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Abstract: An elastoplastic phase field model was employed for simulations to investigate the influ-
ence of external loading on the martensitic phase transformation kinetics in steel. The phase field
model incorporates external loading and plastic deformation. During the simulation process, the
authenticity of the phase field model is ensured by introducing the relevant physical parameters
and comparing them with experimental data. During the calculations, loads of various magnitudes
and loading conditions were considered. An analysis and discussion were conducted concerning
the volume fraction and phase transition temperature during the phase transformation process.
The simulation results prominently illustrate the preferential orientation of variants under different
loading conditions. This model can be applied to the qualitative phase transition evolution of Fe-Ni
alloys, and the crystallographic parameters adhere to the volume expansion effect. It is concluded
that uniaxial loading promotes martensitic phase transformation, while triaxial compressive loading
inhibits it. From a dynamic perspective, it is demonstrated that external uniaxial loading accelerates
the kinetics of martensitic phase transformation, with uniaxial compression being more effective in
accelerating the phase transformation process than uniaxial tension. When compared to experimen-
tal data, the simulation results provide evidence that under the influence of external loading, the
martensitic phase transformation is significantly influenced by the applied load, with the impact of
external loading being more significant than that of plastic effects.

Keywords: phase field simulation; martensitic phase transformation; phase transition kinetics;
martensitic variant; phase field model

1. Introduction

The martensitic phase exhibits ideal mechanical performance; its microstructure and
composition determine the mechanical properties of steel, making it one of the crucial
constituent phases in high-strength steel. The high strength and hardness of the martensitic
phase can be attributed to the solid solution strengthening by carbon atoms and the complex
martensitic microstructure formed through rapid, diffusionless phase transformation. Con-
sequently, many scholars have conducted in-depth experimental and theoretical research on
the microstructure of martensite and the mechanical properties of martensitic steels [1–4].
In order to gain a profound understanding of the relationship between microstructure and
properties in steel, it is imperative to delve into the processes of martensitic phase transfor-
mation under various complex conditions and the evolution of martensitic microstructures.

At present, phase field methods, as a powerful tool for predicting microstructural
evolution, are widely applied in materials’ solidification [5] and solid-state phase transfor-
mations [6,7]. Especially in martensitic phase transformations, refined theories and various
phase field models can accurately predict the evolution of microstructures during the
martensitic phase transformation process. In this study, numerical simulation methods [8]
have been employed to investigate martensitic phase transformations. In engineering
applications, there are often situations where experiments are impractical. Numerical
simulation, with its specific computational techniques, can replicate complex processes.
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Compared to experimental research, numerical simulation methods offer advantages such
as cost-effectiveness, the ability to simulate conditions that are not achievable through
experimental means, and comprehensive data collection. However, in the current state of
numerical simulation, simplifications are often made to boundary conditions and material
properties during the simulation and analysis process. The analysis results can significantly
impact structural discretization, leading to varying outcomes and precision levels. The
model employed in this study applies to the qualitative phase transition evolution of Fe-Ni
alloys, as the crystallographic parameters conform to the volume expansion effect. Using
Fe-Ni alloys as the prototype, we contrast experimental data with simulations to elucidate
the mechanisms of external loading on martensitic phase transformation. However, due
to variations in alloy parameters, the effects may differ, primarily concerning the crys-
tallographic parameters of the martensitic phase transformation. The phase transition
evolution is associated with its chemical free energy parameters, such as the Landau free
energy coefficient (a0) and the phase transition latent heat (Q). The influence of tensile and
compressive effects on phase transformation is related to crystallographic parameters. The
numerical simulation of martensitic phase transformations originated from the pioneering
work of scholars such as Khachaturyan and Wang [9]. Building upon the foundation of
micromechanics theory and inclusion physics, Khachaturyan and his colleagues proposed a
phase field model for martensitic phase transformations, known as the phase field microme-
chanical model for martensitic phase transformations. In this model, a time-dependent
Ginzburg–Landau (TDGL) equation is employed to simulate the evolution of martensite
in single crystals. Artemev and his colleagues introduced a three-dimensional phase field
model based on phase field microelasticity theory to investigate the influence of applied
stress on the cubic-to-tetragonal martensitic phase transformation [10]. Yamanaka and
other researchers [11] used an elastoplastic phase field model to study the effects of plastic
deformation on martensitic phase transformations. Subsequently, Yeddu and colleagues
built upon Khachaturyan’s elastoplastic phase field microelasticity theory, developing a
phase field model that incorporates plastic deformation and anisotropic properties. This
model was used to investigate autocatalysis in martensitic phase transformations and
classical features of martensitic microstructures [12]. Currently, the phase field method
based on microelasticity theory has been demonstrated to effectively simulate martensitic
phase transformations under various complex conditions in single crystals.

Stress-assisted martensitic phase transformations are commonly observed in high-
strength steel materials. They find extensive applications because they can enhance the
mechanical properties of materials by forming different martensitic structures under exter-
nal loads. While numerous scholars have conducted extensive research on stress-assisted
martensitic phase transformations [13,14], there have been relatively few reports on us-
ing phase field methods to simulate martensitic phase transformations under different
external loading conditions, specifically to investigate the associated dynamic character-
istics of phase transformations. Therefore, further in-depth research is needed to explore
the microstructural evolution, phase transformation processes, and phase transformation
temperatures under different external loading states.

This study employed a phase field method to conduct an in-depth investigation into
the martensitic phase transformation of Fe-Ni single crystals under the influence of external
loading conditions. This study employed a coupled elastic–plastic phase field model
incorporating external loads to simulate martensitic phase transformation under various
conditions, including no external load, uniaxial loading, and triaxial compression loading.
The study conducted an analysis and discussion on the evolution of microstructures of
variants during the phase transformation process, as well as changes in volume fractions. At
the same time, this study compared the effects of external loads and plasticity on martensitic
phase transformation. Statistical analysis was performed on the data related to elastic strain
energy and equivalent plastic strain during the phase transformation process. Researchers
such as Patel and Hagiwara [15,16] have experimentally investigated the martensitic start
temperature (Ms) changes and martensite volume fraction in Fe-Ni alloys under different



Materials 2023, 16, 6849 3 of 19

external loading conditions. In this study, our phase field model successfully predicted the
trend of Ms temperature changes. This not only provides a reference for understanding
the mechanism of external loading effects on martensitic phase transformations but also
plays a significant role in controlling martensitic phase transformations and gaining deeper
insights into the process of martensitic phase transformations.

2. The Elastoplastic Phase Field Model

The microstructure formed during martensitic phase transformations can be described
using a set of long-range order (LRO) parameters, which represent changes in crystal
symmetry during the phase transformation process. The phase field model employed in
this paper is constructed based on the research of Wang, Chen, Yeddu, and others [9,12,17].
In solid-state phase transformations, the Gibbs free energy (G) is defined as the sum of
three energies, namely, the chemical free energy (Gchem), gradient energy (Ggrad), and elastic
strain energy (Gel).

G = Gchem + Ggrad + Gel (1)

The system’s Gibbs free energy governs the evolution of martensitic microstructures.
For diffusionless phase transformations, the time-dependent Ginzburg–Landau (TDGL)
dynamic equation, as proposed by Allen-Cahn, can be employed to describe this process:

∂ηp(r, t)

∂t
= −∑n

q=1 Lpq
δG

δηp(r, t)
(2)

Here, r(x,y,z) is a vector representing spatial coordinates in Cartesian coordinates, η is
the long-range order parameter or phase field variable, with the austenite phase being 0 and
martensite phase being 1 in this model. Lpq represents the dynamic coefficient indicating
interface mobility and is assumed to be isotropic. In this context, n equals 3, signifying that
typical martensitic microstructures in Fe-Ni alloys can exhibit three different orientations
or variants.

In the context of martensitic phase transformations, for the local free energy density,
the Landau free energy is typically defined by a fourth-order Landau polynomial [18]:

f
(
ηp
)
=

A
2 ∑n

p=1 η2
p −

B
3 ∑n

p=1 η3
p +

C
4 ∑n

p=1 η4
p +

D
2 ∑n

p=1 η2
p

(
∑n,q 6=p

q=1 η2
q

)
(3)

The chemical driving force and the energy barriers between different phases or variants
determine the coefficients A, B, C, and D. Since this type of function does not explicitly
represent thermodynamic or physical variables, this study refers to the work of Tae Wook
Heo and Long-Qing Chen [19], which explicitly combines temperature and latent heat for
the transformation. In other words, the function of chemical free energy is as follows:

Gchem =
∫

f
(
ηp, T

)
dV

=
∫ ([

a0 +
3Q·(T−T0)

T0

]
·∑p η2

p −
[
2a0 +

2Q·(T−T0)
T0

]
·∑p η3

p + a0·∑p η4
p

)
dV

(4)

Here, T represents the undercooling temperature, T0 is the stress-free equilibrium
temperature, and a0 is an empirical parameter. The dimensionless local free energy as a
function of the order parameter is schematically illustrated in Figure 1.

Figure 1, in the dimensionless local free energy schematic, clearly indicates that the
phase transition proceeds in the direction of lower energy. Temperature values in Figure 1
are specified as T = 260 K, 280 K, 300 K, 320 K, and 340 K, with T0 = 405 K.

The gradient energy is defined as the sum of energy contributions arising from the
non-uniformity of the order parameter, as shown below [20]:

Ggrad =
∫ [1

2∑n
p=1 βij(p)∇iηp∇iηp

]
dV (5)
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where βij is the gradient coefficient matrix determined by the interfacial energy and inter-
face width. In this study, it is assumed that the interface properties are isotropic.
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The elastic strain energy for a mixture system with arbitrary parent and martensite
phases is given by [21]

Gel =
1
2

∫
Cijklε

el
ij(r)ε

el
kl(r)dV (6)

where Cijkl is the fourth-order tensor of elastic constants, and εel
ij(r) represents the elastic

strain tensor. The elastic strain tensor εel
ij(r) is defined as the difference between the total

strain tensor εtot
ij (r) and the eigenstrain tensor ε0

ij(r):

εel
ij(r) = εtot

ij (r)− ε0
ij(r) (7)

The total strain tensor εtot
ij (r) is defined as the sum of the homogeneous strain tensor

εtot
ij (r) and the inhomogeneous strain tensor δεtot

ij (r):

εtot
ij (r) = εtot

ij (r) + δεtot
ij (r) (8)

When the macroscopic shape of the system remains fixed during the phase transfor-
mation process, the homogeneous strain tensor εtot

ij (r) is defined as follows:

εtot
ij (r) = 0 (9)
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The inhomogeneous strain is defined as the deviation from the homogeneous strain
and does not affect the macroscopic deformation. The inhomogeneous strain is represented
by the elastic displacement field ui(r):

δεtot
ij (r) =

1
2

(
∂ui
∂rj

+
∂uj

∂ri

)
(10)

Assuming mechanical equilibrium is reached, the elastic solution is obtained by
solving the following mechanical equilibrium equations:

∇jσij = ∇j

[
Cijkl ·

(
εtot

kl (r) + δεtot
kl (r)− ε0

kl(r)
)]

= 0 (11)

The local stress σij in the equation is calculated using Hooke’s law. To describe the
elastoplastic deformation leading to martensitic phase transformations, plastic strain is
introduced in the model. The eigenstrain is defined as the sum of phase transformation
strain εt

ij(r) and plastic strain ε
p
ij(r) :

ε0
ij(r) = εt

ij(r) + ε
p
ij(r) (12)

According to the microelasticity theory, the phase transformation strain εt
ij(r) is a linear

combination of the stress-free phase transformation strain ε00
ij (p) and the corresponding

phase field variable ηp:
εt

ij(r) = ∑n
p=1 ηp(r, t)ε00

ij (p) (13)

Here, ε00
ij (p) is the stress-free phase transformation strain of a variant, calculated

based on lattice parameters and the orientation relationship between the parent phase and
martensite phase [22]:

ε00
ij (p) =

(
FT

p Fp − I
)

/2 (14)

where Fp is the deformation gradient tensor for the martensitic phase transformation.
The deformation gradient tensor, Fp, is computed based on relevant crystallographic
representation theory, utilizing the Bain strain for the transformation from a cubic phase to
a tetragonal phase, and the stress-free phase transformation strain ε00

ij (p) can be given by
the Bain strain as follows:

ε00
ij (1) =

ε3 0 0
0 ε1 0
0 0 ε1

ε00
ij (2) =

ε1 0 0
0 ε3 0
0 0 ε1

ε00
ij (3) =

ε1 0 0
0 ε1 0
0 0 ε3

 (15)

where ε1 =
(

abcc −
√

2
2 a f cc

)
/
√

2
2 a f cc and ε3 =

(
cbcc − a f cc

)
/a f cc, where ε1 and ε3 are

related to the lattice parameters of the parent phase
(

a f cc

)
and martensitic phase (abcc, cbcc).

Based on the above derivation, the elastic strain energy can be rewritten using Equation (6):

Gel =
1
2

∫
Cijkl

(
1
2

εtot
ij (r)ε

tot
kl (r)− εtot

ij (r)ε
0
kl(r) +

1
2

ε0
ij(r)ε

0
kl(r)

)
dV (16)

When the local von Mises stress reaches the yield stress σy, the material begins to
undergo plastic deformation. The yield criterion can be determined using the von Mises
yield criterion, which can be expressed by the following equation to determine if the
equivalent stress σeq has reached the yield limit:

σ2
eq − σ2

y = 1
2
(
σxx − σyy

)2
+ 1

2
(
σyy − σzz

)2
+ 1

2 (σxx − σzz)
2+

3
(

σ2
xy + σ2

yz + σ2
xz

)
− σ2

y ≥ 0
(17)



Materials 2023, 16, 6849 6 of 19

where σeq represents the von Mises equivalent stress, and σy represents the yield stress. In
order to model martensitic phase transformations under external loading conditions, the
additional Gibbs energy induced by externally applied stresses needs to be included in the
system’s Gibbs free energy, as shown in [23].

G = Gchem + Ggrad + Gel + Gappl (18)

where Gchem, Ggrad, and Gel are the chemical, gradient, and elastic parts of the Gibbs free
energy. Gappl is the additional Gibbs free energy induced by externally applied stresses.
Therefore, Gappl can be expressed as follows:

Gappl = −σ
appl
ij εt

ij(r) (19)

where σ
appl
ij is the externally applied stress tensor, represented by the Cauchy stress tensor

as follows:

σ
appl
ij =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 (20)

From Equation (19), it can be observed that the applied stress affects the phase trans-
formation strain εt

ij(r), which in turn influences the eigenstrain ε0
ij(r) in the elastic strain

energy Gel in Equation (18).

3. Simulation Parameters and Conditions

In this study, physical parameters for Fe-Ni alloys were selected based on [19,24]. The
relevant physical parameters are shown in Table 1.

Table 1. Physical parameters of Fe-Ni alloy.

Physical Parameter Notation Numerical Value

Latent heat for the transformation Q/(J·m−3) 3.5 × 108

Stress-free equilibrium temperature T0/(K) 405
Shear modulus G/(Pa) 2.8 × 1010

Martensite start temperature Ms/(K) 223
Characteristic energy E0/(J·m−3) 1.026 × 107

Poisson’s ratio v 0.375
Bain strain tensors 1 ε1 0.1322
Bain strain tensors 2 ε3 −0.1994

In the phase field calculations, a semi-implicit Fourier spectral method proposed by
Chen [17] was used to solve the dynamic equations. The simulation system had a grid
size of 65 × 65 × 65. To study the growth process of martensitic phase transformations,
a small cubic martensite nucleus with a side length of 1.6 µm was assumed to pre-exist
at the center of the simulation domain. A single crystal grain undergoing martensitic
phase transformation was considered the simulation region and had a physical size of
approximately 16 µm. The iso-surface of the phase field variable (g = 0.7) is shown in all
figures. For simplicity, Equation (7) in this paper is solved in dimensionless form, with
dimensionless parameters as listed in Table 2.

Table 2. Dimensionless parameters in the simulation.

Dimensionless Parameter Numerical Value

a∗0 60.02
Q∗ 34.11

∆x* = ∆y* = ∆z* 1.0
∆t* 0.01
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Here, Q* and a*
0 are dimensionless parameters for the phase transition latent heat and

the Landau free energy coefficient, obtained by dividing these quantities by a characteristic
energy, where the characteristic energy is represented as E0 = 1.026 × 107. The dimension-
less time ∆t* = 0.01 corresponds to a real time of approximately 0.975 nanoseconds. In
the study, the parameter t* represents non-dimensional time, and the colors of the phase
field variable, such as red, blue, and green, correspond to martensitic variants 1, 2, and 3,
respectively. The model employs stress boundary conditions to solve mechanical problems.
External stresses are selected so that they remain smaller than the yield stresses of both
the austenite and martensite phases. Different simulations were conducted under various
loading conditions in the phase field simulations presented in this paper. To compare with
relevant experimental results and validate them, uniaxial tensile and uniaxial compressive
loads of 100 MPa, 130 MPa, and 150 MPa were applied along the [100] direction. The triaxial
compressive loading conditions correspond to isotropic hydrostatic pressure, where equal
pressure is applied from all sides. To match the experimental conditions in the reference
literature, triaxial compressive loads of 100 MPa, 130 MPa, and 150 MPa were used. The
phase field model was implemented as code in Matlab R2021b.

4. Simulation Results and Analysis
4.1. Martensitic Phase Transformation without External Loading

The evolution of martensite volume fraction during martensitic phase transformation
without external loading is shown in Figure 2. The three-dimensional microstructure at
t* = 0, t* = 35, t* = 55, and t* = 65 is depicted in the figure.
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From Figure 2, it can be observed that the martensite volume fraction increases with
time, and it increases rapidly after t* = 50. From the three-dimensional microstructure
images, it is evident that as the phase transformation progresses, the small cubic martensite
nucleus pre-existing at the center of the simulation domain gradually transforms into
different martensite variants. Growing martensite can induce other unstable martensite
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nucleus embryos to transform into stable nuclei and start growing, a phenomenon known
as self-catalytic nucleation [25]. Martensite nuclei create stress fields around them during
growth, and to reach a stable state, nucleation of new variants is required to reduce strain
energy. This evolutionary process reduces the stress generated around growing martensite
due to self-catalytic nucleation.

4.2. Microstructure Evolution of Martensitic Phase Transformation under External Loading

The microstructure obtained under uniaxial tensile loading with σ = 100 MPa is shown
in Figure 3.
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As depicted in the figure, the final microstructure is primarily composed of two
variants, variant 2 and variant 3. The evolution is driven by the energy imposed externally,
aiming to minimize the Gibbs free energy, which means the evolution proceeds in the
direction of lower energy. According to the phase field model, variant 1 is controlled by
the Bain strain tensor, which compresses along the [100] direction but stretches along the
[010] and [001] direction. Under uniaxial tensile loading along the [100] direction, Gappl
increases, leading to the suppression of variant 1. However, variants 2 and 3 controlled by
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the Bain strain tensor experience a decrease in Gappl under uniaxial tensile loading along
the [100] direction. Therefore, the formation of variants 2 and 3 is promoted.

The microstructure obtained under uniaxial compressive loading with σ = −100 MPa
is shown in Figure 4. As seen in Figure 4, under uniaxial compressive loading, the formation
of variant 1 is favorable. In contrast to uniaxial tensile loading, compressive loads promote
the formation of martensite variants that experience the maximum compression along the
loading direction, which minimizes Gappl . Therefore, variant 1 is promoted to grow under
uniaxial compressive loading conditions.
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The microstructure obtained under triaxial compressive loading with σ = −100 MPa
is shown in Figure 5. Figure 5 shows that unlike uniaxial tension and uniaxial compres-
sion, triaxial compressive loading does not result in different martensite microstructures.
Instead, it resembles the martensite microstructure obtained without external loading.
Comparing Figure 5 with Figure 2, it can be observed that the evolution process under
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triaxial compressive loading lags behind that under no external loading, and all variants
are inhibited to varying degrees.
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Depending on the martensite variants favored under different stress conditions, dif-
ferent stress states can lead to complex martensite microstructures. Martensitic phase
transformations under loading conditions exhibit variant selection behavior, and this se-
lection behavior is related to the magnitude and direction of external loading; the loading
direction determines the types of variants that are favored, and the magnitude of the load
influences the extent of variant selection. Due to the different contributions of external
energy terms to the total system free energy, this also results in diversity in variant selection
orientations during different loading processes. It can be said that applying external loads
favors the formation of martensite variants that reduce the Gibbs free energy in the direction
of the applied load, which is the common Magee effect [26,27].
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4.3. Dynamics Analysis of Martensitic Phase Transformation under External Loading and
Plastic Deformation

In order to visually observe the variation in martensite content under uniaxial loading,
this study explores the effects of martensite variants and the total martensite volume
fraction over time under uniaxial tensile and compressive loading. Figures 6 and 7 illustrate
the relationship between external loading, evolution time, and volume fraction.
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Figure 6. Evolution of martensite volume fraction with respect to time under uniaxial tension:
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Figures 6 and 7 show that both martensite variants and the total volume fraction of
martensite increase with increasing evolution time under both uniaxial tensile and com-
pressive loading. Furthermore, the influence on volume fraction becomes more significant
with increasing external loading. Under tensile loading, variant 1 decreases with increasing
external loading, while variants 2 and 3 increase with increasing external loading. The
opposite trend is observed under compressive loading. Therefore, as explained in the
study by Yeddu et al. [28], externally applied loads may contribute to forming certain
variants. It is worth noting that from Figure 7a, under compressive loading, variant 1
shows rapid growth after t* = 30. Under tensile loading, there is also a tendency for the
rapid growth of variants 2 and 3, but it remains lower than the growth rate of variant 1
under compressive loading.

Figure 8 shows that, compared to no external loading, the martensite volume fractions
under uniaxial tensile and compressive loading are ultimately greater. Therefore, uniaxial
tensile and compressive loading both accelerate martensitic phase transformation. At
the beginning of martensitic phase transformation, the volume fraction under uniaxial
compressive loading is lower than that under uniaxial tensile loading. However, as the
evolution progresses, it starts to increase rapidly after t* = 35 and surpasses the uniaxial
tensile loading, ultimately resulting in a higher martensite volume fraction under uniaxial
compressive loading. Traditional thermodynamics cannot reveal dynamic aspects of phase
transformation, such as the evolution process. In this study, the phase field method reveals
that uniaxial compressive loading accelerates martensitic phase transformation more effec-
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tively than uniaxial tensile loading from a dynamic perspective. This phenomenon is in
excellent agreement with the experimental results of Hagiwara et al. [16].
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In order to gain a deeper understanding of the microstructural evolution under a
triaxial compression load, Figure 9 depicts the changes in the volume fractions of different
martensitic variants and the total martensite with respect to the evolution time. From
Figure 9a–c, it can be observed that the volume fractions of martensite and its variants
increase as the evolution progresses. However, at the same time, the volume fractions of
martensitic variants and the total martensite decrease with an increase in external loading.
This simulation result is consistent with the research findings reported by Kakeshita [29]
and other researchers. Therefore, under the influence of triaxial compression load, each
martensitic variant is subjected to varying degrees of suppression.
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To investigate the effects of plasticity and external stress on the elastic strain energy
during the phase transformation process, the changes in elastic strain energy density during
the martensitic transformation are shown in Figure 10.

In Figure 10, the green and blue lines represent the changes in elastic strain energy
density during the microstructural evolution shown in Figures 2 and 3, respectively. The red
line represents the changes in elastic strain energy density without plastic accommodation
and stress accommodation, where only self-accommodation effects regulate the elastic strain
energy density. The results from the curves in Figure 10 indicate that plastic deformation
and external tensile stress can reduce the elastic strain energy density, which is consistent
with the conclusions obtained in the simulations from the referenced studies [19,30].

External loading and plastic effects both play significant roles in martensitic phase
transformation. Figure 11 illustrates the relationship between martensite volume fraction
and yield strength.
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applied strain of 5%. During the phase transformation, yield strength is related to plastic
deformation. When the yield strength is low, plastic effects are significant. Consequently,
the strain energy relaxation due to lattice distortion is more pronounced, leading to a
higher martensitic transformation temperature. As shown in Figure 11, the martensite
volume fraction is minimally affected by changes in yield strength. In contrast, under
the influence of various magnitudes of external loading, the martensite volume fraction
exhibits a significant range of variation, spanning two orders of magnitude. This indicates
that plastic effects have a minimal influence on the phase transformation process, and
they can even be negligibly small under external loading conditions. Under the influence
of external loading, the generation of martensite is primarily determined by the external
load, with a minimal impact from plastic effects. This simulation result aligns with the
experimental findings of Matsuoka and other researchers [31]. Therefore, in martensitic
phase transformations under external loading, the external load plays a dominant role
and has a greater influence on the transformation process than plastic effects. Previous
studies mainly analyzed and discussed experimental results without delving deeply into
the underlying physical mechanisms. This research employed a phase field simulation
approach to provide theoretical insights into the effects of external loading and plasticity
on martensitic phase transformations.

4.4. Prediction of Ms Temperature and TRIP Effect

The change in the martensite transformation temperature Ms with respect to the
applied uniaxial load is depicted in Figure 12.
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Figure 12. Variation in the martensite start temperature Ms with externally applied uniaxial loading.

From Figure 12, it can be observed that under tensile loading, the Ms temperature
increases with the applied uniaxial load. Under compressive loading, the Ms temperature
slightly decreases with increasing uniaxial load, with a relatively small effect on the Ms
temperature. Overall, in the material studied in this paper, uniaxial tensile loading increases
the Ms temperature and promotes martensitic transformation, while uniaxial compressive
loading, although not significantly reducing the Ms temperature, accelerates martensitic
transformation. This is consistent with the results reported in the referenced studies [15,16].
The phase field simulations in this paper predict the phase transformation temperature,
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which not only validates the experimental results of previous researchers but also provides
an explanation for the influence mechanism of uniaxial loading on martensitic transforma-
tion, revealing the connection between external loading and martensitic transformation at
a fundamental physical level.

Figure 13 represents the variation in Ms temperature with the magnitude of applied
three-dimensional compressive loading. This work references experimental data studied
by Patel and other researchers and conducts thermodynamic calculations based on the
methods proposed by Patel and Cohen [15]. The red solid line and dashed line represent
experimental values and thermodynamic calculation values, while the green scattered
points represent the predicted values from the model in this paper. From Figure 13, it can
be observed that the Ms temperature decreases with increasing applied load. Based on the
changes in volume fraction and Ms temperature mentioned earlier, it can be concluded that
three-dimensional compressive loading suppresses martensitic transformation. The prediction
of Ms temperature agrees with the results reported in the referenced literature [15,32].
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Metals and alloys exhibit plastic deformation below the yield strength of the par-
ent phase, leading to an increase in plasticity during the phase transformation process.
This characteristic is known as Transformation-Induced Plasticity (TRIP) [33]. This study
discusses the average equivalent plastic strain during the phase transformation process
to investigate this phenomenon. The variation in average equivalent plastic strain with
evolution time is shown in Figure 14.

Figure 14 indicates that as evolution progresses, the volume fraction of martensite
continuously increases, leading to an increase in plastic strain. The higher degree of plastic
strain occurs due to the martensitic phase transformation. Plastic deformation caused
by temperature and applied stress changes does not occur during the simulated phase
transformation process. Therefore, the martensitic phase transformation induces the plastic
strain generated during the evolution. Furthermore, the externally applied stress is much
lower than the yield strength of austenite, so the phase transformation process induces
plasticity. The local yielding mechanism in this process occurs because the low stress
induces the phase transformation, creating substantial internal stresses locally. At this
point, the local internal stresses exceed the yield strength of austenite, resulting in local
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plastic deformation. As the phase transformation continues, the accumulation of local
plastic deformation is manifested as macroscopic plastic deformation in the specimen.
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5. Conclusions

(1) In the martensitic phase transformation process under external loading conditions,
uniaxial tensile loading increases the martensitic phase transformation start tempera-
ture Ms and promotes martensitic phase transformation. On the other hand, uniaxial
compressive loading, while not significantly lowering Ms, accelerates the transforma-
tion of austenite to martensite, resulting in an increase in martensite volume fraction
and faster phase transformation kinetics. The acceleration effect of uniaxial com-
pressive loading is superior to that of uniaxial tensile loading. Triaxial compressive
loading reduces the Ms temperature and inhibits the martensitic phase transformation.
This conclusion aligns with relevant experimental findings.

(2) The implementation of a phase-field model was employed to simulate martensitic
phase transformation under the influence of both plastic accommodations and stress
accommodations. The simulation results revealed that, in the presence of external
loading conditions, the impact of external loading on martensite volume fraction
outweighed the influence of plastic effects. Furthermore, external loading and plas-
tic deformation can release the elastic strain energy during the martensitic phase
transformation process.

(3) Simulations of microstructure evolution during the martensitic phase transformation
in Fe-Ni alloys were performed. The simulation results vividly demonstrate that
different variants are favored to transform under corresponding stress conditions.
Under uniaxial tensile loading, the growth of martensite variants 2 and 3 is promoted.
Under uniaxial compressive loading, martensite variant 1 is favored to grow. Under
triaxial compressive loading, the growth of all three martensite variants is inhibited.

Author Contributions: Methodology, G.L. and J.M.; Resources, J.M.; Data curation, G.L. and B.Y.;
Writing—original draft, G.L.; Writing—review and editing, G.L., J.M., B.Y., Q.W. and J.W.; All authors
have read and agreed to the published version of the manuscript.
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