and carbonization furnace as a dynamic multi-objective optimization
problem (DMOP). Firstly, we analyze the dynamic factors in the work process of the brazier-type
gasification and carbonization furnace, such as the equipment capacity, the operating conditions, and
the biomass treated by the furnace. Afterward, we select the biochar yield and carbon monoxide
emission as the dynamic objectives and model the DMOP. Finally, we apply three dynamic multi-
objective evolutionary algorithms to solve the optimization problem so as to verify the effectiveness
of the dynamic optimization approach in the gasification and carbonization furnace.

Keywords: biochar; gasification and carbonization furnace; dynamic multi-objective optimization;
Gaussian process; evolutionary algorithm

1. Introduction

Many real-world optimization problems [1–4] have multiple conflicting objectives
to be optimized. If one problem has time-varying objectives or constraints, it is called a
dynamic multi-objective optimization problem (DMOP) [5]. Nowadays, there exist lots
of dynamic multi-objective evolutionary algorithms (DMOEAs) [6–8], which have been
widely applied to solve DMOPs in various areas, such as wireless sensor networks [9],
financial optimization problems [10], path planning [11], and so on.

At present, the technology of crop straw returning to the field has been popularized,
but the problems of pests and diseases and sowing quality caused by straw returning to
the field have not been well solved [12,13]. Moreover, after straw returning to the field,
biomass is degraded into carbon dioxide gas by microorganisms in a short time, which
has a low carbon fixation effect and limited contribution to soil organic matter. Due to
its special porous structure and super-long carbon sequestration characteristics, biochar
[14] has shown its potential to improve soil fertility, reduce carbon emissions and increase
soil carbon sequestration, so biochar technology will definitely replace straw-returning
technology. However, the biochar technology has not been applied on a large scale to
date [15,16]. The reason is that the design scale of existing gasification and carbonization
equipment is too large, and the transportation radius of raw materials is large. However,
agricultural wastes, such as crop straws, are low-value and difficult-to-transport materials,
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and the transportation cost and pretreatment cost are too high, resulting in low benefits, so
it is difficult to popularize them.

The brazier-type gasification and carbonization furnace [17] belongs to the technical
field of biomass comprehensive utilization equipment. It is serial equipment of a charcoal
machine that carries out dry distillation, anaerobic carbonization and has a high carboniza-
tion rate in the furnace under high-temperature conditions for wood chips, rice husks,
peanut shells, plant stalks, bark and other carbon-containing wood materials (the granular
size is below 15 mm). The purpose of the carbonization furnace is mainly to solve the
technical problems of the existing biomass carbonization equipment, such as the complex
structure, long transportation distance of crop straw and other raw materials, and high cost.

In the real process of material carbonization, a certain amount of carbon monoxide,
methane, oxygen and other flammable gases will be produced. In the process of recovery,
purification and circulation combustion of these gases, the equipment of the brazier-type
gasification and carbonization furnace will be damaged to some extent. Therefore, it
is important to improve the operation and maintenance efficiency, which can not only
fully provide self-sufficiency and improve the continuity of equipment and economy, but
also make full use of the remaining agricultural and forestry products to turn them into
waste treasure, reduce the contradiction between supply and demand of Chinese forestry
resources, and contribute to environmental greening.

In this paper, we aim to solve the operation process of the brazier-type gasification
and carbonization furnace as a DMOP subject to various environmental changes. Firstly,
we analyze the dynamic factors in the work process of the brazier-type gasification and
carbonization furnace. There probably exist environmental changes, such as the equipment
capacity, the operating conditions, and the biomass treated by the furnace. Afterward, we
select the biochar yield and carbon monoxide emission as the dynamic objectives, and then
build the dynamic multi-objective optimization model. Next, we solve the optimization
model with three DMOEAs so as to verify the effectiveness of the dynamic optimization
approach in the brazier-type gasification and carbonization furnace.

The present work distinguishes with existing research mainly in two aspects. Firstly,
we formulate the operation of the brazier-type gasification and carbonization furnace as a
optimization problem in the presence of fairly irregular uncertainties. Secondly, most of
the existing dynamic optimization algorithms are validated only on benchmark problems,
and little work is applied to the real-world optimization. In this paper, three DMOEAs
are examined on the real-world furnace operation problem, and the experimental results
demonstrate that these algorithms can effectively track the time-varying Pareto optimal
front (POF) in different environments.

Section 2 introduces the preliminary studies and related work. Section 3 elaborates the
formulation of the dynamic multi-objective optimization model. Section 4 shows how to
optimize the model and gives the experimental design. Section 5 concludes and discusses
the future research.

2. Preliminary Studies and Related Work
2.1. Work Process of Brazier-Type Gasification and Carbonization Furnace

Figure 1 gives the diagram of the brazier-type gasification and carbonization furnace.
As shown in Figure 1, 1 represents the furnace body, 2 represents the ignition port, 3 repre-
sents the fend, 4 represents the adjusting bolt, 5 represents the furnace cover, 6 represents
the chimney, and 7 represents the air inlet hole. The furnace body is a conical cylinder with
a thick upper and thin lower component, and there is no top surface or bottom surface.
The furnace cover is a conical cylinder with thin upper and thick bottom component, and
the bottom edge is provided with a fend. The top edge of the furnace body is uniformly
arranged with a number of adjusting bolts. The furnace cover is placed on the adjusting
bolt arranged at the top of the furnace body, and the protective edge covers the top of the
furnace body. The chimney is arranged on the drum mouth at the top of the furnace cover,
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and the middle and lower parts of the chimney are uniformly provided with a number of
air inlet holes.

Figure 1. The schematic diagram of gasification and carbonization furnace: 1. furnace body; 2.
ignition port; 3. fend; 4. adjusting bolt; 5. furnace cover; 6. chimney; 7. air inlet hole.

The brazier typ- gasification and carbonization furnace is simple in structure and easy
to operate. It can be used for the rapid carbonization of crop straw in the field. The working
flow of the brazier-type gasification and carbonization furnace is as follows.

In the carbonization process, the carbonization furnace is first transported to the field
in the appropriate position according to the size of the bottom of the furnace bricks and
other bedding. Then, the bottom of the furnace body of the device is placed on the placed
pad so that the furnace body is stable, and the gap formed between the pad is the first air
inlet channel. Then, the biomass material to be treated is added in the furnace body, and
the furnace cover is covered on the top of the furnace body so as to form a second air inlet
channel between the furnace body, the furnace cover and the fend. In addition, we can
adjust the distance between the furnace cover and the furnace body by adjusting bolts to
control the intake air volume of the second air inlet passage. The chimney is mounted on
top of the furnace cover, and the air inlet hole in the chimney can form a third air inlet.

After the carbonization furnace is installed, we ignite the biomass from the ignition
port, and the biomass can start burning from top to bottom. In the process of biomass
combustion, the air can be directed, respectively, from the first air inlet channel, the second
air inlet channel and the third air inlet channel into the carbonization furnace in order to
sustain the biomass material pyrolysis process and pyrolysis gas combustion process of
oxygen demand so as to achieve rapid biomass carbonization and the full combustion of
pyrolysis gas. Until the cracking is complete, the furnace cover can be taken off, buried
with soil or poured with water to extinguish the output of biomass carbon—the output of
biomass carbon can be applied to farmland or mixed with organic fertilizer—and the next
furnace operation can continue.

2.2. Related Work

DMOPs [18] are characterized by the time-varying objectives, decision variables
and/or constraints. We consider the minimization problem, and the DMOP is mathe-
matically defined as
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min F(x, t) = { f1(x, t), f2(x, t), . . . , fM(x, t)}
s.t. x ∈ [L, U]

(1)

where x = (x1, x2, . . . , xn) is the n-dimension decision variable bounded in the decision
space [L, U], where L = (L1, L2, . . . , Ln), U = (U1, U2, . . . , Un), and Li, Ui ∈ R are the lower
bound and upper bound of xi, respectively. t represents the time or environment variable.
F = ( f1, f2, . . . , fM) denotes the set of M objectives to be minimized at time t.

To solve DMOPs, there are various kinds of DMOEAs in the literature, which can
be categorized as follows: diversity approach [19–21], memory mechanism [22–24], and
prediction-based method [25–27].

In [28], Chen et al. presented the individual diversity multi-objective optimization
evolutionary algorithm (IDMOEA). IDMOEA applies a new diversity maintenance method
named the individual diversity evolutionary method (IDEM) in which diversity is consid-
ered an additional objective during the optimization.

A self-organizing scout method was proposed by Branke et al. [29], and this method
divides the population into two parts, that is, scouts and base population. The base pop-
ulation searches for optimal solutions, while the scouts are responsible for tracking the
change of the optima. A fast multi-swarm optimization algorithm for DMOPs was pro-
posed by Li et al. [30] to maintain the diversity through the search process. One parent
swarm explores in the whole search space by the fast evolutionary programming algorithm
whilst child swarms are generated to search for the local optima by the fast particle swarm
optimization (PSO) algorithm. The multi-population strategies help with handling environ-
ment dynamisms efficiently by maintaining enough diversity and tracking the movement
of multiple optima. However, too many sub-populations may slow down the search, and
hence decrease the performance of optimization.

Salmond and Topcuoglu [31] presented a new hybrid strategy by integrating the
memory concept with the NSGA-II algorithm (MNSGA-II) in 2016. MNSGA-II employs
memory-updating mechanisms to store a number of non-dominated solutions, which can be
reused in the population reinitialization for the next time. These sorts of mechanisms have
been shown to be more effective on the DMOPs with periodically changing environments,
i.e., the optimal solutions may return to the areas close to their previous locations, but they
have the limitation that the information stored in the memory might become too redundant
once changes occur.

3. Dynamic Multi-Objective Optimization Problem
3.1. Dynamic Factor Analysis

In the working process of the brazier-type gasification and carbonization furnace, it
involves many dynamic factors, such as equipment capacity, operating conditions and the
nature of biomass raw materials. I will give a specific analysis below:

1. The equipment capacity of the furnace is variable. In the actual working process, the
wear, current, voltage, temperature and electricity of the carbonization furnace will
change with the change of time, and then cause the change of equipment capacity.

2. The operating conditions of the furnace are variable. The carbonization furnace has
current threshold, voltage threshold, and temperature threshold alarm settings. If the
device is abnormal, the operating conditions of the device will change.

3. The biomass treated by the furnace is variable. Biomass from the carbonization furnace
includes crop straw and fruit tree branches. The properties of these materials, the
degree of wetness, etc., are variable.

3.2. Problem Formulation

The optimization process of the brazier gasification and carbonization furnace involves
a number of comprehensive indexes [32], including carbon monoxide emission, particulate
matter content, flue gas blackness (Ringerman blackness and grade), nitrogen oxides,
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biochar yield, etc. Among them, the following two performance indicators are selected as
objective functions in this paper:

1. The biochar yield: The biochar yield is an indicator of the percentage of the produced
biochar. The higher the biochar yield, the better the carbon fixation. The solidified
carbon can be applied directly to the field or mixed with organic or chemical fertiliz-
ers, which contributes to reducing production and application processes, as well as
reducing the costs.

2. Carbon monoxide emission: Carbon monoxide emission indicates whether the biomass
fuel is fully burned and cracked during the combustion process. The lower the carbon
monoxide emissions, the more completely the cracked gas is burned, and the less
environmental pollution will be caused.

In the process of the brazier gasification and carbonization furnace, the biochar yield
and carbon monoxide emission are conflicting objective functions. Therefore, we establish a
dynamic multi-objective optimization model for the brazier gasification and carbonization
furnace, which takes maximizing the biochar yield B and minimizing the carbon monoxide
emission O as the objective function. The expression is given as follows:{

F1 = max B
F2 = min O

(2)

DMOPs usually consider minimizing the objective functions. Therefore, the optimiza-
tion problem is transformed into the following expression:{

F1 = min (−B)
F2 = min O

(3)

In addition, the decision variables involved in the optimization design of the brazier-
type gasification and carbonization furnace are as follows: the distance between the cover
and the furnace body, the hole pitch, the opening angle and the height of the furnace
body. Table 1 lists the details of decision variables in the optimization problem. To give an
intuitive visualization, a schematic of decision variables is plotted in Figure 2. The distance
between the cover and the furnace body can be adjusted by adjusting the nut, together
with the hole pitch, which can control the oxygen content in the carbonizing furnace. This
has a very important effect on whether the pyrolysis gas can be carbonized quickly and
burned fully. The opening angle and height of the furnace body also determine the burning
rate of biomass in the process of carbonization furnace combustion. When the oxygen
content in the furnace is large, the fire will burn more vigorously, which is bound to cause
a reduction in oxygen content, and it is easier to form an anaerobic environment, which
is conducive to accelerating the solidification of carbon. However, when the fire is too
vigorous, it can easily cause the insufficient combustion of the cracking gas. Therefore, how
to balance the oxygen content in the furnace is very important for the optimization effect of
the brazier-type gasification and carbonization furnace.

Table 1. The decision variables in the DMOP.

Decision Variable Notation Unit

Distance between the cover and the furnace body Dis m

Hole pitch HP m

Opening angle OA ◦

Height of the furnace body HB m
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2

1

4

3

Figure 2. The schematic diagram of decision variables: 1. distance between the cover and the furnace
body; 2. hole pitch; 3. opening angle; 4. height of the furnace body.

3.3. Gaussian Process

The Gaussian process (GP) [33,34] has been frequently used as a surrogate model
to approximate computationally expensive fitness functions. In this paper, we apply
GP modeling, which provides not only the predicted values, but also the uncertainty
information of the approximate values.

The GP approximates the objective function value of an individual x as

y(x) = µ(x) + ϵ(x) (4)

where µ(x) denotes the mean of a regression model and ϵ(x) is a Gaussian distribution
with zero mean and the standard deviation σ as

ϵ(x) ∼ N(0, σ2) (5)

The GP model is constructed by training data which are pre-evaluated individ-
uals. Let X = [x1, x2, . . . xN ]T represent the training data in the decision space and
Y = [y1, y2, . . . yN ]T as the corresponding objective vector from a multivariate Gaussian
distribution, where N denotes the size of the training data. Afterward, let xi and xj denote
two arbitrary inputs. The generally used correlation function is calculated as

Corr(xi, xj) = exp

(
−

n

∑
k=1

θk|xi
k − xj

k|
)

(6)

where θk denotes the importance of this dimension, n is the number of decision variables,
and xk denotes the value of the kth decision variable. Accordingly, for N samples, an N × N
correlation matrix C is formed by
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C =

Corr(x1, x1) · · · Corr(x1, xN)
...

. . .
...

Corr(xN , x1) · · · Corr(xN , xN)

 (7)

For a random variable x̄, the posterior mean f (x̄) and variance function σ(x̄)2 can be
predicted as

f (x̄) = µ̂ + rTC−1(y − 1µ̂) (8)

σ(x̄)2 = σ̂2
[

1 − rTC−1r +
(1 − rTC−1r)2

1TC−11

]
(9)

where r = (Corr(x̄, x1), ..., Corr(x̄, xN))T presents a correlation vector between x̄ and each
element xi in X. In Equations (8) and (9), the estimated mean value µ̂ and the estimated
variance σ̂2 are obtained as follows:

µ̂ = (1TC−11)−11TC−1y (10)

σ̂2 =
1
N
(y − 1µ̂)TC−1(y − 1µ̂) (11)

where 1 denotes an N × 1 column vector of ones. The hyperparameters θ are obtained by
maximizing the likelihood function

ψ(θ) = −1
2

(
N ln σ̂2 + ln det(C)

)
(12)

where det(C) is the determinant of the correlation matrix C. After obtaining the θ values, µ̂
and σ̂2 can be obtained by Equations (10) and (11), respectively.

4. Proposed Approach
4.1. Dynamic Optimization Framework

The main flowchart of the DMOP for the brazier-type gasification and carbonization
furnace is shown in Figure 3. Firstly, we construct an optimization model of gasification
carbonization furnace, in which the biochar yield and carbon monoxide emissions are
served as the optimization objectives. Then, we detect the environmental changes. To be
specific, 10 individuals in the decision space are selected as the detectors. If the objective
values of these 10 individuals change, it indicates that the environment has changed. Next,
the dynamic multi-objective evolutionary algorithm is used to optimize the optimization
model of the gasification and carbonization furnace, and the optimal solutions for the new
environment are obtained. Finally, if the termination conditions are reached, the whole
optimization process is stopped.

4.2. Simulation Experiment

In this section, we adopt three classical DMOEAs to solve the DMOP for the brazier-
type gasification and carbonization furnace, i.e., population-prediction strategy (PPS) [35],
dynamic non-dominated sorting genetic algorithm-A (DNSGA-II-A) and dynamic non-
dominated sorting genetic algorithm-B (DNSGA-II-B) [36], so as to verify the effect of these
algorithms in practical application. The PPS was proposed to predict a whole population
rather than some isolated points for DMOPs based on a time series of center points and the
previous manifold. DNSGA-II-A and DNSGA-II-B are extended from NSGA-II [37] with
different change response strategies to increase the diversity of the population. DNSGA-II-
A replaces a fixed percent of individuals with randomly generated solutions when changes
occur, while diversity is ensured by replacing a certain part of the population with mutated
solutions in DNSGA-II-B.
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DMOEA

Start

Sample Data 

Environmental 

Changes？

Static MOEA

Termination？

End

Change Response

Initial Population

Yes

Yes

No

No

GP modeling

Figure 3. The diagram of dynamic optimization for carbonization furnace.

Because the optimization process of the brazier-type gasification and carbonization
furnace is complicated, the real POF of the problem cannot be obtained, so the evaluation
index related to the real POF cannot be used. Therefore, we choose the hypervolume
(HV) [38] to measure the performance of the algorithms in solving the DMOP for the brazier-
type gasification and carbonization furnace. This metric considers both the convergence
and distribution of solutions to evaluate the comprehensive quality of the resulting POF.
HV calculates the hypervolume of the space enclosed by the POF and a dominated reference
point re f . The larger the hypervolume value, the better the convergence and distribution of
the obtained solutions. The modified HV (MHV) [39] is a modified version of HV, defined
as the average of the HV values in all time steps over a run.

Figure 4 draws the experimental results when the environmental change frequency τt
is 50, that is, the environment changes once every 50 generations. This figure represents the
Pareto optimal front obtained by three DMOEAs. The x-coordinate represents the objective
value of the biochar yield, while the y-coordinate represents the objective value of carbon
monoxide emission. As can be seen from the figure, the convergence and diversity of PPS
are superior to those of DNSGA-II-A and DNSGA-II-B.

In order to compare the ability of all algorithms to deal with dynamic optimization
problems, Figures 5–7 draw the Pareto optimal front when τt = 30, τt = 20 and τt = 10. As
can be seen from the figure, when τt changes, the performance of the compared algorithms
does not weaken significantly. By summarizing all experimental results, it can be concluded
that compared with DNSGA-II-A and DNSGA-II-B, PPS has a better ability to solve the
dynamic optimization problem of the brazier-type gasification and carbonization furnace.
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Figure 4. Obtained POF of three algorithms with τt = 50.
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Figure 5. Obtained POF of three algorithms with τt = 30.
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Figure 6. Obtained POF of three algorithms with τt = 20.
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Figure 7. Obtained POF of three algorithms with τt = 10.

To visually show the comprehensive performance of all algorithms at different envi-
ronments, we plot the average HV in the first 20 changes with τt = 50, τt = 30, τt = 20 and
τt = 10 in Figures 8–11, respectively. It is clear to see that, compared with other algorithm,
PPS achieves better HV results with time, which indicates that PPS can obtain solutions
with better diversity and convergence.

Figure 12 shows the optimal solutions obtained by PPS at the 5th and 10th environ-
ments with τt = 50, respectively. In Figure 12, the x-coordinate represents the decision
variable. Specifically, 1-4 denote the distance between the cover and the furnace body,
the hole pitch, the opening angle and the height of the furnace body, respectively. The
y-coordinate represents the optimal values for each decision variable.
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Figure 8. Obtained HV of three algorithms with τt = 50.
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Figure 9. Obtained HV of three algorithms with τt = 30.
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Figure 10. Obtained HV of three algorithms with τt = 20.
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Figure 11. Obtained HV of three algorithms with τt = 10.
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Figure 12. Optimal solutions obtained by PPS at (a) 5th generation and (b) 10th generation.

5. Conclusions

In the real operation process of the brazier-type gasification and carbonization furnace,
the operation efficiency may be influenced by many dynamic factors. In this paper, the
operation process of the brazier-type gasification and carbonization furnace was formulated
as a DMOP, aiming to improve the biochar yield and reduce the carbon monoxide emission.
Additionally, three classical DMOEAs were used to solve the dynamic furnace operation
problem. The experimental results demonstrate that these algorithms can effectively track
the changing POF in different environments and obtain optimal solutions with good
diversity and convergence.
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In future, we are interested in utilizing different transfer learning methods to efficiently
solve DMOPs. What is more, we will attempt to apply different DMOEAs to solve more
real-life DMOPs.
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The following nomenclatures are used in this manuscript:

DMOP dynamic multi-objective optimization problem
DMOEA dynamic multi-objective evolutionary algorithm
POF Pareto optimal front
IDMOEA individual diversity multi-objective optimization evolutionary algorithm
IDEM individual diversity evolutionary method
PSO particle swarm optimization
MNSGA-II memory-based non-dominated sorting genetic algorithm-II
B biochar yield
O carbon monoxide emission
GP Gaussian process
y objective function value
µ mean of regression model
ϵ Gaussian distribution
X training data in decision space
Y objective vector
N size of training data
Corr correlation function
C correlation matrix
n number of decision variables
xk value of kth decision variable
f posterior mean
σ variance function
PPS population prediction strategy
DNSGA-II-A dynamic non-dominated sorting genetic algorithm-A
DNSGA-II-B dynamic non-dominated sorting genetic algorithm-B
HV hypervolume
MHV modified hypervolume
τt change frequency
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