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Abstract: The dynamics of air (gas) bubbles in a column of cement slurry is examined numerically.
The air injected at the bottom of a laboratory-scale column through a porous distributor plate spatially
distributes and migrates as a swarm of bubbles throughout the slurry toward the freeboard. The two-
phase system of the cement slurry and the air bubbles is modeled using the conservation equations
of mass and linear momentum in the framework of the volume-of-fluid (VOF) approach. The cement
slurry is modeled using the Herschel–Bulkley and Bingham fluid models. Results show that the mean
Sauter diameter and the mean rise velocity of the bubbles decrease with the gas flow rate. Meanwhile,
it is found that the rising of the bubbles is controlled by breakup events, along with relatively weak
path instabilities of the bubbles resulting in relatively straight trajectories, independent of the gas
flow rate. The extent of the yielded region appears larger for the Herschel–Bulkley model compared
to the Bingham fluid model (by approximately 10%).

Keywords: yield stress fluid; cement slurry; gas migration; Herschel–Bulkley fluid; Bingham fluid;
VOF; bubble

1. Introduction

Environmental risks associated with the integrity of wellbores remain an active concern
for oil and gas industries (see, e.g., Vidic et al., 2013 [1]). Survey-based analyses of thousands
of reports of conventional and unconventional oil/gas wells in Pennsylvania/USA by
Ingraffea et al. (2014) [2] suggest that these integrity issues may be correlated to cementing
operation failures (e.g., cement density, premature gelation, high permeability in the
cement slurry, etc.). It is known that cemented Aeolian sand-fly ash backfill material
can be used to fill the mining area to help with the damage caused by underground coal
mining (Yang et al., 2023 [3]). Bonett and Pafitis (1996) [4] discuss circumstances that may
impair the cementing of the wellbores on the basis of three states of the cement: (1) a
slurry that is a granular-type fluid with an evolving yield stress that further exhibits a
vulnerability to the invasion of the gas from the surrounding formation because of pressure
differentials between these two media as the cement hardens; (2) a fully self-supporting
two-phase material marked by continued setting and accelerated hydration that result
in an internal shrinkage, a weak solid structure, subject to viscoelastic fractures caused
by the influx of gas; and (3) an elastic and brittle material where gas migration can no
longer occur, although gas flows through interfacial channels can take place. These authors
further discuss four gas migration patterns (i.e., bubbling, slug, interface, and rising plume)
through the cement slurry with a dependence on the gas flow rate (typically within the
range of 10−9 to 10−7 m3/s). Wellbore cementing challenges are many, and great technical
efforts are put forward to prevent compromising the integrity of wellbore cementing (see,
e.g., Renteria et al., 2022 [5]; Maleki and Frigaard, 2019 [6]). It is known that air bubbles
can have detrimental effect on concrete and cement, reducing the compressive strength of
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hardened concrete during the later stages of cement hydration process. For a review of
important issues related to gas migration in cement, see Tao et al. (2021) [7].

Several studies point toward the design of cements with controlled and enhanced
properties that could prevent the migration (see, e.g., Velayati et al., 2015 [8]; Ahmed
et al., 2020 [9]; Moradi and Nikolaev, 2016 [10]; Teodoriu and Asamba, 2015 [11]). Velayati
et al. [8] use additives in the cement slurries of a laboratory scale and report significant
reductions in the migration. However, following Bonett and Pafitis (1996) [4], one would
expect a bubbling migration pattern for the lower flow rates reported by Velayati et al.
(2015) [8]. Given that the cement slurry could still show vulnerabilities despite improved
cement designs, additional insights into the process of gas migration should help better
understand the strength of the wellbore and improve and anticipate mitigations. The
following questions need to be considered. (1) How does the migrating gas spatially
distribute throughout the slurry column? (2) What are the size and aspect ratio distributions
of the gas bubbles? (3) When the bubbles are not motionless, how fast do they rise in
the slurry?

Cement slurries, in general, behave as complex nonlinear fluids that may exhibit
viscoelasticity, thixotropy, yield stress, shear-thinning effects, etc. (see the review by Tao
et al., 2020 [12]; Banfil, 2006 [13], 1993 [14]; and Rodrigues and de Souza Mendes, 2019 [15]).
As indicated by Yuan, et al. (2022) [16], the thixotropy of cement becomes crucial when a
cement slurry is used for mine-out area backfilling, where it should be pumped easily but
should also become a solid-like material at very small velocities. An extensive literature
discussing fundamental aspects of air bubble injection, detachment, growth, and rising
mechanisms in different types of non-Newtonian fluids exists. These studies mostly have
focused on single or a few bubbles with controlled injection points.

Ghosh and Ulbrecht (1989) [17] examine experimentally the formation and detachment
of a single bubble in stagnant shear-thinning and viscoelastic fluids characterized by
the power-law and the two-parameter Oldroyd models, respectively. For the sake of
comparative analysis, they also look at a viscous Newtonian fluid. Gosh and Ulbrecht [17]
observe a delayed detachment and slower growth rate of the bubbles injected in the
viscoelastic fluid compared to both the shear-thinning and the viscous Newtonian fluids.
They also report that while the bubble volumes are found to increase with the air flow
rate, higher bubble volumes are obtained with fluids of higher apparent viscosities. They
observe that bubbles elongate in the direction of their vertical axis at higher gas flow
rates for Newtonian and low-viscosity fluids, whereas for the viscoelastic fluid, elongation
phenomenon occurs even at low gas flow rates, and bubble elongation increases with the
gas flow rate. Within a column filled with yield stress Herschel–Bulkley fluid, Terasaka
and Tsuge (2001) [18] similarly investigate experimentally the formation and the growth
of single gas bubbles injected through a nozzle. The authors report a strong correlation
between the rheological properties of the fluids and the bubble volumes. Indeed, their
observations show that, at a fixed gas injection flow rate, the larger the yield stress is, the
larger the bubble volume.

Dubash and Frigaard (2004) [19] study the permanent entrapment and moving con-
ditions of single air bubbles in a viscoplastic fluid (modeled as a Herschel–Bulkley fluid).
They derived two stopping conditions by relying on variational-based minimizations of the
symmetric part of the velocity gradient and the stress fields, respectively. These conditions,
which can be identified as realizability criteria, stipulate that above a critical yield stress (or
a critical Bingham number), the bubble will not rise in the fluid. Dubash and Frigaard [19]
show that these stopping conditions are independent of the fluid constitutive parameters,
namely, the consistency index and the power-law exponent; they explain that until a bubble
begins to move, it only sees the yield stress of the fluid. Indeed, the bubble rises when
the force caused by the buoyancy of the bubble is sufficient to overcome the yield stress.
In a follow-up experimental study, Dubash and Frigaard (2007) [20] discuss the validity
of those conditions against measurements of the bubble rise velocities by assuming that
bubbles have axisymmetric shapes for the sake of simplicity. The experiments consist of
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injecting single bubbles of several different sizes through a nozzle, where the column is
filled with a fluid assumed to behave as a Herschel–Bulkley fluid. The experiment shows
that the yield stress parameters are beyond the range of the stopping conditions previously
derived by Dubash and Frigaard (2004) [19]. They also show from an energy-based analysis
that the bubble buoyancy is balanced by both the yield and the surface tension stresses;
they report that the surface tension effects appear to be significant and more important
for smaller bubbles. Dubash and Frigaard [20] also observe a rapid increase in the bubble
terminal velocity as the bubble-to-column radius ratio increases, while above a certain
bubble-to-column radius ratio they report a maximum terminal velocity.

Stein and Buggisch (2000) [21] investigate the possibility of initially static small bubbles
to rise when subjected to pulsations, i.e., an additional mechanism beyond the buoyancy
allowing the bubbles to overcome the yield stress. Their experiments show that there
exists a pulsating amplitude threshold with a dependence on the bubble size below which
the bubble does not rise. In addition, they observe that larger bubbles rise faster than
small ones for a given pulsation amplitude. Similarly, Iwata et al. (2008) [22] investigated
experimentally the enhancement of a single bubble rising velocity by controlling the fluid
pressure through a sine-wave-based mechanical vibration. Their measurements are for a
shear-thinning Carreau–Yasuda fluid (i.e., not a yield stress fluid) and show that higher
oscillation frequency results in higher shear rates, along with a substantial decrease in
the fluid effective viscosity around the bubble. The authors observe that the bubble’s
rising velocity increases by two orders of magnitude, which they partly attribute to the
reduction in the apparent viscosity in the vicinity of the bubble. In a recent work, De Corato
et al. (2019) [23] investigated numerically Iwata et al.’s experiments and reported that the
bubble’s radial motion reduces the viscosity of the surrounding fluid and subsequently
may greatly reduce the friction coefficient of the bubble. This mechanism can be used to
control the enhancement of the bubble’s rising velocity.

For the flow of interest in this work (which could also be applicable to geothermal
applications), the gas is mostly expected to invade the cement slurry through the interface
between the external periphery of the wellbore annulus of the stagnant cement slurry
and the surrounding porous medium formation. This implies that the gas is injected over
a surface, and therefore, multiple bubbles can be expected to detach (either at once or
successively). In addition, the pressure fluctuations along with the change in the influx rate
of the gas percolating the porous formation could generate flow pulsations at any of the
gas invasion locations. Such a flow is understood to be adequately approximated by the
investigation of a column of cement slurry subject to a continuous air (gas) injection at the
bottom through a porous distributor plate.

In this paper, we look at the motion of bubbles as they rise in a cement slurry column,
where the cement is modeled as a Herschel–Bulkley fluid. Quantities such as the geomet-
rical dimensions of the bubbles, along with their rise angle, position, and velocities, are
discussed as the flow rate is varied. To gain further insight and to check our formulation
and numerical scheme, we simulate the experiment of Terasaka and Tsuge (2001) [18] on
the formation and growth of a single bubble in a yield stress fluid, an aqueous solution of
xanthan gum. In the next section, the conservation equations of the mass and the linear
momentum within the framework of the volume-of-fluid (VOF) approach is presented.
An overview of the numerical methods and the simulation conditions are followed by
thorough discussions of the results. Finally, some concluding remarks are drawn, and
possible future works are discussed.

2. Mathematical Framework

Cement is a multicomponent complex material with microstructure, undergoing
chemical and physical changes, and its constitutive modeling can be a daunting task.
A cement slurry is composed of particles, water, air, etc. The presence of bubbles in the
cement slurry adds further complexity to the problem at hand. The mixture, as a suspension
when flowing, behaves as a nonlinear fluid with shear-thinning effect, thixotropy, yield
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stress, etc. In the paste form, cement can behave as a visco-plastic or visco-elastic material,
and after it has hardened, it can behave as a nonlinear poro-elastic material. The most
common rheological models used are the Bingham model and the Herschel–Bulkley model
(Konan et al., 2022 [24]; Plancher et al., 2022 [25]). To mathematically model a cement slurry,
in general, we can use (1) a suspension rheology approach where a single constitutive
relation is provided for the Cauchy stress tensor T (see Tao, et al., 2020 [12]), or (2) use
a two-phase (multi-phase) approach where constitutive relations are needed for the two
stress tensors T1 and T2 for cement particles and water, respectively (with φ1 and φ2 as the
volume fractions of the two phases), and an interaction force fI (see Massoudi, 2003 [26]),
or (3) use a modified suspension approach where a stress tensor T for the suspension and
a flux vector N are required for the whole system (see Tao et al., 2019 [27]). The volume-
of-fluid (VOF) approach is similar to the modified suspension approach, and it presents a
computationally feasible method for certain multiphase applications. In this paper, we use
this method.

2.1. Volume-of-Fluid (VOF) Method

Here, we provide a brief description of the traditional VOF method, and later, we
generalize this to the case of a cement slurry with air bubbles. Let us consider the physical
domain, Ω, of two immiscible fluids (i.e., the cement slurry and the gas). Following Hirt
and Nichols (1981) [28] and Nichols et al. (1980) [29], let us introduce a volume fraction,
φ(x, t), whose value of unity at any point (x ∈ Ω) indicates the full presence of a given fluid
(i.e., cement slurry) and zero otherwise. A value of the volume fraction φ between 0 and
1 signifies the presence of an interface between the two fluids. At any point x ∈ Ω in time
t(> 0), the two-fluid system is considered as “one-fluid” with a total velocity u(x, t) and a
density ρ(x, t). This “one-fluid” is assumed to be incompressible:

div u = 0 (1)

where “div” stands for the divergence operator. The density of the “one-fluid” is defined
using the volume fraction φ(x, t), such that:

ρ(x, t) = φρ1 + (1− φ)ρ2 (2)

where ρ1 and ρ2 are the constant densities of the fluids labeled 1 and 2, i.e., the cement
slurry and the gas, respectively.

The linear momentum of the “one-fluid” is assumed to be described by:

∂

∂t
(ρu) + div(ρuu) = divT + ρb + [[Σ ]] (3)

where T is the Cauchy stress tensor, b is the body force vector, and [[Σ ]] is the source term
because of the interfacial interaction between the two fluids; this accounts for the stress
jump at the interface and the immiscibility assumption.

The stress for the traditional “one-fluid” VOF approach is described through a single
pressure (p) and a single viscosity (µ) by relying upon the volume fraction, such that:

µ(x, t) = φµ1 + (1− φ)µ2 (4)

where µ1 and µ2 are the viscosities of the fluids labelled 1 and 2, respectively. At any point
x ∈ Ω in time t(> 0), we assume that the Cauchy stress tensor for the “one-fluid” is given
by:

T(x, t) = −p(x, t)I + µ(x, t)A1 (5)

where I is the identity tensor, and A1 = grad u+ (grad u)T is the kinematical tensor, related
to D, the symmetric part of the velocity gradient [A1 = 2D].



Materials 2023, 16, 6433 5 of 34

The volume fraction φ, which serves as a flag identifying the presence of a given fluid,
is governed by a convection–diffusion type equation of the “one-fluid”, such that:

∂φ

∂t
+ u·∇φ = 0 (6)

where ∇ is the gradient operator.

2.2. Constitutive Relations
2.2.1. Interfacial Interaction between the Two Fluids

The difference in the physical properties such as density or viscosity of the two
immiscible fluids induce interfacial interactions. The net tensile force acting on the interface
of curvature κ, separating the two fluids can be modeled as (Brackbill et al., 1992 [30]):

[[Σ ]] =
∫
V(t)

σκ(x)n(x)δ[n(xs) · (x− xs)]dx (7)

[[Σ ]] ∼= σκ(xs)n(xs) (8)

where σ is the surface tension, n is the unit normal vector to the interface, and δ is the Dirac
function.

The curvature κ of a surface at a point xs, along the unit vector n̂ to the interface
(within a given cell volume), are assumed to be given by:

κ = −div n̂ (9)

n̂ =
∇φ

|∇φ| (10)

where ∇ is the gradient operator. Brackbill et al. (1992) [30] argue, based on practical
computational challenges, that the normal vector in n (Equation (8)) can be replaced by
−∇φ, so that the source term because of the interfacial interaction between the two fluids
is given by:

[[Σ ]] = σ

[
div
(
∇φ

|∇φ|

)]
∇φ (11)

This interaction term can appear in two-phase flows, as one of the many interaction
forces, in the form of:

[[Σ ]] = ω∇φ

along with other forces such as drag, lift, etc. (see Massoudi 2003 [26]).

2.2.2. Stress Tensor

For our problem, we assume that air (fluid 2) is injected into cement slurry (fluid 1).
The densities ρ1 and ρ2 of the cement slurry and the air (gas), respectively, are considered
constant, as indicated by Equation (2).

In general, as shown by Tao et. al. (2019 [27], 2020 [12]), a cement slurry may exhibit
yield stress, thixotropy, shear-dependent viscosity, concentration-dependent viscosity, etc.
In this paper, we assume that the cement slurry can be modeled as a Herschel–Bulkley
fluid, and we ignore thixotropy and concentration-dependent viscosity. Thus, we assume
that the stress in the “one-fluid” of the VOF method is given by:

T(x, t) = −p(x, t)I + τ(x, t) = −p(x, t)I + τ1(x, t) + τ2(x, t) (12)

where τ1 and τ2 are the stress tensors associated with the cement slurry and the air,
respectively.
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For the cement slurry, we assume it behaves as a Herschel–Bulkley fluid, where τ1 (in
its proper tensorial form as given in Macosko, 1994 [31]) is given by:

τ1(x, t) = φ

[
k|II2D|

n−1
2 +

τ0

|II2D|1/2

]
(2D) for II1/2

τ1
> τ0 (13)

D = 0 for II1/2
τ1
≤ τ0 (14)

where τ0 is the yield stress, k is the consistency index, and n is the power-law exponent,
a measure of the nonlinearity of the fluid, related to the shear-thinning effects (when
n < 0) or shear-thickening effects (when n > 0). IIτ1 and II2D are the second invariants
of the stress tensor τ1 and of the symmetric part of the velocity gradient tensor 2D =

(grad u) + (grad u)T , respectively. Note that the Bingham fluid is obtained from the above
Equation (13) when the power-law exponent n = 1, i.e., the viscosity is now independent
of the shear rate.

The stress tensor τ2 for the air (gas) is given by:

τ2(x, t) = (1− φ)µ2(2D) (15)

where µ2 is the viscosity of the air. For the sake of simplicity, the flow is assumed to be
laminar. We should note here that in the VOF method, as opposed to the general case of
two-phase flow formulation, we only have one velocity u and only one velocity gradient.

3. Numerical Approach

The computational fluid dynamics (CFD) finite volume method from the open-source
toolbox/library, OpenFOAM, is used on unstructured grids to solve the mass and the linear
momentum conservation equations, using the solver “multiphaseInterFoam” customized
with non-Newtonian viscosity libraries. To avoid the numerical implementation challenges
associated with the discontinuity (singularity) in the stress tensor field τ1 of the cement
slurry fluid between the unyielded and the yielded regions, the regularization method is
used, and the stress tensor of the cement slurry τ1 is replaced with an ε-dependent small
parameter, such that:

τ1,ε(x, t) = φµ1,ε

(
|I I2D|1/2

)
(2D) (16)

where the ε-dependent viscosity µ1,ε is approximated according to Papanastasiou (1987) [32]
by:

µ1,ε

(
|I I2D|1/2

)
= k|I I2D|(n−1)/2 +

τ0

|I I2D|1/2

[
1− exp

(
−|I I2D|1/2

ε

)]
(17)

This approach has recently been used by Konan et al. (2022) [24] in their study
of a cement slurry, as well as by Espinoza et al. (2022) [33] in a similar context of the
Herschel–Bulkley fluid coupled with the VOF approach to investigate the primary cement-
ing processes of an oil well. From a numerical standpoint, the advection of the volume
fraction φ through (Equation (6)) may undesirably lead to the smearing of φ and, thus,
losing the sharp interface separating the two fluids. To preserve this discontinuity nature of
the volume fraction with the transition region as narrow as possible, the so-called “interface
compression” method is introduced through an additional convective term in the advection
equation of φ (see, e.g., Rusche, 2003 [34]; Berberović et al., 2009 [35]; Hoang et al., 2013 [36];
Cifani et al., 2016 [37]). Indeed, the advection of the volume fraction in each fluid, advected
by u1 and u2, are:

∂φ

∂t
+ div(φu1) = 0 (18)

∂

∂t
(1− φ) + div((1− φ)u2) = 0 (19)
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Adding Equations (18) and (19), we have:

div(φu1 + (1− φ)u2) = divu = 0 (20)

where the total velocity defined as u = φu1 + (1− φ)u2 would result in u = u1, when the
interface is strictly sharp. Introducing a relative velocity ur (to “compress” the interface) as:

ur = u1 − u2 (21)

we have:
φu1 = φu + φ(1− φ)ur (22)

Substituting Equation (22) in Equation (18), we obtain:

∂φ

∂t
+ div(φu) + div(φ(1− φ)ur) = 0 (23)

where the additional convective term is only active within the narrow interface region
restricted by φ(1− φ). This convective term aims at avoiding the use of a special discretiza-
tion scheme for the convection in the advection equation of φ, which could allow a better
resolution for sharper interfaces. The relative (or the interface compression) velocity is
assumed to be given by:

ur = cφ|u|n (24)

where cφ is an adjustable compression factor, and n is the unit normal vector to the interface.
Using Equation (10) for the unit vector, the relative velocity becomes:

ur = cφ|u|
∇φ

|∇φ| (25)

Now, substituting Equations (4)–(25) in Equation (3), along with the incompressibility
condition of the “one-fluid”, the basic equations that need to be solved numerically are:

div u = 0 (26)

∂
∂t (ρu) + div(ρuu) = −∇p + div

{[
φµ1,ε

(
|I I2D|1/2

)
+ (1− φ)µ2

]
(2D)

}
+ρg + σ

[
div
(
∇φ
|∇φ|

)]
∇φ

(27)

ρ(x, t) = φρ1 + (1− φ)ρ2 (28)

∂φ

∂t
+ u·∇φ + div

[
cφ|u|φ(1− φ)

∇φ

|∇φ|

]
= 0 (29)

In the context of the experiments of gas migration into a column of cement slurry
as described in the experimental section of this paper, the boundary conditions can be
formulated as follows.

At the distributor plate:
u = Ug (30)

n·∇p = 0 (31)

where Ug is the velocity of the gas injected at the distributor plate.
At the wall:

u = 0 (32)

n·∇p = 0 (33)
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At the outlet of the column:
n·∇u = 0 (34)

p = pout (35)

where pout is the outlet pressure, set as the atmospheric pressure.
Initially, the column of the slurry is at rest; thus:

u(x, t) = 0 (36)

p(x, t) = 0 (37)

4. Parameters Used in the Simulation

The slurry was prepared using the preconditioned class H cement (Headrick et al.,
2023 [38]). The rheological properties from the fitting of the data to the Herschel–Bulkley
and the Bingham models are summarized in Table 1. The density of the slurry is 1970 kg/m3.
The surface tension is not measured; however, for the sake of simulations, σ = 0.07 N/m
is used.

Table 1. Summary of the slurry properties for fitting the models (Headrick et al., 2023 [38]).

Model τ0 [Pa] ηp [Pa·s] k [Pa·sn] n [-]

Herschel–Bulkley 12.87 - 1.96 0.69
Bingham 25.97 0.27 - -

The column is filled up with 0.68 kg of slurry, at an initial height of 0.17 m above the
distributor plate. Summarized in Table 2 are the nine flow rates used in this work, which
covers a broad range of typical gas influx rates in a wellbore (see, e.g., Bonett and Pafitis,
1996 [4]). Equations (26)–(37) are solved numerically on unstructured hexa-dominated
grids (see Figures 1–3) that are generated using the open-source code, cfMesh. Given in
Table 3 is the summary of the mesh densities along with the grid spacings (distributed over
the flow domain) that are used for the calculation. A variable time step with the maximum
δt = 2.5× 10−4 s is used to advance the solutions; this ensures that the Courant–Friedrichs–
Lewy (CFL) remains below 0.2 and is allowed to resolve the fastest capillary waves in the
domain (and subsequently to avoid undesirable oscillation phenomena of the interfaces
caused by surface tension), as the time step remains smaller than the capillary time (see,
e.g., Galusinski and Vigneaux, 2008 [39]; Brackbill et al., 1992 [30]).

Although Papanastasiou’s ε-dependent viscosity µ1,ε regularization technique is em-
ployed in this work, a parametric study is not carried out. ε is selected as small as 10−6

in order to limit plausible spurious effects on the bubble shapes (see, e.g., Dimakopoulos
et al., 2013 [40]). The convective terms in the momentum equations, as well as the transport
equation of the volume fraction, are discretized using the second order “linear” scheme.
Spatial gradients are also discretized using the second order “linear” scheme (central dif-
ferences with linear interpolation). The unsteady terms are discretized with a backward
Euler scheme. Table 4 summarizes the descriptions of the quantities used throughout
the manuscript.

Table 2. Summary of the gas flow rate, along with the superficial gas velocity.

Gas Flow Rate (mL/min) 2 4 8 15 20 30 60 90 120

Superficial velocity (×10−2) (mm/s) 1.65 3.29 6.58 12.34 16.45 24.68 49.35 74.03 98.70
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Table 3. Summary of the computational grids.

Mesh Cell Count ∆min [mm] ∆max [mm]

1 338,424 0.32 1.31
2 650,840 0.24 1.05
3 1,517,008 0.17 0.79

Table 4. Summary of the descriptions of the quantities discussed throughout the manuscript. Vb and

Sb are the volume and the surface of the bubble. z(n)b denotes the vertical position of the bubble at a
given time (nδt), δt being the time step. Ug,s is the gas superficial velocity.

Quantity Description

Bubble Sauter diameter, d32 d32 = 6Vb/Sb

Bubble aspect ratio, AR AR =
max.horizontal length

vertical max.length

Bubble rise velocity, ub ub =
z(n+1)

b −z(n)b
δt

Scaling velocity, U0 U0 =
ρgd2

32
4µ0

Scaling viscosity, µ0 µ0 = k
(

Ug,s
d32

)n−1

Bingham number, Bi Bi = 2τ0
ρgd32

Bond number, Bo Bo =
ρgd2

32
4σ
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5. Results
5.1. Formation of a Single Bubble and Its Growth

Prior to investigating the motion of bubbles in the cement slurry, the experimental
work of Terasaka and Tsuge (2001) [18] on a single bubble formation and growth in a
stagnant yield stress fluid is used to verify the results from the numerical simulations of the
equations presented in the previous section. Terasaka and Tsuge (2001) [18] inject nitrogen
gas through a cylindrical nozzle centered at the bottom of a square cross-section column,
which is filled with an aqueous solution of xanthan gum; it is assumed that the fluid
behaves as a yield stress fluid whose rheological data are fitted with the Herschel–Bulkley
model. The column cross-section is 10 × 10 cm2, while the diameter of the nozzle is 1.5 mm.
The properties of the fluid are summarized in Table 5. The depth of the aqueous solution
above the top of the nozzle is 10 cm. Three different gas flow rates, namely 7.89 × 10−7,
1.60 × 10−6 m3/s, and 1.98 × 10−6 m3/s corresponding to gas orifice velocities of about
0.45, 0.91, and 1.12 m/s, respectively, are used, and the bubble volumes at the detachment
are compared against the measurements from Terasaka and Tsuge [18].

Table 5. Rheological and physical properties of the xanthan gum aqueous solution.

Density (ρ1) Surface Tension (σ) Yield Stress (τ0) Consistency (k) Power-Law Exponent (n) Temperature (T)

975 kg/m3 0.0551 N/m 10.2 Pa 4.06 Pa.sn 0.307 297

The calculations are performed on an unstructured hexa-dominated computational
mesh, with the smallest cells concentrated around the injection nozzle and along the axial
region of the column (see Figure 2) to ensure an adequate resolution of the formation and
growth of the bubble as the gas penetrates the fluid, causing strong velocity gradients.
Thus, the cross-section of the gas injection nozzle is clustered with 16 cells such that the
grid size in the injection nozzle and surroundings is ∆ ' 0.094 mm. The largest cells
(i.e., with spacing ∆ ' 1.5 mm) are distributed within the outer region along the column.
The generated grid consists of 6,707,927 cells. The numerical schemes and the regularization
outlined above remain the same for this case study.

The sequential snapshots of the bubble shown in Figure 3 exhibit markedly different
stages during the bubble formation, which is consistent with the experimental observations
(see, e.g., Terasaka and Tsuge, 2001 [18]), along with the flow region where the second

invariant of the viscous tensor (i.e., |I Iτ1 |
1
2 ) exceeds the yield stress (τ0). Indeed, for each of

these flow rates, the bubble appears first to increase in volume by expanding both radially
and axially. Figure 4a, which illustrates the time evolution of the interface between the
bubble and the fluid, further quantifies the growth of the bubble and the change in its aspect
ratio (along with the range of shape). Along the second stage, which can be associated with
the onset of a conical-like shaping of the bubble, the base diameter is progressively reduced
(relative to the first stage) as a result of the upward stretching and elongations while the gas
continues to be injected (see, e.g., Figure 4b for the quantitative change). Figure 4c shows
that the third and the last stage of the formation of the bubble is essentially marked by the
formation of the neck, which results in the detachment.
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Figure 5 shows the bubble growth curves for the three flow rates. The growth rate
increases with the gas injection rate, while the bubble formation period decreases.
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Figure 5. Dependence of bubble growth on the gas volumetric flow rate.

Figure 6 compares the predicted volume of the bubbles at the time of the detachment
against the measurements from Terasaka and Tsuge (2001) [18]. The deviations in the
predictions associated with the flow rates 7.89 × 10−7, 1.60 × 10−6, and 1.98 × 10−6 m3/s
are −3.93%, −1.34%, and 7.63%, respectively. Although the uncertainties in the measure-
ments are not available, these deviations, which remain within ±10% margins relative to
the measurements, can be regarded as relatively small considering that the mathematical
models along with the numerical approach reasonably approximate the flow dynamics.
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5.2. Multiple-Bubble Cement Slurry Column
5.2.1. Mesh Refinement

The sensitivity of the solution on the grid resolution is based on the three grid den-
sities summarized in Table 3. The generation of the finer grid (i.e., mesh #3), considered
hereafter as the reference, is guided by the reasonable accuracy of the single bubble in-
jection predictions. Indeed, the current “fine” mesh exhibits larger cells almost twice as
small, while smaller cells are about twice as large, compared to single bubble injection.
Given the considerable difference in the superficial velocity of the injected gas between the
two systems (i.e., 2 to 4 order of magnitudes smaller with the cement column), the flow
gradients can be assumed to be less strong within the column than for the single bubble
formation and detachment. Therefore, the reference “fine” mesh is considered fine enough
to capture the flow. The simulations are performed using the Herschel–Bulkley fluid model
with a gas flow rate of 20 mL/min.

Table 6 compares the quantities of interest in this work, using these three grids. The
extent of the yielded material, as well as the mean rise radial position and the rise angle,
appears to be somewhat the same. The most significant deviations occur with the mean
Sauter diameter and the mean rise velocity for which the deviations relative to the grid
density #3 (i.e., the finer mesh) are quite large compared with the grid density #1 (i.e., the
coarser mesh). In general, the deviations with the grid density #2 relative to the finer mesh
are below 10%, which suggests that the details of the flow are adequately captured with
the grid density #2.

Table 6. Summary of mesh refinement. The deviations are calculated with respect to the finer mesh
(i.e., mesh #3).

Mesh
#1 #2 #3

Mean Deviation (%) Mean Deviation (%) Mean Deviation (%)

Yielded fraction (-) 0.61 −3.17 0.64 1.59 0.63 -
Sauter diameter (mm) 4.73 42.90 3.14 −5.14 3.31 -
Aspect ratio (-) 0.82 −18.81 1.11 9.90 1.01 -
Rise position, r/R (-) 0.51 −13.56 0.60 1.69 0.59 -
Rise velocity (mm/s) 3.65 31.77 2.50 −9.75 2.77 -
Rise angle (deg) 84 0 84 0 84 -

5.2.2. Flow Patterns

Shown in Figures 7–9 are the snapshots of the distribution of the volume fraction of
the cement slurry and the bubbles in the cylindrical domain for different flow rates (see
Table 2), along with the iso-surfaces (i.e., a three-dimensional surface passing through data
of the same value) of 80% of the gas presence, which is considered at the external boundary
of the gas bubbles. As we can see, different flow patterns can readily be identified for
different lengths, sizes, and shapes of these iso-surface bubbles as the gas injection flow rate
changes. Indeed, for low injection rates, relatively small bubbles rise toward the freeboard.
With moderate flow rates, small to large bubbles appear to rise, while smaller bubbles often
accompany the larger ones in their wakes. This is most likely a signature of the breakup
of large bubbles as they rise. For high flow rates, the iso-surfaces exhibit stretched and
elongated shapes toward the vertical axis as channeling paths for the gas; these bubbles
appear to rise vertically in the column. Furthermore, these flow patterns remain consistent
for both the Herschel–Bulkley and Bingham models used in this paper.
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Figure 7. Contours of the cement slurry along with the air bubbles in the column; (a–c) correspond to
the flow rates 2 mL/min, 4 mL/min, and 8 mL/min, respectively. Top and bottom parcels show the
contours for the Herschel–Bulkley and the Bingham fluids, respectively.
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Figure 8. Contours of the cement slurry, along with air bubbles in the column; (a–c) correspond to
the flow rates 15 mL/min, 20 mL/min, and 30 mL/min, respectively. Top and bottom parcels show
the contours for the Herschel–Bulkley and the Bingham fluids, respectively.
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5.2.3. Flow Behavior

It is known that an object moving through a yield stress fluid exhibits a surrounding
envelope in which the material is yielded (see, e.g., Oldroyd, 1947 [41]; Beris et al., 1985 [42];
Piau, 2002 [43]; Tsamopoulos et al., 2008 [44]). In the context of a single freely rising bubble
in a stagnant Herschel–Bulkley fluid, Dimakopoulos et al. (2013) [40] discuss the extent
of the surrounding yielded region, as well as the unyielded areas around the bubble with
respect to the Bingham number (for given Bond and Archimedes numbers), merging the
circumstances of the unyielded material that may result in the entrapment of the bubble.
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Clearly, the evolution and the dynamics of the yielded (or unyielded) material can have
strong implications on the dynamics of the rising bubbles.

In this work, several bubbles rise in the column, and in order to quantify the fraction
of the yielded material within a domain Ω, we introduce the conditional average of the
material that yields within the domain:

〈
φ
∣∣∣I I1/2

τ1
> τ0

〉
=

∫
Ω φH

(
I I1/2

τ1
− τ0

)
dV∫

Ω φdV
(38)

where H is the Heaviside function (i.e., equal to 1 when I I1/2
τ1

> τ0 and is zero otherwise);

φ is the volume fraction of the cement slurry. I Iτ1

(
= 1

2 τ1 : τ1

)
is the second invariant of

the stress tensor τ1, and τ0 is the yield stress of the material.
Shown in Figure 10 is the dependence of the yielded cement slurry in the column for

both the Bingham and the Herschel–Bulkley fluids. The increase in the gas flow rate seems
to indicate that the fraction of the yielded material is virtually independent of the flow rates
investigated here, since the differences appear marginal. However, it can be observed that
approximately more than 10% of the material is yielded when using the Herschel–Bulkley
model than the Bingham fluid. This difference in the yielded material may be related to the
yield stress τ0 of the Bingham fluid (for this slurry), which is approximately twice for the
Herschel–Bulkley model (see Table 1). Note that in this paper, we focus on the behavior
of the bubble, its rise velocity and rise angle, etc. This figure also shows the change in
the conditional average of the material that yields in the column with respect to the flow
rate. Following the previous studies (also shown in the single bubble study in the current
work), the rising of a bubble causes the material to locally yield. With the swarm of rising
bubbles, the yielding behavior of the material would somewhat exhibit a dependence on
the number of the bubbles, if one assumes an additive influence. However, it appears that
such an effect (if any) is not shown, given that the flow rate increase results in marginal
differences. In our next study, we will present detailed analysis of the flow field for the
velocity, pressure fields, etc.
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5.2.4. Bubble Statistics
Size Distribution

The distribution of the air bubble Sauter diameters (i.e., volume-to-surface ratio equiv-
alent diameter) are plotted in Figure 11, Figure 13 and Figure 15 for different gas flow
rates. For low flow rates (identified here as 2 mL/min and 4 mL/min), the bubble size
distributions mainly exhibit more than one mode (which is defined as a commonly found
value of the distribution) for both the Herschel–Bulkley and the Bingham fluid models
(see Figure 11). Both large and small size bubbles appear regardless of the fluid model, al-
though a third mode is also apparent for the Bingham fluid. Furthermore, large bubbles are
systematically larger for the Herschel–Bulkley model compared to Bingham. Figure 12a,b
also show the average Sauter diameter along the column where the bubble sizes decrease
as they rise toward the freeboard, regardless of the fluid model.
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2 mL/min and 4 mL/min, respectively.

The bubble size distributions shown in Figure 13a–d, associated with gas flow rates of
8, 15, 20, and 30 mL/min, exhibit an interesting bimodal trend of large and small bubble
sizes marked with a progressive decrease in the frequency of large bubbles to the benefit
of the small ones. This trend is independent of the fluid model used in this work. The
apparent difference is the slightly larger bubbles for the Herschel–Bulkley model. Plotted
in Figure 14a–d are the average Sauter diameters of the bubbles along the column. The
exhibited unique pattern of decreasing bubble sizes with the distance above the distributor
plate is indicative of a rising dynamics mostly controlled by breakup events in the column.
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Figure 14. Mean Sauter diameter of the air bubbles in the column; (a–d) correspond to the flow rates
8 mL/min, 15 mL/min, 20 mL/min, and 30 mL/min, respectively.

Further increases in the gas flow rate (e.g., to 60, 90, and 120 mL/min) result in
exponential-like size distributions of the Sauter diameters of the bubbles, both for the
Herschel–Bulkley and the Bingham models (see Figure 15a–c). This indicates that small
Sauter diameter bubbles populate the column, regardless of the fluid rheology. How-
ever, the slow decrease in the average size of the bubbles along the column, as shown in
Figure 16a–c, suggests that the small Sauter size bubbles are distributed throughout the
column following the breakup events of the bubbles as they rise toward the freeboard.
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Figure 16. Mean Sauter diameter of the air bubbles in the column; (a–c) correspond to the flow rates
60 mL/min, 90 mL/min, and 120 mL/min, respectively.

Both the influence of gas flow rate and the cement properties on the average Sauter
diameters of the bubbles are summarized in Figure 17. It is apparent that regardless of
which model is used, the average bubble Sauter diameter decreases with the increase in the
gas flow rate. Furthermore, relatively large dispersions are shown around these average
diameters, thus indicating a broad range of bubbles evolving in the column. The difference
in the fluid properties results in smaller average Sauter diameters for the Bingham fluid
relative to the Herschel–Bulkley model. This is more pronounced for the moderate gas
flow rates.
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Aspect Ratio Distribution

The shapes of the rising bubbles are studied by looking at the distributions of the
instantaneous bubble aspect ratio (i.e., ratio of the maximum horizontal length to the
maximum vertical length) for different gas flow rates and fluid models.

The distributions of the aspect ratios at low flow rates, which do not exhibit a unique
shape, are plotted in Figure 18a,b. They show that the bubbles are most frequently
wide/oblate and especially wider for the Bingham fluid compared to the Herschel–Bulkley
fluid model. For these low flow rates, the average aspect ratio is presented in Figure 19a,b;
they show that on average the bubbles tend to rise with moderately stable wide shapes for
the Herschel–Bulkley fluid. Additionally, the bubbles appear to detach from the distributor
plate with wide shapes regardless of the fluid model used.
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As the gas flow rate increases, the aspect ratio distributions, Figure 20a–d, exhibit a
shift toward the smaller ratios that peak around unity. This suggests that the bubbles are
mostly of spherical shape and also that dependence of the shape of bubbles on the fluid
model appears to fade out. Figure 21a–d present the average aspect ratios of the bubbles,
which exhibit quite stable aspect ratios despite noticeable decreases. This indicates that the
bubbles undergo smaller deformations (i.e., change in shape) after their detachment from
the plate up to the freeboard. This trend is independent of the fluid model. However, the
bubbles are wider for the Bingham fluid when compared to the case of the Herschel–Bulkley
fluid for each of these moderate gas flow rates.
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Figure 21. Mean aspect ratio of the air bubbles; (a–d) correspond to the flow rates 8 mL/min,
15 mL/min, 20 mL/min, and 30 mL/min, respectively.

For the higher flow rates, the distributions mostly shift toward the range of smaller
ratios with most frequent values below the unity for the aspect ratio for both the Herschel–
Bulkley and the Bingham fluids (see Figure 22a–c). That is, the bubbles are mostly elongated
in the vertical direction, regardless of the fluid model used. Furthermore, the average aspect
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ratios along the column show that the bubbles tend to rise with stable elongated shapes
but also that the Herschel–Bulkley fluid results in more elongated shapes compared to the
Bingham fluid case (see Figure 23a,b).
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Shown in Figure 24 is the dependence of the average aspect ratio on the gas flow rate,
the fluid model, and the dispersion associated with each distribution. These average aspect
ratios monotonically decrease with increasing gas flow rate, regardless of the fluid model.
This indicates a change in the shapes from wide (or “kidney-like”) shapes to elongated (or
“finger-like”) shapes with increasing gas flow rate.
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Bubble Rise Velocity

Figure 25 shows the dependence of the cross-sectional average bubble rise velocity on
the gas flow rate. It is apparent that, on average, the rise velocities of the bubbles decrease
with the gas flow rate, regardless of the fluid model. This is not surprising since the bubble
size decreases as well with the gas flow rate (as shown in Figure 17), and the smaller
bubbles rise more slowly than the larger ones. This dependence of the rise velocity on the
bubble size (or volume) is well established and has been extensively discussed for a single
bubble rising in non-Newtonian fluids (see, e.g., De Kee et al., 1990 [45]; Tsamopoulos
et al., 2008 [44]; Amirnia et al., 2013 [46]; Ravisankar et al., 2022 [47]). Tsamopoulos et al.
(2008) [44] discuss such an increase in the rise velocity with the bubble diameter; they
attribute this to the decrease in the Bingham number. Moreover, they find that the rise
velocity decreases with the Bingham number because of the increase in the drag coefficient.
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the bubbles and divided by the time interval) is plotted as a function of the mean diameter
in Figure 26a. Regardless of the fluid model used, the mean rise velocity increases with
the mean diameter of the bubbles. However, the distributions of the rise velocities and the
bubble diameters suggest that the description of the average rise dynamics must account for
these dispersions and to a certain extent for additional mechanisms such as the breakup and
coalescence of the bubbles. Buchholz et al. (1978) [48] report that bubbles in swarm have
higher rising velocities than single bubbles (for a power-law Ostwald–de Waele fluid). With
similar results, Yuan et al. (2021) [49] report that the group rising velocity increases with
the number of bubbles, and also, the vertical chains become unstable for multiple bubbles
because of the distinct oscillation of the uppermost ones. Vélez-Cordero et al. (2011) [50]
discuss the dependence of the drag coefficient and the rise velocity on the interactions (e.g.,
drafting and kissing but not tumbling) between rising bubbles in shear-thinning fluid. The
mean rise velocity plotted as a function of the mean bubble diameter (see Figure 26a) shows
that the mean rising velocity is independent of the fluid properties for the smaller mean
diameters, whereas the dependence becomes more apparent for larger mean diameters
of the bubbles, where higher rise velocity occurs for the Bingham fluid. Similar mean
rise velocity is noticed for small mean diameters for both the Herschel–Bulkley and the
Bingham fluid descriptions of the cement slurry. This might have been controlled by the
oscillating pressure at the inlet of the column (because of the zero gradient inlet pressure).
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Shown in Figure 26b is the dependence of the dimensionless mean rise velocity
(scaled by balancing the buoyancy and the viscous forces, i.e., U0 = ρgd2

32/4µ0 with
µ0 = k

(
Ug,s/d32

)n−1, where Ug,s is the gas superficial velocity) on the Bingham number
(defined as Bi = 2τ0/ρgd32). Following Tsamopoulos et al. (2008) [44], such a scaling
aims at highlighting the influence of the bubble size. The Bingham number increases
with the superficial gas velocity since the mean diameter of the bubbles decrease (see
Figure 17), while the mean bubble rise velocity decreases. Thus, with the increase in the gas
superficial velocity (or the gas volumetric flow rate), the dimensionless mean rise velocity
of the bubbles decreases with the Bingham number, as shown in Figure 26b. Clearly,
this is attributable to the increase in the drag as indicated in previous studies (see, e.g.,
Tabuteau et al., 2007 [51]; Tsamopoulos et al., 2008 [44]; Dimakopoulos et al., 2013 [40];
Mirzaagha et al., 2017 [52]).

Rise Angle

The average rise angle of the bubbles, which is defined as the arithmetic average of
angles formed between the vectors of consecutive centroid coordinates of a generic bubble
and the unit vector in the plane of the distributor plate, is plotted as a function of gas flow
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rate in Figure 27 for both the Herschel–Bulkley and Bingham fluids. The plots show that the
bubbles rise throughout the slurry with average angles of approximately 81◦ to 84◦ relative
to the distributor plate and with variances ranging between 6◦ and 9◦. In other words, they
mostly rise in almost vertical paths while exhibiting some oscillations (as suggested by
the variances) toward the freeboard. Only the conditions of the low flow rates exhibit an
average rising angle of approximately 66◦ with large variances of approximately 20◦ when
using the Bingham model to describe the cement slurry. This suggests that the bubbles rise
with more pronounced zigzagging trajectories. This behavior is consistent for these low
flow rate conditions for the Bingham fluid, where the bubbles experience strong yield stress
effects resulting in the breakup of the bubbles away from the distributor. Furthermore, it is
worth noticing that instabilities in the trajectories of bubbles rising through non-Newtonian
fluids are observed and discussed in the literature; they are thought to be associated with
deformation and vortex shedding in the wake of the bubbles (see, e.g., Premlata et al.,
2017 [53]; Sharaf et al., 2017 [54]). Premlata et al. [53] also report that, using quiescent
shear-thinning liquids, increasing the shear-thinning behavior promotes path instabilities.
In the present work, in addition to the shear-thinning behavior of the cement slurry, the
gas injection introduces additional perturbations to the system that might interact with the
vortex shedding in the wake of the bubbles.
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Figure 27. Dependence of the mean rise angle of the air bubbles on the flow rate and the two
fluid models.

Rising Position

Figure 28 shows the dependence of the average radial positions of the bubbles as they
rise. First, this shows that the bubbles tend to rise throughout the peripherical regions of
the column. Second, increasing the gas flow rate results in the broadening of the rising
regions to the vicinity of the walls as illustrated by the monotonically decreasing of their
positions toward the center of the column; this seems to be independent of the fluid models
used here.

Furthermore, for a given gas flow rate, the rising position behavior can be correlated
to the resulting sizes of the bubbles. Indeed, it can be noticed that for a given flow rate,
the larger the bubbles are, the farther the center of the bubbles are relative to the wall by
comparison to the positions of the smaller ones. That is, when using the Herschel–Bulkley
fluid, the bubbles are farther away from the wall, as opposed to the Bingham fluid case,
since the bubbles are larger on average with the Herschel–Bulkley fluid (see Figure 17).
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Figure 28. Dependence of the mean rise radial position of the air bubbles on the flow rate and the
two fluid models. Rc denotes the radius of the column.

5.2.5. Influence of the Surface Tension

The influence of the surface tension on the bubbles’ geometrical characteristics and
their rising dynamics are examined in the framework of the Herschel–Bulkley fluid model
for gas flow rates in low and moderate ranges, namely 2 mL/min and 20 mL/min. We use
three different values for the surface tension, σ = 0.025, 0.05, and 0.1 N/m, in addition to
the previous value, σ = 0.07 N/m.

Figure 29a illustrates the dependence of the bubble sizes on the surface tension, along
with the Bond number defined as Bo = ρ0gd2

32/4σ and plotted in Figure 29b. Figure 29a
shows that the mean Sauter diameter of the bubbles monotonically increases with the
surface tension. This is mainly due to the smaller bubbles detaching from the distributor
plate as shown in Figure 30. In other words, the surface tension controls the initial sizes
of the bubbles as they rise. The Bond number, plotted in Figure 29b as a function of the
surface tension, remains on average below unity over the range of the surface tension
investigated in this work. This suggests that the bubbles are mostly in regimes dominated
by the surface tension.
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(b) Dependence of the Bond number as a function of surface tension.
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Figure 30. Dependence of the mean Sauter diameter of the air bubbles on the surface tension along
the height of the column; (a,b) refer to the flow rates 2 mL/min and 20 mL/min, respectively.

Meanwhile, the aspect ratio presented in Figure 31 shows that the increase in the
surface tension results in substantial deformations of the bubbles at a low gas flow rate.
Indeed, it is apparent for this low flow rate that the bubble shapes vary from an elongation-
like shape in their vertical axes (more like a “finger”) to more oblate/flattened (or “kidney-
like”) shapes from small to high surface tension. However, for the moderate gas flow rate,
the dependence of the bubble aspect ratio on the surface tension appears weak and the
bubbles remain quasi-spherical.
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Figure 31. Dependence of the mean aspect ratio of the air bubbles on the surface tension for gas flow
rates of 2 mL/min and 20 mL/min.

The average rise velocity plotted in Figure 32 exhibits a weak dependence on the
surface tension for the low and the moderate flow rates. The range of the Bond number
(i.e., 0.2 to 1.1) used here for different surface tensions does not substantially change the
rise velocity. Dimakopoulos et al. (2013) [40] report a non-monotonic change in the rise
velocity of a single bubble rising in a stagnant Herschel–Bulkley fluid for Bond numbers
ranging from 0.01 to 50. In our study, the weak dependence of the rise velocity on the
surface tension may not only be related to the narrow range of Bond numbers used here
but also a consequence of the inlet fluctuations of the pressure perturbating the slurry and
the interactions between the swarm of the rising bubbles.
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Figure 32. Dependence of the mean rise velocity of the air bubbles on the surface tension for gas flow
rates of 2 mL/min and 20 mL/min.

Shown in Figure 33 is the mean rise angle, which also depicts a relatively weak
dependence on the surface tension, especially at low flow rates. For the moderate flow rates,
both the average and the extent of the variance of the rise angles indicate that zigzagging
trajectories of the bubbles are more frequent with smaller values of the surface tensions.
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6. Concluding Remarks

The motion of bubbles in a column of cement slurry in a freshly cemented wellbore
is studied numerically. The two-phase system of the cement slurry and the air bubbles
is described by using conservation equations of the mass and the linear momentum and
solved in the framework of the volume-of-fluid (VOF) approach. Predictions of a single
bubble formation and its growth in a yield stress fluid, namely, an aqueous solution of xan-
than gum (Terasaka and Tsuge, 2001 [18]), shows good comparison with the experimental
measurements of the bubble volume. The cement slurry is modeled as a Herschel–Bulkley
fluid as well as a Bingham fluid for the sake of comparison. The simulations are performed
over a wide range of gas flow rates, typical of gas influx rates in the wellbore.
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The results show that increasing the gas flow rate results in mainly three identifiable
flow patterns with varying lengths, sizes, and shapes of the air bubbles. Regardless of the
fluid model, the mean bubble Sauter diameter decreases with increasing the gas flow rate. A
unique pattern of decreasing bubble sizes at a distance above the distributor plate is noticed
independently of the gas flow rate. The bubble shape changes from the wide-dominated
case to vertically elongated shapes throughout the column when the gas flow rate increases.
These results are similar for both the Herschel–Bulkley fluid and the Bingham fluid models.

The fraction of the yielded region appears virtually independent of the gas flow rate,
but the extent of the yielded fluid is approximately 10% more with the Herschel–Bulkley
model compared to the Bingham fluid. One plausible explanation of the non-dependence
of the yielded fluid region on the gas flow rate could be due to the fluctuating nature of
the pressure at the bottom of the column. The mean bubble rise velocities decrease with
the gas flow rate, which can be attributed to the decrease in the bubble sizes with the gas
flow rate, regardless of the fluid model. The dimensionless mean rise velocity decreases
with the Bingham number, which is consistent with the results from previous works (see,
e.g., Tabuteau et al., 2007 [51]; Dimakopoulos et al., 2013 [40]). The bubbles appear to rise
more slowly in the Bingham fluid, probably because of the smaller bubble sizes or possibly
because of the smaller extent of the yielded region found in the Bingham fluid.

Path instabilities of the bubbles, which are the deviations of the centroid motions of
the bubbles from the vertical motion (i.e., zigzagging, or spiral paths), are found to be
relatively weak and virtually independent of the gas flow rate. On average, the bubbles
appear to rise with a relatively straight trajectory regardless of the fluid model used in
this work.

The influence of the surface tension shows that the surface tension dominates the
buoyancy forces. However, the average rise velocity exhibits a weak dependence on the
surface tension for the low and moderate flow rates.

Finally, the current predictions appear to match well with the experimental observa-
tions and exhibit the dependence of the bubbles motion on the gas flow rate. Furthermore,
both the Herschel–Bulkley and Bingham models mostly exhibit similar trends. Moreover,
a comparative analysis against the limiting case for Newtonian fluids warrants further
investigations.

The influence of the microstructure, i.e., inhomogeneity of the cement slurry that is
due to the cement particles in the suspension, expected to locally affect the yield stress, and
the effective viscosity are planned for future work.
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Nomenclature

Symbol Description
T Cauchy stress tensor of the “one-fluid”
A1 kinematical tensor
D symmetric part of the velocity gradient tensor
I identity tensor
τ1 cement slurry phase stress tensor
τ2 gas (air) phase stress tensor
[[Σ ]] interfacial interaction between the two phases
I I2D sec ond invariant of the tensor 2D
I Iτ1 second invariant of the stress tensor τ1
p pressure of the “one-fluid”
u velocity of the “one-fluid”
u1 velocity of the cement slurry phase
u2 velocity of the gas (air) phase
ur relative velocity between the two phases
n unit normal vector
k consistency of the cement slurry (for Herschel–Bulkley fluid)
n power-law exponent of the cement slurry (for Herschel–Bulkley fluid)
φ volume fraction of the cement slurry
σ surface tension
κ curvature of the interface between the two phases
δ Dirac function
τ0 yield stress of the cement slurry
ηp plastic viscosity of the cement slurry (for Bingham fluid)
µ viscosity of the “one-fluid”
µ1 viscosity of the cement slurry phase
µ2 viscosity of the gas (air) phase
ρ density of the “one-fluid”
ρ1 density of the cement slurry phase
ρ2 density of the gas (air) phase
ε regularization parameter
δt time step
∆ computational cell size
∇ gradient operator
cφ compression factor
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