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Abstract: This paper presents the experimental results of a study investigating the impact of the
machining fluid type, the variable factor, used in slide burnishing on 2D and 3D surface roughness;
surface topography; Abbott–Firestone curve shape; microhardness; and SFE (surface free energy).
In the experiment, pre-ground, ringed samples of C45 steel were used. The results showed an
over eight-fold decrease in the value of the Ra (arithmetical mean deviation) parameter and over a
five-fold decrease in the Rt (total height of profile) parameter in relation to their values after grinding.
The parameters Rpk (reduced peak height), Rk (core roughness depth), and Rvk (reduced valley
depth) were also reduced. The Abbott–Firestone curve after slide burnishing changed its angle
of inclination (it was more flattened), and the material ratio Smr increased. The reduction in the
Rpk and Rk parameters and increased material ratio will most likely contribute to restoring the
functionality of these surfaces (increased resistance to abrasive wear). After slide burnishing, the
maximum 25% increase in microhardness was obtained compared to the value after grinding, while
the layer thickness was 20 µm. The surface energy of elements subjected to slide burnishing using
various machining fluids slightly increased, or its value was close to that of the ground surface.
The most favourable properties of the surface layer in terms of mating between two elements were
obtained for a part that was slide-burnished with a mixture of oil + polymethyl methacrylate (PMM)
+ molybdenum disulphide (MoS2).

Keywords: slide burnishing; surface roughness; microhardness; machining fluid; surface free energy

1. Introduction

Machinery components shaped by machining very often require finishing. Currently,
ball burnishing [1,2], slide burnishing [3], shot peening [4,5], and brushing [6,7] are suc-
cessfully used as finishing treatments.

Ball burnishing causes a reductiontheroughness parameters of a part [8], which con-
tributes to its improved corrosion resistance [2]. This is due to the fact that compressive
residual stresses are formed in the surface layer, and the microhardness of this layer
increases [9,10]. Ball burnishing also leads to increased fatigue strength [11,12], higher
resistance to fretting fatigue, and reduced wear volume [13].

The use of shot peening causes favourable changes in the physical properties of the sur-
face layer, which, in turn, improves the functional properties of a part. In the surface layer of
a shot-peened part, compressive residual stresses are induced [14], which improves fatigue
life of machine components [15]. The balls acting on the surface of the workpiece during
shot peening cause microstructural changes and grain fragmentation [16], which results in
increased microhardness [17], higher corrosion resistance and wear performance [18], as
well as improved strength [19]. As a result of shot peening, however, defects are formed in
the surface layer [20,21], and they can be assessed using annihilation techniques [22] and
recurrence and entropy methods [23]. Shot peening also results in reduced surface rough-
ness [24] and modified surface topography [25]. Centrifugal shot peening [26], by applying
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the microhammering head, can be used formodifications effects after electro-discharge
machining (EDM) [27]. Electrodes, used in EDM, may be produced via Fused Deposition
Modeling (FDM) [28] using ABS P400 polymer material [29] or sintered material [30].

Currently, forshot peening, a laser beam (laser shot peening) and a water jet (water jet
peening or cavitation peening) are successfully used as shot elements [31,32]. The use of
laser shot peening (LSP) hasmany benefits over conventional shot peening. These are better
surface finish, higher depths of residual stress, and uniform distribution of intensity [33].
After laser shot peening, fatigue strength increases [34], both for additively and classically
manufactured elements [35]. It is possible to effectively promote surface grain refinement
and induce a deep compressive residual stress field in Inconel 718 samples [36].

Nowadays, laser shot peening and conventional shot peening are often combined in
one operation [34,37]. Brushing is successfully used to remove both burrs from the edges
of elements after the milling process [38] and surface defects [39], as well as to change the
geometric structure of the surface after an abrasive waterjet [40].

Slide burnishing is classified as a static type of burnishing. In slide burnishing, the
burnishing element pressed with force, usually in the range of 20 ÷ 250 N [41–43], is in
constant contact with the surface of the workpiece. There is sliding friction between the
surface of the workpiece and the surface of the burnishing element (tip). The tip of the slide
burnishing tool can be in the shape of a torus, cylinder, or spherical cap with a radius of
1 ÷ 4 mm. Slide burnishing allows for machining low-stiffness elements (e.g., thin-walled
sleeves) [3], parts for pre-milling [44,45], small elements, hardened steels [46], objects with
holes [47], and objects with galvanic-diffusion coatings [48]. Slide burnishing is widely used
in the aerospace and automotive, among other industries [3]. The use of slide burnishing
changes the stereometric and physical properties of the surface layer.

Slide burnishing is primarily used as a smoothing treatment. The main purpose of
this type of burnishing is to reduce surface roughness. The slide burnishing of magnesium
alloy elements makes it possible to obtain a surface roughness of Sa < 0.4 µm [41], while for
D16T aircraft aluminium alloy it is possible to obtain Ra = 0.05 µm [49], and for carbon steel
Ra = 0.31–0.53 µm [50]. Zielecki et al. [51] used slide burnishing and obtained a reduction
in the surface roughness of X19NiCrMo4 steel from 64.1% to 85.8% compared to the value
after turning. A study [50] found there was a limit to the smoothing effect and that it
depended on the burnishing force and ball diameter.

Slide burnishing also brings positive changes in the physical properties of the surface
layer. After slide burnishing of X19NiCrMo4 steel, the microhardness increased by 32% at
a depth of 0.018 mm [51], and for chromium–nickel steel AISI 316Ti the increase exceeded
32% [52], while in a study [22] the maximum degree of strengthening was e = 42.74%, and
the maximum thickness of the strengthening layer was up to 100 µm. The microhardness
of the surface layer after slide burnishing depends on the burnishing speed, feed rate,
burnishing force, and the burnishing tip radius [51,52]. In slide burnishing of 17-4 HP
stainless steel under the minimum quantity lubrication (MQC) conditions, the maximum
surface hardness was obtained by using low burnishing feed and speed yet high burnishing
force [53]. Toboła et al. [54] found that for Ti6Al4V titanium alloy, the application of slide
burnishing and low-temperature gas nitriding increased the surface hardness by 5–10%
without compromising the strength of the core material. In the surface layer of slide-
burnished parts, compressive residual stresses are formed [22,51,53]. The residual stresses
induced in the surface layer depend on the tool radius and burnishing force [49], and they
are very often moreparallel to the burnishing direction rather than in the perpendicular
direction (46–51% higher) [51]. The compressive residual stresses retard the formationof
fatigue macro-cracks and thus increase the lifetime of slide-burnished parts [52]. As a result
of the favourable properties of the surface layer of slide-burnished parts, there is increased
fatigue strength [51,52], improved corrosion resistance [55], and abrasion resistance [56].
Slide burnishing also works well for finishing materials that cannot be subjected to heat
treatment [57]. It was also found that the geometrical characteristics of surface texture



Materials 2023, 16, 6513 3 of 19

are significant under boundary lubrication friction, while the physical and mechanical
characteristics of the surface layer are important under dry friction conditions.

The role of a cutting fluid in the manufacturing process is to cool, lubricate, and reduce
friction. These roles are performed by cutting fluids mainly in machining and plastic
working. In machining, air cooling is successfully used [58] as a cooling liquid. In the
case of shot peening, the main task of machining fluids is to reduce friction in the contact
zone between the balls and the machined surface [59]. Due to the impact of the balls on
the surface of the workpiece during shot peening, the material moves toward the edge of
the resulting impression. The use of a lubricant reduces the friction between the balls and
the material, which leads to an increase in the plastic deformation of the material. In shot
peening, oils (e.g., transformer oil) or kerosene are used as liquids. The use of a cutting
fluid in shot peening increases fatigue strength and has a positive effect on the properties
of the surface layer [59]. In order to improve the effectiveness of liquids used in burnishing
or shot peening, a surface-active substance is introduced into the liquid [59]. Surface-active
substances include EP (Extreme Pressure) additives and polar additives [60]. The addition
of EP-type additives to liquids results in the formation of a chemical compound with the
treated metal, which acts as a durable lubricating film [59]. Polar additives act on the
burnished material as a result of adsorption on the surface of cutting liquid particles. This
facilitates plastic deformation of the material and, consequently, reduces its strength. The
Rebinder effect is responsible for changes in material properties as a result of surface-active
interaction of liquids [61,62]. A distinction is made between the external and the internal
nature of the Rebinder effect.

The energy state (SFE—surface free energy) of the surface layer of modern construction
materials used in the engineering industry is particularly important in technologies where
adhesion is crucial for structural safety. These technologies include adhesives and adhesion,
airtight sealing of responsible structures, coating, printing, and sintering techniques [63–67].
For efficient joining and gas welding [68,69] of construction materials, it is necessary to
ensure correct preparation of the surface layer of bonded elements and filler materials in
the welding process [68,69] and to select adhesives and sealants with optimal properties.

In industrial practice and the world of science, methods for determining surface free
energy (SFE) and new ones are being developed. For liquids, these are direct methods,
whereas in the case of solids—indirect methods that are primarily based on measuring the
contact angle of wetting with measuring liquids (e.g., distilled water and diiodomethane).
The most important methods for determining surface free energy include, for example, the
Owens–Wendt method, the Chaudhury and Good method, the Neumann method, and
others [63,66,67,70,71].

The use of slide burnishing for finishing brings very favourable results, as confirmed
by previous studies. An interesting aspect of this problem is to use surface-active additives
to oil and then use this type of mixture as a cutting fluid in slide burnishing [72]. Stud-
ies [73,74] showed that the free surface energy of samples crushed in different environments
was greater than that of ground samples and that the presence of a surface-active additive
significantly affected the reduction adhesive wear. The presence of a surface-active additive
was also found to affect the dominant wear mode and the wettability of the surface [74].
A previous study [75] demonstrated that the surface roughness parameters associated
with the Abbott–Firestone curve could be used to evaluate the functional properties of
the workpiece. Therefore, studies were undertaken on slide burnishing using various
cutting fluids. The aim of this study was to assess the effect of the type of cutting fluid on
the surface topography, surface roughness, surface layer microhardness, and surface free
energy (SFE). There are no works showing the influence of the cutting fluid used in slide
burnishing on various properties of the surface layer. It seems that the knowledge of all
these properties can help select the most advantageous cutting liquid for slide burnishing
of C45 steel.
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2. Materials and Methods

Thin-walled samples with an outer diameter of d = 56 mm, inner diameter of do = 50
H7, and width of b = 10 mm were used in this study. The ringed samples were made
of C45 non-alloy steel. C45 is widely used in the engineering industry. It is used for
medium-duty elements of machines and devices, such as shafts, axles, discs, levers, and
non-hardened gears. The chemical composition of C45 steel, defined on the basis of the
material card, was as follows: C—0.48%, Mn—0.74%, Si—0.36%, P—0.011%; S—0.01%,
Cr—0.09%, Ni—0.02%, Mo—0.002%, Fe—rest, and the selected properties of C45 steel,
Re = 430 MPa, Rm = 740 MPa, and hardness (min)—250 HB.

Before slide burnishing, the ringed samples were pre-ground. The grinding process
was conducted with a grinding speed of vs = 35 m/s and a grinding depth of ap = 0.01 mm
using a cylindrical grinder (aloxite abrasive wheel).

For the slide burnishing of ringed samples to be carried out on a universal lathe
(C11/MB machine made in Bulgaria), the samples were mounted on a mandrel, which was
rotated with a speed of n. The burnishing tool consisted of a spherical tip with a radius of
R = 2.0 mm, and a spring mechanism was pressed against the surface of the samples with a
force F. The burnishing tool performed a feed motion f. Figure 1 shows the schematic of a
slide burnishing process for ringed samples made of C45 steel.
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Figure 1. Schematic of slide-burnishing process for ring samples with a burnishing tip made of
synthetic diamond.

The variable in the slide burnishing process was the type of machining liquid. Previous
studies on the slide burnishing of titanium alloy Ti6Al2Mo2Cr [72] showed that the type of
cutting fluid could have a significant impact on obtained results. The parameters of slide
burnishing selected on the basis of previous studies are listed in Table 1.

Table 1. Technological parameters of slide burnishing.

No. F, N f, mm/rev. v, m/min Types of Liquid

1

180 0.04 35

oil with polymethyl methacrylate—PMM (0.5%) and
molybdenum disulphide—MoS2 (0.5%) solutions

2 oil with a polymethyl methacrylate solution—PMM
(0.5%)

3 oil with molybdenum disulphide—MoS2(0.5%)

4 Mobile VactraTM Oil No. 2

5 EcoEm-1 emulsion
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The 2D surface roughness and 3D topography were measured using the T800 RC120-
400 device from Hommel-Etamic, Jenooptik (Jena, Villingen-Schwenningen, Germany). The
measuring length was 0.08, while the sampling length was 4.8 mm. Surface roughness pa-
rameters were measured in compliance with the EN ISO 25178-2: 2022-06 standard [76]. The
following surface roughness parameters were selected for analysis due to their widespread
use and the possibility of surface functional characteristics assessment:

Ra—arithmetical mean deviation;
Rt—total height of profile;
Rpk—reduced peak height;
Rk—core roughness depth;
Rvk—reduced valley depth.
The area of the scanned surface was 3 × 3 mm. For the scanned surface area, the

material bearing curve (Abbott–Firestone curve) and the material ratio Smr at the cut-off
levels of 40% and 60% of the maximum surface height (Sz parameter) were determined.

The microhardness of the surface and micro-sections was measured using the Leco LM
700at (Leco, St. Joseph, MI, USA) microhardness tester. The Vickers method was employed,
assuming the indenter weight of 50 g (HV 0.05). The samples were subjected to standard
processing. Measurements were made on angled micro-sections, which made it possible to
measure right next to the machined surface. The method of making an angled micro-section
and the algorithm of establishing a mathematical dependence are shown in Figure 2. A
simple mathematical relationship (Formula (1)) made it possible to calculate the distance to
be moved from the edge of the angled micro-section—a, in order to be able to measure the
microhardness at a real distance from the edge of the sample—x.
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Figure 2. Methodology of the angled micro-section used for microhardness measurements (where:
r—radius of the ringed sample, a—distance from the edge of the angled micro-section, x—distance
from the edge of the perpendicular micro-section).

Using the Pythagorean theorem, the following equation was obtained:

a2 + (r− x)2 = r2

a2 + r2 − 2rx + x2 = r2

assuming that x2 ≈ 0
a2 = 2rx
a =
√

2rx

(1)

where:

r—radius of the ringed sample;
x—distance from the edge of the perpendicular micro-section;
a—distance from the edge of the angled micro-section.
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In order to determine surface free energy (SFE), the contact angle was measured.
The measurements of the contact angle were carried out using distilled water and di-
iodomethane. The measuring liquid with a constant density of 4µLwas placed mechanically
on a tested surface using a PGX goniometer mechanism, manufactured by FIBRO System
AB, Sweden.

In qualitative terms, surface free energy is the amount of work required to create a
new unit of area during the division of two balanced phases in a reversible isothermal
process. The relation between surface free energy and surface tension is (2):

σ = γ + S
∂γ

∂S
, (2)

where:

σ—surface tension;
γ—surface free energy;
S—unit of area of a given body.

For liquids, the following relationship was assumed (3):

∂γ

∂S
= 0 ⇒ σ = γ, for S 6= 0. (3)

The nature of interactions in a solid–liquid–gas system is described by the characteristic
Young’s Equation (4) [67,70], whose graphical interpretation and the way of measuring the
contact angle are presented in Figure 3:

σSV = σSL + σLV cos ΘV , (4)

where:

σSV—surface tension in the solid-gas interface;
σSL—surface tension in the solid-liquid interface;
σLV—surface tension in the liquid-gas interface;
ΘV—equilibrium contact angle.
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Figure 3. Schematic of Young’s equation and contact angle measurement.

Many methods thatinvolve measuring the contact angle of measuring liquids are
based on this equation.

Figure 4 shows the test stands and procedures that were used to determine the proper-
ties of slide-burnished C45 steel samples with the use of various machining liquids.
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3. Results and Discussion
3.1. Surface Topography and Material Bearing Curve

Table 2 shows the surface topography of C45 steel samples after grinding and slide bur-
nishing using different types of machining liquids. The surface after grinding is character-
ized by a unidirectional pattern of micro-irregularities, which is the effect of grinding wheel
work. Sharp peaks of elevations and numerous depressions are observed in the surface to-
pography. Elevations dominate in the total height of the surface micro-irregularities, which
is confirmed by a higher value of the Sp parameter. This shape of the micro-irregularities
on the surface is a result of the impact of abrasive grains, leading to grooving and micro-cut
occurrence on the surface of the sample. After slide burnishing, the surface topography
is changed. As a result of the constant contact of the diamond tip with the surface of the
sample, the micro-irregularities formed after grinding are plastically deformed. Their shape
is more irregular, which may result from friction and adhesive interaction between the tip
and the slide-burnished surface. This phenomenon can be observed in slide burnishing
conducted with the following cutting fluids: oil+PMM+MoS2, oil+PMM, and oil+MoS2.
Slide burnishing conducted with a liquid enriched with surface-active additives causes
“softening” of the surface, which makes the surface more susceptible to deformation. After
slide burnishing with oil and emulsion, the pattern of micro-irregularities is unidirectional
and similar to that after grinding, with noticeable elevations and depressions. The 3D
amplitude and height parameters after slide burnishing are for all cases lower than their
values obtained after grinding (Sa is lowered from 74% to 80%, while Sz from 55% to 73%).
It should be noted that there are no large differences in the obtained values of roughness
parameters depending on the slide-burnishing medium. The minimum Sa and Sz values
were obtained in slide burnishing with oil. In addition to the low values of the Sa, St,
Sp, and Sv parameters, the shape parameters are also important, namely—the negative
skewness Ssk and the kurtosis value Sku greater than three. Taking into account these
criteria, it seems that the best properties in terms of abrasive wear resistance were obtained
from slide burnishing with oil+PMM+MoS2 and oil+PMM. The values of the coefficients



Materials 2023, 16, 6513 8 of 19

Ssk < 0 and Sku > 3 will probably contribute to the improvement of contact conditions of
the friction pair elements by reducing their plasticity indexes and accelerating volume wear
reduction. Low Ssk and high Sku surfaces can be “traps” to capture wear particles. The
probable changes in the tribological properties of C45 steel elements after sliding burnishing
are consistent with the results reported in [56,77]. The obtained absolute values of the Ssk
coefficient are smaller than after slide burnishing austenitic stainless steel 317Ti [78].

Table 2. Surface topography of C45 steel after grinding (pre-treatment) and slide burnishing with the
use of various cutting fluids (F = 180 N, f = 0.04 mm/rev., v = 35 m/min).

Pre-Treatment oil+PMM+MoS2
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Firestone curve after grinding has a degressive–progressive pattern. It is characterized by a
large inclination angle. The shape of the curve suggests that we are dealing with a surface
with sharp peaks of micro-irregularities, which is confirmed by the topography of the
surface after grinding (Table 2). After slide burnishing, the shape of the Abbott–Firestone
curve does not change, but its angle of inclination does. The curve is flattened, which may
indicate an increase in the resistance to abrasive wear. The most favourable shape of the
Abbott–Firestone curve and the highest values of the Smr material ratio were obtained
after slide burnishing using oil+PMM+MoS2. For the cut-off levels c = 40% and c = 60% for
the sample burnished with oil, the Smr value is lower than after the pre-treatment. The
result may indicate that a lack of surface-active additives in the machining liquid reduces
the “smoothing” effect. These results regarding surface topography confirm the findings
reported by the studies presented earlier in this section.

Table 3. Material bearing curve for C45 steel after grinding (pre-treatment) and slide burnishing
conducted with various cutting fluids (F = 180 N, f = 0.04 mm/rev., v = 35 m/min).

Pre-Treatment oil+PMM+MoS2
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Figure 5. Influence of slide burnishing conducted in various media on the Smr material bearing of
C45 steel samples where: 1—slide burnishing in oil+PMM+MoS2, 2—slide burnishing in oil+PMM,
3—slide burnishing in oil+MoS2, 4—slide burnishing in oil, and 5—slide burnishing in EcoEm-
1 emulsion.

3.2. 2D Surface Roughness

The influence of the type of cutting fluid on the surface roughness parameters is
shown in Figures 6 and 7. Slide burnishing results in a maximum reduction of more
than eight times in the Ra parameter and more than five times in the Rt parameter. The
greatest changes in surface quality were obtained after slide burnishing using oil with the
addition of PMM and MoS2. It should be noted that the changes in the surface roughness
parameters Ra and Rt as a function of the cutting fluid type do not differ significantly, as
the standard deviation bars overlap. A reduction in the surface roughness parameters may
be beneficial in terms of tribological properties and fatigue life. The obtained values of
surface roughness parameters are higher than those after slide burnishing of X6CrNiTi18
stainless steel (Sa = 0.147 µm, for F = 160N and f = 0.06 mm/rev.) [22] yet lower than after
slide burnishing of titanium alloy Ti6Al2Mo2Cr [72] and carbon steel [50].

Slide burnishing also leads to changes in the parameters of the Abbott–Firestone
curve (Figure 7). As a result of slide burnishing, the reduced peak height Rpk is decreased
from 79% to 82%, and the depth of the surface roughness core Rk from 84% to 88%. The
decrease in the Rpk parameter relative to the value after grinding is beneficial due to the
wear after the lapping period of the mating parts. On the other hand, the low value of
the Rk parameter allows us to conclude that there is a high load capacity of the surface
after slide burnishing. As a result of surface smoothing, the Rvk parameter is decreased
(reduction from 45% to 60%). This is an undesirable phenomenon due to a decrease in
the lubricant retention capacity of the friction pair elements. The changes in the material
bearing curve parameters are greater than those observed after slide burnishing of titanium
alloy Ti6Al2Mo2Cr [72]. The lowest value of the analysed parameters Rpk, Rk, and Rvk
was obtained using oil+PMM+MoS2 as a machining medium. In tribological terms, this
result is the same as the results of3D shape parameters (Ssk < 0 and Sku > 3).
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Figure 7. Influence of slide burnishing conducted in various media on the Abbott–Firestone curve
parameters of C45 steel samples, where: 1—slide burnishing in oil+PMM+MoS2, 2—slide burnishing
in oil+PMM, 3—slide burnishing in oil+MoS2, 4—slide burnishing in oil, and 5—slide burnishing in
EcoEm-1 emulsion.

3.3. Microhardness

The use of grinding and slide burnishing causes changes in the microhardness of the
surface layer (Figure 8). For the ground sample, the microhardness of the surface layer at a
depth of 1 µm is about 9% higher than the microhardness of the core. The thickness of the
layer strengthened by grinding is 5 µm. A comparison of the microhardness distribution of
samples burnished using different media reveals that the highest microhardness occurs near
the surface, at a depth of 1 µm. The maximum microhardness for ground and burnished
samples occurs in the region of the most deformed crystals. The microhardness of the
samples burnished in oil+PMM+MoS2 medium was about 25% higher compared to the
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ground sample. For the samples burnished in oil, the increase in microhardness was 13%.
Based on the distribution of microhardness, it can be concluded that the surface-active
additive not only causes an increase in microhardness, but also affects the depth of changes.
The use of oil as a cutting fluid causes changes in the microhardness to a depth of approx.
10 µm, while the addition of PMM and MoS2 results in an almost two-fold increase in
the thickness of the strengthened layer. The obtained increase in microhardness and the
depth of changes occurring after treatment are smaller than after slide burnishing of 41Cr4
steel [79].
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and slide burnishing using oil and oil+PMM+MoS2 as liquid.

Figure 9 compares the microhardness of samples burnished in different media. The
highest microhardness values of HV 0.5 and HV 0.1 were obtained for the samples bur-
nished in oil+PMM+MoS2. The presence of a surface-active additive in oil increases the rate
of dislocation formation and displacement, thus leading to increased microhardness. The
largest increase in microhardness was obtained for the surfaces that were slide burnished
using “rich” mixtures (oil+PMM+MoS2; oil+PMM; oil+MoS2). The smallest changes in
surface microhardness were obtained after slide burnishing conducted using emulsion
as a cutting fluid. The obtained microhardness values of HV0.5 and HV 0.1 confirm that
the presence of a surface-active additive “facilitates” plastic deformation and destruction
of material cohesion. The microhardness increase is lower than that obtained after slide
burnishing of X19NiCrMo4 steel [51] and X6CrNiTi18 stainless steel [22].

3.4. Surface Free Energy (SFE) and Drop Shape

The experimental results showed that the interaction of the cutting fluid with the
surface-active additives led to changes in the SFE. The presence of the surface-active
additives caused the SFE to either decrease or retain a value similar to that after grinding
(Figure 10). These results differ from those reported in [73,74]. The SFE reduction is
conducive to the formation and movement of dislocations in the surface layer, which
leads to “easier” deformation of the surface layer (the so-called Rebinder effect) [61]. For
oil+PMM+MoS2, a slight increase in the SFE was observed in relation to its value after
grinding. The results of SFE and surface microhardness demonstrate that for surfaces slide
burnished in the medium enriched with surface-active additives, the greatest changes in
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the tested properties (microhardness, SFE) were obtained, which confirms the occurrence
of the Rebinder effect [59].
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Table 4 presents examples of droplet shapes obtained from contact angle measurements
for water and diiodomethane. The table also gives the values of the contact angle θ, which
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is an indicator of wetting or spreading. For all applied slide-burnishing conditions and
both measuring liquids, the contact angle Θ < 90◦ was obtained, which means that the
measuring liquid is not spread over the surface but is wetted. This means that the liquid
has the ability to maintain contact with the surface of the solid body, which may be an
important feature in terms of interaction between two elements in the friction pair in the
presence of the machining liquid. The largest contact angle was obtained for the surface
slide burnished using emulsion where the measuring liquid was water, and for the surface
after grinding where diiodomethane was used as a measuring liquid. It should be noted
that there are differences in the shape and height of liquid drops. A drop of water is
characterized by significantly less contact with the tested surface witha significant height
at the same time. On the other hand, a drop of diiodomethane is characterized by a large
contact with a small height at the same time.

Table 4. Photographs of measuring liquid drops (volume—4 µL) used in contact angle measurements
(where: 1—slide burnishing in oil+PMM+MoS2, 2—slide burnishing in oil+PMM, 3—slide burnishing
in oil+MoS2, 4—slide burnishing in oil, and 5—slide burnishing in EcoEm-1 emulsion).

Type of Liquid
Measuring Liquid

Distilled Water Diiodomethane

1
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Table 4. Cont.

Type of Liquid
Measuring Liquid

Distilled Water Diiodomethane

4
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4. Conclusions and Summary

This study was conducted on C45 unalloyed steel samples, which were slide-burnished
with the use of various machining liquids. The following conclusions summarize the results
of this study:

1. The effects of slide burnishing depend on the type of medium in which the process
is carried out. As a result of the employed treatment, all studied properties of the
surface layer changed.

2. After slide burnishing of elements made of C45 unalloyed steel using different machin-
ing fluids, the surface roughness parameters Ra and Rt decreased as expected. The
surface roughness parameter Ra decreased by more than eight times, and Rt by more
than five times compared to the value after grinding. Regarding the Abbott–Firestone
curve parameters, the effect of slide burnishing was more complex. The reduced peak
height decreased from 79% to 82%, while the depth of the surface roughness core
decreased from 84% to 88% in relation to the value after grinding. Favourable changes
can contribute to improving the functionality of these surfaces.
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3. An unfavourable phenomenon observed after slide burnishing was a decrease in
the Rvk parameter—its value reduced from 45% to 60%, which indicates a probable
decrease in the retention capacity of the lubricant in the mating friction pair.

4. After slide burnishing, the 3D parameters of the surface roughness also changed: the
topography changed (micro-irregularities were more deformed and irregular), the
angle of inclination of the Abbott–Firestone curve also changed (the curve was more
flattened), and the material ratio of Smr increased for the cut-off levels of c = 40% and
c = 60%.The increase in the material ratio allows us to conclude that the materials are
resistant to abrasive wear.

5. In terms of abrasive wear resistance, the greatest changes in 2D and 3D surface
roughness, surface topography, and Abbott–Firestone curve were obtained when the
slide-burnishing process was conducted using oil+PMM+MoS2 as a machining liquid.

6. The addition of PMM and MoS2 to the oil caused an about 25% increase in micro-
hardness compared to the ground sample. The changes in microhardness after slide
burnishing for the “richest” machining centre reached up to 20 µm.

7. After slide burnishing, similar values of surface free energy or a slight increase in the
surface free energy were obtained, when compared to the values after grinding.

Based on the results of selected properties of the surface layer of C45 steel obtained after
slide burnishing conducted with the use of various machining fluids, it can be concluded
that the surface after slide burnishing with oil+PMM+MoS2 should meet the requirements
for mating elements in a friction pair.
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8. Świrad, S.; Wydrzynski, D.; Nieslony, P.; Krolczyk, G.M. Influence of hydrostatic burnishing strategy on the surface topography
of martensitic steel. Measurment 2019, 138, 590–601. [CrossRef]

9. Sartkulvanich, P.; Altan, T.; Jasso, F.; Rodriguez, C. Finite element modeling of hard roller burnishing: An analysis on the effects
of process parameters up on surface finish and residual stresses. J. Manuf. Sci. Eng. 2007, 129, 705–716. [CrossRef]

10. Tugay, I.O.; Hosseinzadeh, A.; Yapici, G.G. Hardness and wear resistance of roller burnished 316L stainless steel. Mater. Today
Proc. 2021, 47, 2405–2409. [CrossRef]

11. Hua, Y.; Liu, Z.; Wang, B.; Hou, X. Surface modification through combination of finish turning with low plastity burnishing and
its effect on fatigue performance for Inconel 718. Surf. Coat. Technol. 2019, 375, 508–517. [CrossRef]

12. Aviles, A.; Aviles, R.; Albizuri, J.; Pallares-Santasmartas, L.; Rodriguez, A. Effect of shot peening and low plasticity burnishing on
the high-cycle fatigue strength of DIN 34CrNiMo6 alloy steel. Int. J. Fatigue 2019, 119, 338–354. [CrossRef]
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