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Abstract: Fast-setting bioactive cements were developed for the convenience of retrograde fillings
during endodontic microsurgery. This in vitro study aimed to investigate the effect of irrigation on the
washout of relatively fast-setting materials (Biodentine, EndoCem Zr, and MTA HP) in comparison
with MTA Angelus White and IRM in an apicectomy model. Washout resistance was assessed using
artificial root ends. A total of 150 samples (30 for each material) were tested. All samples were
photographed using a microscope, and half of them were also scanned. The samples were irrigated
and immersed in saline for 15 min. Then the models were evaluated. Rinsing and immersing the
samples immediately after root-end filling and after 3 min did not disintegrate the fillings made of all
tested materials except Biodentine. Root-end fillings made of Biodentine suffered significant damage
both when rinsing was performed immediately and 3 min after the filling. Quantitative assessment
of washed material resulted in a slight loss of IRM, EndoCem MTA Zr, and MTA HP. MTA Angelus
White showed a slightly greater washout. Rinsing and immersion of Biodentine restorations resulted
in their significant destruction. Under the conditions of the current study, the evaluated materials,
excluding Biodentine, showed good or relatively good washout resistance.

Keywords: bioactive cements; washout resistance; retrograde root canal filling

1. Introduction

Surgical endodontic treatment is performed when orthograde root canal therapy
is unsuccessful and retreatment is either impossible or useless [1]. Endodontic surgery
usually involves exposure of the apex, the removal of pathological periapical tissue, root-
end resection (apicoectomy), root-end cavity preparation, and the placement of a retrograde
filling material [1]. The success rate of this surgical procedure is above 90% and is close to
that of orthograde root canal treatment [2–4].

Several materials have been used in periapical surgery, including amalgam, interme-
diate restorative material (IRM), super ethoxybenzoic acid (Super-EBA), glass ionomer
cements, polycarboxylate cements, zinc phosphate cements, calcium phosphate cements,
composite resins, and calcium silicate cements, but none of them have the characteristics of
an ideal root-end filling material [5–9]. An ideal root-end filling material should provide a
long-term hermetic seal resulting from resistance to washout and dissolution in periapical
fluids and good adaptation to the walls of retrograde preparation. It must be non-irritating,
non-toxic, non-carcinogenic, and biocompatible. For clinical applications, it should be easy
to manipulate and radiopaque [1,5,7,8].
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Mineral trioxide aggregate (MTA) is usually used as the material of choice for retro-
grade root canal filling because it has most of the properties of an ideal root-end filling
material, such as bioactivity and biocompatibility, antimicrobial effect, good sealing ability,
and setting in a humid environment [1,7–15]. Many authors also claim that these materials
evoke a positive tissue response to promote the regeneration of the periodontium [16–18].
However, MTA has some drawbacks, such as a long setting time, difficult application, low
resistance to compression and flexion, and a high cost [6,19–22]. Many studies have also
reported that MTA leads to tooth discoloration [23–25].

In order to improve the clinical results of the treatment, many new calcium silicate
materials have been developed. Biodentine® (Septodont, Saint Maur des Fossés, France),
a new dental substitute, was introduced on the market in 2009. Biodentine is composed
of a powder component (mainly calcium silicates) and a liquid component (water with
calcium chloride and a water-soluble polymer). The powder is placed in a capsule, while
the liquid is in an ampoule. Mixing is achieved using a trituator for 30 s at 4000–4200 rpm.
According to the manufacturer, the initial setting time is about 12–15 min [26]. However,
some authors [27] estimated the final setting time of this material to be 85 min. The
consistencies of Biodentine and phosphoric cement are similar, which makes Biodentine
easy to apply [28]. As for MTA, the indications and clinical applications for Biodentine are
indirect/direct pulp capping, pulpotomy, apexogenesis, apexification (apical plug), root
and crown perforation, resorption repair, and retrograde root-end filling [28–30]. Because
Biodentine was released at the end of 2009, many laboratory studies have been published
so far with this material. The literature is still, however, inconclusive concerning the
superiority of Biodentine over MTA as a root-end filling material in apical surgery. In
some reports, Biodentine produced a better seal than MTA, whereas other studies failed
to confirm any superiority of Biodentine or found it to be inferior to MTA when filling
the retrograde cavities. A recently published meta-analysis showed that there is a lack
of scientific evidence for the superiority of Biodentine over MTA as a retrograde filling
material in apical surgery [31].

Both MTA (e.g., ProRoot MTA, Dentsply Sirona, Charlotte, NC, USA, MTA Angelus,
Angelus, Londrina, Brazil) and Biodentine are calcium silicate cements. In the process of
cement setting, hydration is a very important reaction. The main product of this reaction is
calcium silicate hydrate. Some authors conduct research on the effect of the presence of
aluminum on the effectiveness of this reaction. Although the presence of aluminum may
affect the efficiency of the reaction, it may also decrease its biocompatibility and lengthen
the setting time. Among tested materials, aluminum is present in MTA-type materials, but
fully synthetic Biodentine does not contain it [31,32].

Another newly developed type of bioactive material for end filling is EndoCem
Zr (Maruchi, Wonju, Republic of Korea). It has been introduced as an MTA-derived
pozzolan cement (a naturally occurring siliceous and aluminous material of volcanic
origin) [33]. EndoCem Zr has a short setting time of 4 min and favorable manipulation
properties [33,34]. Pozzolan, when mixed with water, undergoes a reaction with calcium
hydroxide to form calcium silicate hydrate, similar to that produced by the hydration
of MTA. EndoCem/EndoCem Zr sets fast despite no accelerator. The faster setting of
the material is probably due to the small particles of cement and thus a larger contact
surface with water [35,36]. It has low tooth tissue discoloration potential because it contains
zirconium oxide instead of conventional bismuth oxide [34]. However, an in vitro study
showed that Endocem Zr was more cytotoxic and associated with lower expression of
VEGF and ANG in comparison with mineral trioxide aggregate [37], which was confirmed
by histopathologic analysis in a canine model of pulpotomy that showed fewer odontoblast
layer formation and fewer calcific barrier formation with greater inflammatory response in
comparison with the mineral trioxide aggregate [38].

A new type of MTA, MTA repair high plasticity (MTA HP, Angelus, Londrina, Brazil),
has been introduced recently. It is based on the standard MTA formula but contains calcium
tungstate (CaWO4) as a radiopacifier and a liquid consisting of water and a plasticizing
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agent [39,40]. This new composition retains the chemical properties of the original MTA
but amends its physical properties (plasticity), making it easier to manipulate and insert
into the retrograde cavity than traditional MTA [40,41]. MTA HP compared to ProRoot
MTA sets faster (12 min) [39]. The more rapid setting of this calcium silicate cement is
explained in the literature by the large surface area of the powder particles and the absence
of sulphate phases [42].

One of the characteristics of the ideal material for a retrograde root canal filling is
resistance to washout, i.e., the resistance of freshly prepared cement to disintegration upon
early contact with fluid [43]. The term washout originated in engineering science and
is used to describe washing out the material from freshly mixed cement with water [44].
In dentistry, the washout may have a considerable impact on the result of the treatment
because the loss of the filling material may be the reason for microleakage. That is one of
the reasons why washout resistance has already been studied by other researchers over the
years [45,46]. After filling the root-end preparation, it is recommended that the resection
cavity be rinsed gently; bleeding that occurs during periapical surgery is also responsible
for the disintegration of the filling [47]. Therefore, the cements used for the retrograde
filling should be resistant to washout. This resistance increases with time, although it
should be borne in mind that it is challenging to guarantee dryness during surgery for a
few minutes.

This in vitro study aimed to investigate the effect of irrigation on washout of relatively
fast-setting materials (Biodentine, EndoCem Zr, and MTA HP) in comparison with root-end
filling materials that have been on the market for several years, MTA Angelus White, and
IRM, in an apicectomy model.

2. Materials and Methods

The following materials were used in this study:

1. Intermediate Restorative Material (IRM; Dentsply Sirona, Charlotte, NC, USA);
2. MTA Angelus White (Angelus, Londrina, Brazil);
3. Biodentine (Septodont, Saint Maur-des-Fossés, Cedex, France);
4. EndoCem Zr (Maruchi, Wonju, Republic of Korea);
5. MTA HP (Angelus, Londrina, Brazil).

Their compositions are outlined in Table 1.

Table 1. Composition of the commercial materials.

Material Manufacturer Ingredient Mixing

IRM
Dentsply Sirona,
Charlotte, NC,

USA

powder: zinc oxide, poly-methyl methacrylate (PMMA)
powder, pigment

liquid: eugenol, acetic acid

1 spoon of powder + 1 drop of distilled
water (mixed manually on glass slab using

a metal spatula, 30 s)

MTA
Angelus

White

Angelus,
Londrina, Brazil

powder: tricalcium silicate, dicalcium silicate, tricalcium
aluminate,

ferroaluminate tricalcium, calcium oxide, bismuth oxide
liquid: distilled water

2 level scoops of powder + 3 drops of
liquid (mixed manually on glass slab

using a metal spatula, 30 s)

Biodentine
Septodont, Saint-
Maur-des-Fossés

Cedex, France

powder: tricalcium silicate, dicalcium silicate, calcium
carbonate and

oxide filler, iron oxide shade, and zirconium oxide
liquid: calcium chloride as an accelerator, hydrosoluble

polymer
water-reducing agent, water

0.7 g capsule of powder + 5 drops of liquid
(mixed in the trituator; 30 s;

4000–4200 rpm)

EndoCem Zr
Maruchi, Wonju,

Republic of
Korea

powder: calcium oxide, silicon dioxide, aluminum oxide,
magnesium oxide, ferrous oxide, zirconium oxide

liquid: distilled water

0.3 g of powder + 0.12 mL (mixed
manually on glass slab using a metal

spatula; 30 s)

MTA HP Angelus,
Londrina, Brazil

powder: tricalcium silicate, dicalcium silicate, tricalcium
aluminate,

calcium oxide, and calcium tungstate
liquid: water and plasticizer

0.085 g capsule of powder + 2 drops of
liquid (mixed manually on a glass slab

using a metal spatula; 30 s)
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IRM, MTA Angelus White, EndoCem Zr, and MTA HP powder were mixed manually
with their liquid according to recommendations from the manufacturer. Biodentine was
mixed in the trituator (Silver MIX, GC Dental, Tokyo, Japan) for 30 s.

2.1. Assessment of Washout Resistance

Washout resistance was assessed using artificial root-end preparations of 1.2 mm × 3 mm
(diameter and depth corresponding to the diameter and height of the cylinder) in plastic
blocks. For this purpose, the crowns of incisors placed in the model of the mandible
(Frasaco, Tettnang, Germany) were prepared to resemble resected roots (Figure 1A), and
the bottom of the bony crypts were simulated with the use of silicone impression material
(Figure 1B). In total, 150 samples (30 for each material) of freshly prepared materials
were placed in artificial root-ends prepared in plastic blocks (Figure 1C). The application
time for each material was 30 s. Materials were placed in the plastic blocks by using
the MTA+ Applicator (Cerkamed, Stalowa Wola, Poland; https://cerkamed.pl/produkt/
aplikator-mta/ accessed on 20 August 2023) and condensed with retro filing plugger No. 1
(Medesy SRL, Maniago, Italy; www.medesy.it/en/products/endodontic-instrument-with-
plugger/ accessed on 20 August 2023).
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Figure 1. (A) The crown of the mandibular incisor (plastic block) after preparation to resemble the
resected root with a root-end preparation of 1.2 mm × 3 mm (diameter and depth). (B) The bottom of
the bony crypts were simulated with the use of silicone impression material. (C) Root-end preparation
filled with retrograde material. (D) Rinsing of the resected root surface and the artificial bony crypt.
(E). Partial rinsing of the material from the root-end preparation. (F) The color model in the form of a
depth map obtained as a result of imposing scans.

2.1.1. Experiment 1

Seventy-five samples (15 of each material) were photographed using a Levenhuk
DTX 90 microscope (Levenhuk, Inc., Tampa, FL, USA) at 60× magnification. The res-
olution of the microscope, experimentally determined using a microscopic slide with a

https://cerkamed.pl/produkt/aplikator-mta/
https://cerkamed.pl/produkt/aplikator-mta/
www.medesy.it/en/products/endodontic-instrument-with-plugger/
www.medesy.it/en/products/endodontic-instrument-with-plugger/


Materials 2023, 16, 5757 5 of 16

micrometer scale, was 10 µm. In addition, several fillings were evaluated by watching
the material-wall interface using microscopes with a resolution better than 10 µm (Digital
Microscope VHX-7000, Keyence, Osaka, Japan, and Digital Micro Hardness Tester, Model:
MHVD—1000IS, INNOVATEST, Wiry, Poland). It was found that the width of the nar-
rowest gaps recorded with the use of the microscope used in the present study ranged
from 7–8 to 20–25 µm. If the quality of the filling was questionable, the test sample was
replaced with a new one. The photography of the sample (samples were prepared one by
one and photographed one by one) was taken immediately after the material application
was finished (the time of taking the photography was max. 60 s) and the rinsing started
immediately. For this purpose, 5 mL saline (ambient temperature) was applied for 15 s
using a disposable syringe and needle of 0.8 mm diameter and 12 mm length. The saline
from the needle opening impinged on the edge as in the clinical setting, i.e., the saline
flowed over the resected surface, washing over the test material but not directly spraying
into it (Figure 1D). After the simulation of the rinsing of the bony crypt, the models were
immersed in warm saline (34 ◦C) for 15 min (simulation of blood flooding the crypt). After
this time, the models were removed, gently dried without disrupting the fillings, and then
photographed again under a microscope (Figure 1E).

2.1.2. Experiment 2

The remaining 75 samples (15 of each material) were used in this experiment. Apart
from photographing the samples under a microscope, the surface of the fillings was addi-
tionally scanned using KaVo ARCTICA AutoScan—the 3D dental scanner (KaVo, Biberach,
Germany). Scanning and photography lasted 3 min, which can be assumed to be the time
of protection against humidity in a clinical setting. Then, the samples were flushed in the
same way as in experiment 1 and immersed in warm saline for 15 min, after which time the
models were removed, photographed under the microscope, and scanned again using a 3D
dental scanner (KaVo ARCTICA AutoScan, KaVo, Biberach, Germany). Then, the recorded
scans were superimposed to obtain a color model in the form of a depth map (Figure 1F).

2.2. Qualitative Analysis of the Marginal Adaptation of the Materials to the Walls of the Root-End
Preparations and Disintegration of Fillings

The adaptation of the retrograde materials to the walls of root-end preparations and
the disintegration of root-end fillings were evaluated based on photographs. A total of
150 coded photographs from samples in groups 1–10 were evaluated by three evaluators
who had been calibrated before the assessment. Each evaluator gave an independent score
without reference to the other evaluators.

The qualitative analysis of the marginal adaptation of retrograde material to the root-
end cavities and washed-out area was based on the following grading criteria (Figure 2):

Score 1: Close marginal approximation of the filling material to the wall of preparation,
no gaps present at the material-wall interface, no washed-out area (hollow area) on the
material’s surface.

Score 2: No gaps present at the material-wall interface, washed-out area (hollow area)
on the material’s surface.

Score 3: The presence of gaps at the material-wall interface and the washed out area
(hollow area) on the material’s surface.

Those criteria were created based on the sample evaluation by Tran et al. [48].
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Figure 2. Criteria for marginal adaptation of retrograde material to the root-end cavities and washed-
out area: (A) Score 1: Close marginal approximation of the filling material to the wall of preparation,
no gaps present at the material-wall interface, no washed-out area (hollow area) on the surface of the
material; (B) Score 2: No gaps present at the material-wall interface, washed-out areas (hollow areas)
on the surface of the material. (C). View of the rectangular in (B)—close marginal approximation of the
filling material to the wall of preparation (photography taken at 500× using Digital Microscope VHX-
7000, Keyence, Osaka, Japan), (D): Score 3: Presence of narrow gaps at the material-wall interface,
washed-out area (hollow area) on the surface of the material. (E) Extensive washout of the material.
(F) View of the rectangular in (E)—the gap between the material and the wall preparation is 21 µm
wide (photography taken at 500× using Digital Micro Hardness Tester, Model: MHVD—1000IS,
INNOVATEST, Wiry, Poland).

2.3. Quantitative Assessment of the Volume of Washed out Material

The software written by the authors in the programming language and numeric
computing environment Matlab (The MathWorks, Inc., Torrance, CA, USA) was used
for the quantitative assessment of the volume of washed-out material. The washed-out
material was quantified by superimposing the scans recorded before and after rinsing. In
this way, a geometric solid was created in the form of a depth map (a two-dimensional table
with the depths of the cavity at a given point). The geometric solid was divided into layers
(within a single solid, the layers had the same thickness, e.g., 5.1282 µm; layer thickness
within individual solids ranged from 4 to 7 µm) and the layers into cuboids (within a single
solid, the width and depth of cuboids were always the same, e.g., 4.486 × 4.486 µm2; within
individual solids, the width and depth of cuboids ranged from 4 to 7 µm, the height of
cuboids depended on the thickness of the layer, e.g., 5.1282 µm) of equal volume. Then
the number of cuboids was counted, and the result was multiplied by the volume of the
cuboid. In this way, the approximate volume of the solid was determined. The volume is
given in mm3 and as a % of the filling (a cylinder with a diameter of 1.2 mm and a height
of 3 mm). In addition, the average value in the depth map table was calculated, which is
the average depth of the hollow (Figure 3).
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2.4. Statistical Analysis

The mean score of qualitative analyses by three evaluators was compared between
materials or between experiments with a non-parametric Kruskal–Wallis test or Mann–
Whitney test. A weighted kappa was used as a measure of the evaluators’ assessment
concordance. Quantitative washout values were presented as means with a standard
deviation (SD). They were compared between materials with ANOVA followed by Tukey’s
post hoc test after log transformation to obtain the homoscedasticity (p > 0.05, Levene
test) and normality of distributions (p > 0.1, Shapiro–Wilk test) necessary for parametric
analysis. A result was considered statistically significant at p < 0.05. Statistica 13 was used
for statistical analyses.

3. Results
3.1. Qualitative Analysis of the Marginal Adaptation of the Materials to the Walls of the-End
Preparations and Disintegration of Fillings

Rinsing and immersion of the samples in the liquid simulated blood immediately
after root-end filling did not disintegrate the fillings made of IRM, MTA Angelus White,
EndoCem MTA Zr, and MTA HP (Table 2). No disintegration of the fillings made of these
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materials occurred when the rinsing procedure was performed 3 min after the application
of the materials into the root-end cavities (Figures 2–5). On the other hand, root-end
fillings made of Biodentine suffered significant damage both when rinsing was performed
immediately after the application of materials into the root-end cavity and 3 min after
filling (Table 2, Figure 6). There was no significant difference in the degree of damage
depending on the time from application to rinsing. The weighted Cohen’s kappa statistic
showed very good agreement between the three evaluators (Table 3).
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Figure 4. Adaption of retrograde materials to the walls of root-end preparations and disintegration
of root-end filling. (A)—IRM before and (B) after rinsing and immersion of the samples in simulated
blood; (C) MTA Angelus White before and (D) after rinsing and immersion of samples in simulated
blood; (E) Biodentine before and (F) after rinsing and immersing the samples in simulated blood;
(G) EndoCem MTA Zr before and (H) after rinsing and immersion of samples in simulated blood;
(I) MTA HP before and (J) after rinsing and immersion of samples in simulated blood.
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Table 2. Distribution of scores (percentages) pooled from three examiners for each material.

Experiment Material
Score, n (%)

1 2 3

1

IRM a 45 (100) - -
EndoCem Zr a 44 (97.78) 1 (2.22) -

MTA HP a 43 (95.56) 2 (4.44) -
MTA Angelus White a 41 (91.11) 4 (8.88) -

Biodentine b - 13 (28.89) 32 (71.11)

2

IRM a 45 (100) - -
EndoCem ZR a 45 (100) - -

MTA HP a 44 (97.78) 1 (2.22) -
MTA Angelus White a 44 (97.78) 1 (2.22) -

Biodentine b - 8 (17.78) 37 (82.22)
Different letters indicate significant differences between materials (a vs. b: p < 0.0001 for both experiments,
Kruskal-Wallis test for mean score of the evaluators). No significant differences were found between materials
indicated by a (p > 0.5 for both experiments). There were no significant differences between experiments 1 and 2
for any of the studied materials (p > 0.3, Mann-Whitney test).
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Figure 5. IRM. (A)—the image taken before rinsing and immersion in solution; (B)—the image taken
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Table 3. Interexaminer differences of score for all materials pooled.

Experiment Comparisons Weighted Kappa Agreement

1
Evaluator 1 vs. 2 0.861 Very good
Evaluator 1 vs. 3 0.890 Very good
Evaluator 2 vs. 3 0.898 Very good

2
Evaluator 1 vs. 2 0.924 Very good
Evaluator 1 vs. 3 0.922 Very good
Evaluator 2 vs. 3 0.922 Very good
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Figure 6. Biodentine. (A)—the image taken before rinsing and immersion in solution; (B)—the image
taken after rinsing and immersion of the sample in the solution—filling adheres tightly to the walls,
visible loss of material indicating the washout; (C)—depth map of the cavity (washed out material);
(D)—isolines showing the depth of the cavity/loss; (E)—3D chart of the depth of the cavity/loss.

3.2. Quantitative Assessment of Washed out Material

Rinsing and immersion of the samples in a simulated blood solution resulted in a
slight loss of IRM, EndoCem MTA Zr, and MTA HP. A slightly greater washout was
observed with restorations made of MTA Angelus White. However, rinsing and immersion
of Biodentine restorations in a simulated blood solution resulted in significant destruction.
When these volumes were translated into depth changes, the mean depths of the cavity/loss
within restorations made of the studied materials ranged from 0.0132 (IRM) to 0.2230 mm
Biodentine). Statistical analysis showed statistically significant differences between MTA
Angelus White and other materials and between Biodentine and other materials (Table 4).

Table 4. The results of the quantitative assessment of washed-out materials.

Material

Washout

Mean Volumetric Change ± SD
(in mm3)

Mean Volumetric Change ± SD
(in %)

Mean Depth ± SD
(in mm)

IRM 0.0149 a ± 0.0021 0.4392 a ± 0.0605 0.0132 a ± 0.0018
EndoCem Zr 0.0180 a ± 0.0009 0.5300 a ± 0.0271 0.0159 a ± 0.0008

MTA HP 0.0185 a ± 0.0029 0.5442 a ± 0.0885 0.0163 a ± 0.0026
MTA Angelus 0.0305 b ± 0.0089 0.9004 b ± 0.2627 0.0270 b ± 0.0079

Biodentine 0.2521 c ± 0.0338 7.4332 c ± 0.9967 0.2230 c ± 0.0299

Different letters indicate significant differences (p < 0.05, ANOVA followed by Tukey’s post hoc test for log-
transformed values) between materials (b vs. a: p < 0.005; c vs. a and c vs. b: p = 0.00013; no significant differences
were found between three materials denoted by “a”), so the ranking of materials from best performance down is
a > b > c (IRM, EndoCem Zr, MTA HP > MTA Angelus > Biodentine).

Figures 5 and 6 show the images captured by the microscope, a depth map of the
cavity (washed out material), isolines showing the depth of the cavity/loss, and a 3D chart
of the depth of the cavity/loss regarding the IRM (the lowest volumetric changes) and
Biodentine (the highest volumetric changes).
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4. Discussion

One of the desirable features of hydraulic-setting materials placed at the root end
during periapical surgery is washout resistance. Therefore, newly introduced materials on
the market should not show a tendency to disintegrate as a result of contact with irritants
used for rinsing the resection cavity or with body fluids [5–8,47,49].

The current study aimed to compare the washout of relatively new calcium silicate
cements to that of commonly used retrograde root canal materials: MTA Angels White and
IRM. In order to assess the degree of washout, a model very similar to the clinical situation
was used.

Visual assessment of the degree of washout of the materials rinsed immediately
after placement in the retrograde cavities and 3 min after the completion of filling showed
spacing defects at the material-wall interface and hollow areas on the surface of the material,
essentially only in the case of the Biodentine. This confirms previous studies evaluating
resistance to washout using the basket drop, a method that gives quantitative evidence of
the amount of material lost when subjected to tissue fluids and irrigating solutions during
the placement of root-end materials [49]. In the cited study, Biodentine washed out to a
significant extent (50% of fill weight), while with radiopacified TCS cement, Bioaggregatte
and IRM washed out slightly (below 10% of fill weight). The authors of the cited study
explain such a high washout by the presence of a soluble polymer in the liquid, which
contributed to the reduction of the water–cement ratio without affecting the workability of
the resultant cement mix. In this way, it is possible to reduce the volume of water needed to
mix the material and thus improve the strength properties of the cement. On the other hand,
a water-soluble polymer has the effect of a surface-active agent and thus will scatter the
cement particles by applying a charge to their surfaces. This scattering will lead to a fluid
mixture, which results in the dislodgement of Biodentine when tested for washout [49].

In our own study, the microscopic assessment of the washout of materials showed no
deterioration of marginal integrity or formation of a hollow area in the cases of EndoCem
MTA, MTA HP, IRM, and Angelus MTA White. While the high resistance to washout of
IRM and EndoCem MTA according to visual assessment is not surprising as this property
has been demonstrated in previous studies [50], the fairly good washout resistance found
in MTA Angelus White was unexpected. Partial or complete leaching of MTA was most
often reported in the literature [47,50–52]. The above differences should be explained
primarily by differences in the research methodology and perhaps by the fact that the
currently produced MTA Angelus White differs in physical and chemical properties from
the MTA Angelus White used years ago. The material currently available on the market
sets within 12 min, and the one produced years ago sets within 40 min (the initial setting
time). However, it is known that the tendency to wash out the material increases with
the setting time of hydraulic calcium silicate cements [47]. However, to the best of our
knowledge, there is no information in the literature regarding the washout resistance of the
MTA HP material.

In the present study, two experiments were performed to evaluate the washout re-
sistance of the retrograde filling materials. In the first experiment, the time between
application and rinsing was 1 min (the time necessary to take a picture in the microscope);
in the second experiment, a 3-min interval was used (the time necessary to take the picture
and scan the surface of the restorations). Thanks to this, in the second experiment, it was
possible to assess the degree of washout of the material not only visually (qualitatively) but
also quantitatively. By superimposing the scan of the fillings taken before rinsing on the
scan of the fillings taken after rinsing, the volume of the washed material was obtained.
Quantification of the washed material confirmed the poor resistance to washout of the Bio-
dentine as observed visually. The quantitative examination also showed a slight washout
of MTA Angelus White, which was not observed visually. This observation suggests that
visual evaluation allows the estimation of the washed material in cases of significant ma-
terial loss. This observation suggests that visual assessment allows for the estimation of
washed material in cases of significant loss of material. However, if the loss of material is
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insignificant, it is impossible to visually assess the loss of material under a light microscope.
More precise observations can be made with a scanning microscope, which allows the
depth of field yield to be assessed. Unfortunately, conventional SEM allows viewing the
preparation only once (it is not possible to compare the surface of the sample before and
after rinsing, as the sample is destroyed during the first test). Although environmental
SEM (ESEM) or low-voltage mode of SEM operation are available where the sample can be
viewed more than once (with this type of microscope/operation mode, it is not necessary
to cover the viewed sample with a layer of conductive material, so it is hypothetically
possible to rinse it and view it again), they cannot be used due to the time-consuming
nature of the test (the sample will set before the test is performed) [53,54]. In the present
study, quantitative evaluation of the washout of Endocem MTA and IRM showed minimal
loss of material (within error), which is consistent with previous observations [50].

Quantitative assessment of the washed material has so far been done by mass loss.
For this purpose, the material was injected into distilled water for 24 h. After this time, the
sample was dried, and after comparison with the initial mass, the percentage weight loss of
cement [52] was determined. Some authors placed the evaluated material in bovine serum
beakers and shook them. The samples were removed from the shaker for evaluation after
being shaken for 0, 5, 10, 30, and 60 min, and the percentage weight loss was assessed [43].

Another objective method of washout resistance, based on the assessment of mass
loss, was described by Formosa et al. [47]. These authors adopted the test method used
to estimate the resistance of freshly prepared cement to washing out in the water. This
original method involves placing the studied cement into a perforated vessel, allowing
it to sink freely through the water, and then raising it back up. The test cycle is repeated
several times, and the mass of material washed following each cycle is estimated. The
main difference between the original method and the modified one lies in the size of the
samples of the studied material and the size of the device constructed for dental testing
(both samples and the measuring device are correspondingly smaller) and in immersing
them not in tap water but in distilled water and/or HBSS.

In the present study, a quantitative evaluation of the washed material was made by
comparing the scan of the surface of the fillings registered immediately after their placement
with the scan registered after rinsing and immersion in solution. A similar methodology
has so far been used only by Smith et al., who used a profilometer instead of a scanner [55].
In the cited study, however, the washout was not determined, but the solubility of set
calcium silicate cement in endodontic solutions (EDTA, BioPur MTAD). Fully set cements
have been found to be resistant to endodontic irrigants.

The method that allows for a very accurate estimation of the lost volume of material
is micro-computer tomography (micro-CT) [56]. This test allows not only the surface loss
of the material but also the presence of the canal wall—retrograde filling gaps and voids
within the retrograde fillings—to be assessed [57]. Micro-CT imaging is a non-invasive,
highly accurate tool that has been increasingly used for the 3-dimensional assessment of
microstructures. A certain limitation of the method is that only radiopaque material can be
evaluated; however, the materials used for retrograde filling of the prepared canal should
be radiopaque, so this is not a problem [58]. However, a significant disadvantage of this
method is its time-consuming nature, which does not allow it to be used to assess washout.
The scanning procedure takes so long that the material is set and, at most, its solubility but
not its washout can be determined [58–60].

Many authors draw attention to the poor washout resistance of conventional MTA
preparations. However, our own study did not show that MTA Angelus White was
significantly washed out, which is to some extent confirmed by the good results of clinical
trials [61–64]. Regarding Biodentine as a material for retrograde root canal filling, there
are no randomized and prospective clinical trials in the available literature, although this
material has been commercially available for 14 years. Only case reports and case series,
which have limited scientific value, have been published in the literature [65–68].
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The strength of the experiment was reproducibility; the authors did not have to limit
themselves to a certain number of trials and could ensure the accuracy of the results.
However, a weakness of the study was the relatively long time of the 3D scanning, which
could not be reduced. Using a 3D scanner that can scan faster might be useful in future
studies.

5. Conclusions

Under the conditions of the current study, the evaluated materials, excluding Bioden-
tine, showed good or relatively good washout resistance. The Biodentine material was
washed out both 1 and 3 min after filling, which is worrying and requires further research.
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