
Citation: Chu, Z.; Deng, W.; Xu, J.;

Wang, F.; Zhang, Z.; Hu, Q. Synthesis

of RGO/Cu@ FeAl2O4 Composites

and Its Applications in

Electromagnetic Microwave

Absorption Coatings. Materials 2023,

16, 740. https://doi.org/10.3390/

ma16020740

Academic Editors: Claudia Barile

and Gilda Renna

Received: 28 December 2022

Revised: 9 January 2023

Accepted: 9 January 2023

Published: 12 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Synthesis of RGO/Cu@ FeAl2O4 Composites and Its
Applications in Electromagnetic Microwave
Absorption Coatings
Zhenhua Chu * , Wenxing Deng, Jingxiang Xu , Fang Wang, Zheng Zhang and Qingsong Hu

Shanghai Engineering Research Center of Hadal Science and Technology, College of Engineering,
Shanghai Ocean University, Shanghai 201306, China; wenxingdeng@163.com (W.D.); jxxu@shou.edu.cn (J.X.);
fwang@shou.edu.cn (F.W.); zzhang@shou.edu.cn (Z.Z.); qshu@shou.edu.cn (Q.H.)
* Correspondence: zhenhua_chu@163.com; Tel./Fax: +86-21-61900820

Abstract: In order to satisfy the requirements of wide frequency bands, the lightweight and strong
absorption for the electromagnetic wave absorbing materials, a uniform mixture of FeAl2O4 with
RGO/Cu (reduction graphene oxide, RGO) was obtained by the mechanical mixing method, and
composite coating was obtained by plasma spraying. The addition of RGO/Cu into FeAl2O4 is
conducive to improve the dielectric properties and the impedance matching performance of spinel.
When the RGO/Cu composite powders are doped by 10 wt.%, the reflection loss at 15 GHz is
−16 dB and the absorption bandwidth is 2 GHz, indicating that the composite material has potential
application value in the field of high-frequency wave absorption. The research on the electromagnetic
wave absorption mechanism shows that its superior wave absorption performance is determined by
the synergistic effect of multiple loss mechanisms such as interfacial polarization, dipole relaxation,
natural resonance, exchange resonance, and eddy current loss.

Keywords: FeAl2O4; composite materials; microwave-absorbing materials; wide frequency; absorp-
tion mechanism

1. Introduction

With the development of electronic equipment to satisfy the intelligent communication
and smart devices, the electromagnetic frequency is becoming higher and higher. However,
electromagnetic radiation has been reported to cause some damage to the human body. In
the microwave frequency band absorbing materials perform large dielectric and magnetic
losses which can be applied in absorption devices to decrease electronic contamination in
the modern world [1–4]. Therefore, the development and application of electromagnetic-
wave-absorbing composite materials to meet the requirements of wide frequency bands
and lightweight and strong absorption are important [5–8].

Generally, in order to increase the attenuation and absorption of electromagnetic waves,
materials with larger complex permittivity imaginary parts and complex permeability
imaginary parts can be used [9–11]. Zhao et al. [12] used Al/Fe2O3 as feed spraying
powders to prepare coatings with FeAl2O4 and Fe as the main phases by plasma spraying
technology. The research shows that the increase in the conductivity of the coating is the
main reason for the increase in the imaginary part of the complex permittivity. Trukhanov
et al. [13–15] studied the electromagnetic properties of a series of ferrite-based materials
and found that the magnetic property is influenced by the concentration of aluminum ions
in BaFe12−xAlxO19 (x = 0.1–1.2) [16]. Its good microwave-absorbing property results from
the good conductivity.

However, high density is also an important issue which limits their application. As
a light material with excellent conductive carbon materials, reduced graphene oxide
(RGO) has attracted extensive attention for new electromagnetic wave absorption [17].
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Gu et al. [18] reported that single crystalline hollow Fe3O4 spheres were grown onto RGO
flakes with remarkable microwave absorption properties. Xu et al. [19] obtained good
microwave absorption for PPy/rGO-0.6, and the Co15Fe85@C/RGO composite showed an
excellent microwave absorption performance [20].

However, good conductivity materials do not effectively satisfy the impedance match-
ing mechanism. Therefore, in order to meet the strong absorption and broad band re-
quirement of the absorbing materials, composite materials are combined with magnetic
loss, dielectric loss, and conductivity to further adjust the electromagnetic parameters to
broaden the absorbing band. The FeAl2O4 is an electromagnetic-wave-absorbing material
due to its double-complex dielectric properties with dielectric loss and magnetic loss capa-
bilities. It can be adopted as a carrier of composites to adjust the conductivity and magnetic
permeability.

On the other hand, the structure of composites are favorable to enhance the stability
of absorbers [21–24]. Reduced graphene oxide (RGO) has great utility in the field of
electromagnetic wave absorption due to its residual defects and functional groups [25].
Shu et al. [26] prepared magnesium ferrite microspheres modified nitrogen-doped reduced
graphene oxide hybrid composites by solvothermal and hydrothermal methods.

The combination of ferrite and graphene to achieve a new lightweight, broad band
electromagnetic-wave-absorbing material has become a new trend. In the present study,
composite coatings were combined with magnetic loss and dielectric loss FeAl2O4, non-
magnetic reduced graphene oxide and good conductivity Cu. The electromagnetic pa-
rameters of composites were adjusted by controlling the proportion of three components.
On the other hand, the microwave absorption frequency of the absorbing material was
enlarged by the structure of the composites. In the gigahertz frequency range, the introduc-
tion of RGO/Cu high dielectric constant materials was helpful to enhance the dielectric
loss of spinel ferrites. Graphene obtained by the thermal reduction of graphene oxide
not only improved the impedance matching performance of the material, but also pro-
duced defect polarization relaxation and electromagnetic dipolar polarization relaxation of
oxygen-containing functional groups, which led to the improvement of the wave-absorbing
effect of the composite coating. Therefore, the synthesized hybrid structure is considered to
be a potential absorbing material.

2. Experimental Process

Electrofused FeAl2O4 spinel was purchased from Henglong Co., Ltd., Guangzhou,
China. Because the size of the electric smelting FeAl2O4 spinel is large for spraying, the
planetary ball mill was adopted to reduce to the size of the smelting FeAl2O4 spinel ferrite,
and then the particles with a size of 10–30 µM were sieved. Then, spray granulation drying
technology was adopted to obtain the Cu/GO composite powders. The commercially
available copper powders and graphene oxide powders were weighed according to the
mass ratio MCu: MGO = 9:1. During the spray granulation process, the solid content of the
slurry was 35 wt.%, the temperature of the drying chamber was 230 ◦C, and the speed of
the peristaltic pump was 25 r/min. Compared with graphene, graphene oxide contains a
large number of oxygen-functional groups, so that it has superior dispersibility in water,
which is conducive to the uniformity and stability of the slurry in the gas-automizing
process. After that, the powders were placed in an argon-protected vacuum tube furnace
for low-temperature thermal reduction. The vacuum tube furnace was charged with argon
for thermal reduction. The heating rate was 5 ◦C/min, the target temperature was 350 ◦C,
the temperature was kept for 1 h, the cooling rate was 5 ◦C/min, and the reduction was
completed after the temperature was lowered to room temperature. Finally, the RGO/Cu
composite powders produced after reduction was mechanically mixed with FeAl2O4, and
the mixing ratios were 5%, 10%, and 15%, respectively. The process of the fabrication of
composite powders is shown in Figure 1. Then, the coating was fabricated by the plasma
spraying process. On this basis, a control group was added with the same Cu content as the
first group. The comparison group was compared with the first group, and RGO was used
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as the only variable to further study the influence of RGO on the absorbing performance.
In this paper, samples are named as B1, B2, B3, B4, and B5, respectively, and the contents of
samples are summarized in Table 1.
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Figure 1. The description of the composite powder preparation process.

Table 1. The summarized content of samples.

B1 B2 B3 B4 B5

FeAl2O4 (wt.%) 100 95.5 95 90 85
RGO/Cu (wt.%) 0 0 5 10 15

Cu (wt.%) 0 4.5 0 0 0

The morphologies of the samples were observed by field emission scanning electron
microscopy ((SEM, S4800, Hitachi, Tokyo, Japan)). Different phases of composite pow-
ders were identified by X-ray diffraction (XRD) with Cu-Ka radiation (XRD, Bruker D8
Focus, Billerica, MA, USA). The reduction degree of Cu/GO was characterized by Raman
spectroscopy (Thermo Fischer DXR, Bedford, MA, USA) and Fourier transform infrared
spectroscopy (Thermo Scientific Nicolet IS5, Bedford, MA, USA). The laser wavelength of
Raman spectroscopy was 633 nm. The magnetic properties were investigated by a vibrating
sample magnetometer (VSM, Lakeshore 7307 Westerville, OH, USA) using the coaxial
method. The electromagnetic parameters were measured by a vector network analyzer
(Agilent N5222A, Medford, MA, USA). The details are as follows: FeAl2O4 and RGO/Cu
composite powders were mixed with paraffin wax by the amounts of 50 wt.%. The final
compounds were compacted into toroidal shapes with an inner diameter of 3.04 mm, an
outer diameter of 7.0 mm, and a thickness of 2 mm.

3. Results and Discussions
3.1. Morphologies and Microstructure

The surface morphologies of the FeAl2O4 powders after ball milling are shown in
Figure 2a, which are mostly spherical and regular in shape. The particle-size distribution of
the powders is approximately 10–30 µM by sieving. Figure 2b shows the SEM micrograph
of the RGO/Cu composite powders. A layer of film-like graphene oxide can be seen
clearly around the copper particles (as marked in Figure 2b). The average particle size of
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the composite powders is approximately 10–15 µM in diameter. Each feedstock particle
consists of many micro-sized Cu and GO granules and the composite particles are compact.
Such structure of the composite powders provides homogeneous distribution of Cu and GO.
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Figure 2. SEM morphologies of (a) FeAl2O4 powders and (b) Cu/GO composite powders.

In the present study, a low-temperature solid-phase thermal reduction method is
adopted to reduce Cu/GO powders. Excessive reduction temperature causes graphene
to agglomerate and produces wrinkles, destroying the layer structure of graphene [15].
Figure 3a shows the Fourier infrared spectrum before and after the reduction of Cu/GO.
This spectrum can directly reflect the types of groups contained in graphene oxide. It can
be seen from the figure that graphene oxide has obvious absorption peaks at 3440 cm−1,
1630 cm−1, 1400 cm−1, and 1085 cm−1, which correspond to -OH, C=C, C-OH, and C-O-C
chemical bonds. It indicates that graphene oxide has a large number of oxygen-containing
groups. After thermal reduction at the argon atmosphere, the content of each oxygen-
containing group is reduced. Combined with the Raman spectrum shown in Figure 3b,
the area ratio ID/IG of peak D to peak G decreased from 1.79 to 1.22 after the reduction.
The D band corresponds to the disorder induced by carbon atoms or the defects in the
lattice structure. The G band can be attributed to the in-plane tensile vibration of the
sp2 hybridization of carbon atoms, which represents the degree to which the material
approximates the graphite structure. It is worthy to note that the area intensity (ID/IG
value) of the D and G bands is related to the defects of the carbon atom crystal [27,28].
The higher the ID/IG value, the higher the degree of defects and the lower the degree of
graphitization. The decrease in ID/IG value indicates that a new sp2 domain is produced
during the reduction process, and the carbon atom lattice defects are reduced, which
is beneficial to improve impedance matching and generate more polarization centers to
attenuate electromagnetic waves. Combining the results of Fourier infrared spectroscopy
and Raman spectroscopy, it can be seen that the Cu/GO composite powders have been
reduced to a certain extent.

Figure 4 is the X-ray diffraction patterns of RGO/Cu-mixed FeAl2O4 as coatings after
spraying on the steel substrate, which is mainly FeAl2O4 and Cu. Meanwhile, with the
proportion increase in the RGO/Cu composite powders, the diffraction peak of copper
gradually increases. Generally, RGO peaks cannot be detected by XRD. It usually is
represented by the binding component [29]. On the other hand, the diffraction peak of
copper oxide was not detected. This indicates that copper powders are not oxidized during
granulation and thermal reduction. At the same time, there was no diffraction peak at
2θ = 26◦ and 2θ = 10◦, indicating that there was no large-scale agglomeration of reduced
graphene oxide during argon reduction, and its monolayer or few-layer structure was still
maintained.
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Cu/RGO composite powders.
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3.2. Magnetic Properties

The hysteresis loop is the closed magnetization curve of the magnetic hysteresis
phenomenon when the magnetic field intensity changes periodically. It is an important basis
for judging the magnetic properties of materials. Figure 5 shows the sample magnetization
curve spectrum measured by a vibrating sample magnetometer (VSM) at a temperature of
300 K. The saturation magnetization (Ms), remanence magnetization (Mr), and coercive
force (Hc) are listed in Table 2. It can be observed that all the samples presented a rather
narrow hysteresis loop, suggesting a behavioral characteristic of soft magnetic features and
all the samples have low saturation magnetization (Ms), which may be induced by their
larger particle sizes [30,31]. With the increase of RGO/Cu ratio, the value of Ms decreased
from 6.33 emu/g to 5.47 emu/g, mainly due to the increase in the proportion of copper
powders with excellent electrical conductivity and the relative decrease in the amount of
ferromagnetic FeAl2O4 ferrite.
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Table 2. Magnetic parameters of the composite powder samples.

Ms (emu/g) Mr (emu/g) Hc

B1 6.33 0.40 106.88
B2 6.08 0.45 121.70
B3 5.83 0.65 200.60
B4 5.74 0.56 174.02
B5 5.47 0.56 182.73

3.3. Microwave Absorption Properties

In general, the complex permittivity (εr = ε′ − jε′′) and complex permeability (µr = µ
′ − jµ′′)

of the material determine the absorbing properties. The real part of complex permittivity
and permeability (ε′ and µ′) represents the ability to store charge or energy, while the
imaginary part (ε′ ′ and µ′ ′) represents the energy loss caused by the change of dipole
moment or magnetic moment [24,32]. The dielectric and magnetic dissipation factors tanδe
and tanδm were calculated by the ratio of imaginary part to the real part of permittivity
and permeability, respectively [33,34]. Figure 6 shows the frequency dependence of the
complex permittivity and complex permeability of the samples between 1 GHz and 18 GHz.
Meanwhile, comparing the sample, in the data for a measurement cell without sample
material only paraffin wax is obtained, as shown in Figure 6. The results show that the ε′

of the composite powders increase while the µ′ slightly decrease with the introduction of
RGO/Cu composite powders. Combined with SEM and XRD, the corrugated structure of
RGO can protect micron-sized copper from excessive oxidation, which is conducive to the
formation of stable RGO/Cu composites. At the same time, the synergy between RGO and
Cu is beneficial to enhance the electrical conductivity of the material and has a stronger
ability to attenuate electromagnetic waves [34]. Compared with B1, the increase ε′ of the
composites can be attributed to the improved electrical conductivity of the RGO/Cu. The
values of ε′ ′ for B4 first increase to a maximum at 15 GHz, followed by a continued decline
with significant fluctuations (Figure 6b). This is attributed to the dielectric polarization and
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relaxation in the higher frequency range. Meanwhile, the imaginary part of the complex
permeability of the B4 sample has an obvious peak around 15 GHz, as shown in Figure 5e,
which is caused by eddy current loss and natural resonance in a higher frequency range.
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Figure 6. Frequency dependence of complex relative permittivity (a–c) and permeability (d–f) for the
paraffin composites at a fixed absorbent content of 50 wt.%.

It is worthy to note the dielectric loss and magnetic loss, when evaluating the mi-
crowave attenuation loss. The dielectric loss tangent and the magnetic loss tangent are
shown in Figure 6c,f. The dielectric loss tangent curve and magnetic loss curve of all sam-
ples show a fluctuating state, and the dielectric loss tangent curve and magnetic loss curve
of the B4 sample have a maximum value at 15 GHz. The dielectric loss tangent fluctuates
in the range of 0 to 0.14, and the magnetic loss tangent fluctuates in the range of 0 to 0.45,
indicating that the attenuation of electromagnetic waves is dominated by magnetic loss.

To further understand the effect of magnetic loss on microwave absorption perfor-
mance, the following equation is cited [35]:

C0 = µ′′
(
µ′
)−2 f−1 = 2πµ0σd2/3 (1)

where µ0 is the magnetic permeability in vacuum, σ is the electrical conductivity of the
material, and d is the thickness of the material. If the magnetic loss of the absorbing
material is only caused by eddy current loss, then C0 should be constant in different
frequency ranges [1,36].

As shown in Figure 7, the eddy current loss of each sample decreases with the fre-
quency in the range of 1–8 GHz, and the eddy current loss is not the main loss mechanism.
In the range of 8–18 GHz, except for the B4 sample, the loss curves of other samples remain
constant, indicating that the eddy current loss is the main loss mechanism in this range.
However, the magnetic loss of B4 sample should be ascribed to the exchange resonance.
The imaginary part of the sample’s complex permeability (µ′ ′) shows multiple resonance
peaks. This may be due to the wide particle-size distribution of the composite powders,
which results in different resonance frequency positions.
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Figure 7. Eddy current loss of the samples with different contents.

The dielectric loss ability mainly stems from electrical conductivity loss and polar-
ization relaxation loss. Ion polarization and electron polarization usually occur in the
frequency range of ultraviolet, visible, and infrared light. It can be ignored in the frequency
range of microwave. Dipoles relaxation polarization refers to the polarization caused by
the rotation of the dipole moment in the direction of the electric field, and it can greatly
influence the dielectric loss. The relaxation loss can be analyzed by the Debye equation.
Based on the Debye theory, the relationship between ε′ and ε′ ′ can be plotted according to
the equation: [

ε′ − (εs + ε∞)/2
]2

+ (ε′′)
2
= [(εs − ε∞)/2]2 (2)

where εs is the static permittivity, ε∞ is the relative dielectric permittivity at the high-
frequency limit, and each Cole–Cole semicircle corresponds to one Debye relaxation pro-
cess [9,35,36].

As shown in Figure 8, with the RGO/Cu ratio gradual increase, the number of Cole-
Cole semicircles decreases. When the doping ratio of RGO/Cu composite powders is
10 wt.%, an obvious semicircle appears, and the number of semicircles is the least among
the samples. In addition, there are many irregular semicircles in various samples, indicating
that there are other loss mechanisms in the absorption process.

To evaluate the microwave absorption performance, the as-obtained complex permit-
tivity and permeability were used to determine the reflection loss (RL), based on the model
of a single-layered plane wave absorber as proposed by Naito and Suetake [35,36]:

RL(dB) = 20lg|(Zin − Z0)/(Zin + Z0)| (3)

Zin = Z0

√
(µr/εr)tanh

[
j
(

2π f d
c

)√
(µrεr)

]
(4)

where Zin is the normalized input impedance of a microwave absorber, Z0 is the character-
istic impedance of free space (376.7 Ω), ε0 is the dielectric constant of free space, µ0 is the
permeability of free space, and c is the velocity of light in free space (3 × 108 m s−1).



Materials 2023, 16, 740 9 of 13
Materials 2023, 16, x FOR PEER REVIEW 9 of 14 
 

 

  

Figure 8. The Cole-Cole curves of paraffin composites B1 (a), B2 (b), B3 (c), B4 (d), and B5 (e). 

To evaluate the microwave absorption performance, the as-obtained complex per-

mittivity and permeability were used to determine the reflection loss (RL), based on the 

model of a single-layered plane wave absorber as proposed by Naito and Suetake [35,36]: 

𝑅𝐿(𝑑𝐵) = 20𝑙𝑔|(𝑍𝑖𝑛 − 𝑍0)/(𝑍𝑖𝑛 + 𝑍0)|  (3) 

 𝑍𝑖𝑛 = 𝑍0√(𝜇𝑟/𝜀𝑟)𝑡𝑎𝑛ℎ [𝑗 (
2𝜋𝑓𝑑

𝑐⁄ ) √(𝜇𝑟𝜀𝑟)] (4) 

where Zin is the normalized input impedance of a microwave absorber, Z0 is the character-

istic impedance of free space (376.7 Ω), ε0 is the dielectric constant of free space, μ0 is the 

permeability of free space, and c is the velocity of light in free space (3 × 108 m s−1). 

According to Equations (3) and (4), the dip in RL is equivalent to the occurrence of 

minimum reflection or maximum absorption of the microwave power for a thickness. To 

investigate the influence of the addition of RGO/Cu on the electromagnetic wave absorp-

tion performance of the iron–aluminum spinel, the reflection loss curve of the B1–B5 sam-

ples at a filler content of 50 wt.% was studied. As presented in Figure 9, the RLmin values 

of B1, B2, B3, B4, and B5 are −4.2, −3.75, −3.45, −16.0, and −3.5 dB, respectively. With the 

ratio of Cu/RGO composite powders increase, the reflection loss of the material shows a 

trend of decreasing, firstly, then increasing, and decreasing finally. When the RGO/Cu 

doping ratio is 10 wt% and the thickness is 3 mm, the electromagnetic wave absorption 

capacity is the best. The reflection loss reaches the minimum value of −15 dB at 15 GHz, 

and the effective bandwidth is 2 GHz. The reason for the large reflection loss of the B5 

sample can be attributed to the excessive doping ratio of RGO/Cu composite powders to 

form a conductive grid, which generates a macro current on the surface of the material, 

causing the skin effect to prevent the incidence of electromagnetic waves [37]. For an elec-

tromagnetic wave absorbing materials, first of all, it should be made sure that electromag-

netic waves completely enter the absorber, and then the electromagnetic energy of the 

incident electromagnetic wave is completely converted into heat energy in the absorber, 

through a series of loss mechanisms such as induced conduction current loss, dielectric 

loss, and magnetic loss. Therefore, the design of an absorbing electromagnetic-wave-ab-

sorbing coating must consider two aspects: impedance matching conditions and 

Figure 8. The Cole-Cole curves of paraffin composites B1 (a), B2 (b), B3 (c), B4 (d), and B5 (e).

According to Equations (3) and (4), the dip in RL is equivalent to the occurrence
of minimum reflection or maximum absorption of the microwave power for a thickness.
To investigate the influence of the addition of RGO/Cu on the electromagnetic wave
absorption performance of the iron–aluminum spinel, the reflection loss curve of the B1–B5
samples at a filler content of 50 wt.% was studied. As presented in Figure 9, the RLmin
values of B1, B2, B3, B4, and B5 are −4.2, −3.75, −3.45, −16.0, and −3.5 dB, respectively.
With the ratio of Cu/RGO composite powders increase, the reflection loss of the material
shows a trend of decreasing, firstly, then increasing, and decreasing finally. When the
RGO/Cu doping ratio is 10 wt.% and the thickness is 3 mm, the electromagnetic wave
absorption capacity is the best. The reflection loss reaches the minimum value of −15 dB
at 15 GHz, and the effective bandwidth is 2 GHz. The reason for the large reflection loss
of the B5 sample can be attributed to the excessive doping ratio of RGO/Cu composite
powders to form a conductive grid, which generates a macro current on the surface of the
material, causing the skin effect to prevent the incidence of electromagnetic waves [37].
For an electromagnetic wave absorbing materials, first of all, it should be made sure that
electromagnetic waves completely enter the absorber, and then the electromagnetic energy
of the incident electromagnetic wave is completely converted into heat energy in the
absorber, through a series of loss mechanisms such as induced conduction current loss,
dielectric loss, and magnetic loss. Therefore, the design of an absorbing electromagnetic-
wave-absorbing coating must consider two aspects: impedance matching conditions and
attenuation conditions. Impedance matching and attenuation conditions are described as
the Equations (5) and (6) [38]:

Z = |Zin/Z0| =
√
(µr/εr)tanh

{
j
(

2π f d
c

)√
(µrεr)

}
(5)

α =
(√

2π f
)

/c

√
(µ′′ε′′ − µ′ε′) +

√
(µ′′ε′′ − µ′ε′)2 + (µ′′ε′′ + µ′ε′)2 (6)
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Figure 9. Reflection loss curves of the samples at different thicknesses: (a) B1, (b) B2, (c) B3, (d) B4,
(e) B5, and (f) three-dimensional representation of reflection loss of B4.

As shown in Figure 10a, for a single iron–aluminum spinel absorbing material, the
impedance matching increases as the frequency increases. When the frequency is higher
than 14 GHz, the impedance matching value is much greater than the best impedance
matching value 1.0. In the case of the same copper powder doping ratio, the impedance
matching value of the B2 sample is greater than that of the B3 sample in the range of
2–18 GHz, indicating that the introduction of reduced graphene oxide is beneficial to
reduce the reflection of electromagnetic waves to a certain extent. With the increase in
the doping ratio of RGO/Cu composite powders, the impedance matching value shows a
trend of first decreasing and then increasing. In the range of 14–18 GHz, the impedance
matching value of the doped 10 wt.% RGO/Cu composite powders is lower than the other
samples, indicating that the addition of RGO/Cu powders can improve the impedance
matching problem of a single spinel in the high-frequency range. The increase in the slope
of the impedance matching value of the B5 sample can be attributed to the increase in the
reflection of electromagnetic waves due to the skin effect. As shown in Figure 10b, the
attenuation curves of the samples all present a fluctuating state. In the range of 0–12 GHz,
the changing state of the samples is the same; when the frequency is higher than 12 GHz,
the B4 sample has three obvious peaks, and the electromagnetic wave attenuation ability is
the best.

Based on the above analysis, the possible attenuation mechanisms of EM waves for
FeAl2O4 ferrite doped with 10 wt.% RGO/Cu composite powders are described in Fig-
ure 11. The superior absorption performance can be determined by the synergetic effect
of various factors [2]. Firstly, a lower impedance matching value is conducive to electro-
magnetic waves entering the absorber, and the complex surface of the RGO/Cu composite
powders can provide more reflection and scattering. Secondly, FeAl2O4 ferrite with double
complex characteristics evenly dispersed in paraffin can induce natural resonance and
exchange resonance. The defects and residual oxygen-containing groups in RGO can
not only improve the impedance matching performance of the material but also produce
defect polarization relaxation. Electromagnetic dipole polarization relaxation with oxygen-
containing functional groups effectively improves the wave-absorbing performance of the
material. Moreover, the interfaces such as RGO/Cu, FeAl2O4/RGO/Cu, FeAl2O4/Paraffin,
and RGO/Cu/Paraffin could induce abundant interfacial polarization [39]. Based on the
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above advantages, FeAl2O4/Cu/RGO composite material is expected to become an ideal
electromagnetic-wave-absorbing material.
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Figure 10. Impedance matching profiles (a) and attenuation constants (b) of samples.
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Figure 11. Schematic of microwave absorption mechanisms of the FeAl2O4/Cu/RGO.

4. Conclusions

In this paper, RGO/Cu composite powders with complex surface were successfully
prepared by spray granulation and thermal reduction. The electromagnetic parameters,
impedance matching, attenuation capability, and microwave absorption performance are
highly dependent on the chemical compositions. Some conclusions are summarized as
following:

1. The best absorption performance was obtained for the FeAl2O4 composite doped with
10 wt.% RGO/Cu composite powder. The reflection loss of the composite at 15 GHz
can reach −16 dB and the effective bandwidth is 2 GHz.

2. The effect of the introduction of RGO/Cu is an increase in the conductivity of the
composite material due to its good conductivity. On the other hand, the complex
surface helps to increase the reflection and scattering of electromagnetic waves in
the absorption body. In addition, the introduction of RGO/Cu helps to increase the
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heterogeneous interface polarization, defect polarization, and conductivity loss of the
composites.

3. The results show that the introduction of RGO/Cu composite powder can effec-
tively optimize the impedance matching of single FeAl2O4 ferrite and improve the
electromagnetic wave absorption performance.
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