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Abstract: In the present work, different configurations of nt iartificial neural networks (ANNs) were
analyzed in order to predict the experimental diameter of nanofibers produced by means of the
electrospinning process and employing polyvinyl alcohol (PVA), PVA/chitosan (CS) and PVA/aloe
vera (Av) solutions. In addition, gelatin type A (GT)/alpha-tocopherol (α-TOC), PVA/olive oil (OO),
PVA/orange essential oil (OEO), and PVA/anise oil (AO) emulsions were used. The experimental
diameters of the nanofibers electrospun from the different tested systems were obtained using
scanning electron microscopy (SEM) and ranged from 93.52 nm to 352.1 nm. Of the three studied
ANNs, the one that displayed the best prediction results was the one with three hidden layers
with the flow rate, voltage, viscosity, and conductivity variables. The calculation error between
the experimental and calculated diameters was 3.79%. Additionally, the correlation coefficient (R2)
was identified as a function of the ANN configuration, obtaining values of 0.96, 0.98, and 0.98 for
one, two, and three hidden layer(s), respectively. It was found that an ANN configuration having
more than three hidden layers did not improve the prediction of the experimental diameter of
synthesized nanofibers.

Keywords: biopolymers; essential oil; network configuration; Levenberg–Marquardt backpropagation; SEM

1. Introduction

Currently, the application of electrospun veils covers a wide range of uses in different
industries such as pharmaceutical, food, and environmental due to the special physico-
chemical and microstructural characteristics displayed by these materials [1]. In the last
years, different methods such as melt spinning, dissolution, emulsion, and electrospinning
have been proposed for producing micro and nanopolymeric fibers. However, the latter
is the most employed technique because its versatility enables the production of veils
consisting of continuous fibers with tailorable porous structures [2–4]. Due to the growing
interest in the electrospinning field, the fibers achieved using this method are being applied
in areas such as nanocatalysis, filtration, biotechnology, and environmental engineering,
among others [5–8]. It has been reported that characteristics such as diameter, morphology,
porosity, alignment, and mechanical properties of electrospun fibers vary as functions of
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the electrospinning conditions such as the solution applied voltage, volumetric flow, and
injector–collector distance. It is also known that the physical properties of the polymeric
solution such as viscosity, conductivity, surface tension, and concentration in addition to
ambient parameters such as temperature, atmospheric pressure, and relative humidity
are important electrospinning factors [9–11]. The application field of the electrospinning
process is vast and complex, where surface phenomena such as electric current (electro-
static) [12,13], momentum, and mass [14] transfer take place. The advances in the ANN
field along with the use of mathematical models have allowed descriptive and predictive
modeling of the physical characteristics of electrospun fibers [15]. Some authors have
established the use of different mathematical models such as response surface, linearization
of equations from experimental data, and the development of empirical equations for pre-
dicting the diameter behavior as a function of process variables [16,17]; notwithstanding,
the error percentage is significant, because experimental data are employed for producing
biopolymer nanofibers with different viscosity, conductivity, flow, voltage, and diameter
features. Since this process implies a wide database, the development and use of an ANN
is a viable option for predicting the experimental diameter of nanofibers. In this sense,
Nasouri [18] proposed a model for predicting the diameter of nanofibers from PVP solu-
tions (polyvinylpyrrolidone) by employing an artificial intelligence system. The proposed
model consists of three neurons in the input layer (PVP concentration, applied voltage, and
needle-to-collector distance), five neurons in hidden layers with a tangent sigmoid transfer
function, and one neuron in the output layer (average diameter of PVP nanofibers) with a
linear transfer function. The hidden layer is an intermediate layer between the input and
output layers of the network, which is composed of neurons that transfer information to
other neurons and improve the prediction of the output parameter.

This study reported a correlation coefficient (R2) of 0.98, concluding that the parame-
ters used in the design of the employed model significantly affected the average diameter
of the electrospun nanofibers. Maurya et al. [19] established the importance of the relation-
ship between the parameters of the electrospinning process and the diameter of magnetic
nanofibers of ferrofluid/polyvinyl alcohol (PVA) using artificial neural networks (ANNs).
The ANN model was trained with a backpropagation algorithm and sigmoid activation
function in the hidden layers and a learning rate of 0.6. The optimal configuration was
obtained by testing one and two hidden layers in the first case, where the hidden neurons
were varied from 2 to 15. The layer with thirteen hidden neurons achieved a minimum
mean square error (MMSE) of 8.9 × 10−5. By employing two hidden layers, the minimal
MMSE value was 8.5 × 10−5, which was obtained by using eight hidden neurons. Since the
error values were minimal with two hidden layers, the configuration 4-8-8-1 was selected
for maximal optimization, reporting R2 values of 0.79 and 0.94 for the training and testing
data, respectively. Lakshmi Narayana et al. [20] developed an ANN in order to predict and
analyze the diameter of polycaprolactone (PCL) fibers as a function of the parameters of
the 3D melt electrospinning process. The model employed the backpropagation algorithm
for training and process variables such as collector rate, tip-to-nozzle distance, applied
pressure, voltage, and average microfiber diameter (output variable) were considered. The
best-reported ANN consisted of a hidden layer with three neurons and a sigmoid activation
function in the hidden layers with a learning rate of 0.3. By putting into practice this
model, an R2 value of 0.97 was obtained for the training data and 0.98 for the set of test
data. Likewise, Premasudha et al. [21] presented a more complex model for predicting the
diameter of polysaccharide (Hylon VII starch)-based biopolymer nanofibers as a function of
the polymer concentration, solution feed flow, applied voltage, injector–collector distance,
two-output-layer neurons, nanofiber diameter, and good, regular, and bad quality classifi-
cation. The ANN model was trained with a backpropagation algorithm, using a sigmoid
activation function in the hidden layers and a learning rate of 0.4. The optimal reported
configuration consisted of two hidden layers with eight neurons in each layer (4-8-8-2). The
results indicated classification and prediction accuracy of 93.9 and 95.2%, respectively. It is
known that the study of polymeric solutions is widely spread [22–25]; however, the applica-
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tion of nanofibers produced from polymeric emulsions has been slightly researched, where
just a few authors have reported the use of vegetable essential oils [26–29]. In addition,
ANN models for predicting the diameter of nanofibers from polymeric emulsions with es-
sential oils (EOs) are scarce. The importance of considering EO stems from features such as
their biocide activity, application as food preservatives and additives, and antioxidant and
antimicrobial properties, among others [30,31]. In the present work, the construction of an
ANN model for understanding the nonlinear relationship among electrospinning operation
variables (flow rate, voltage, and solution/emulsion properties) for systems of biopolymer
solutions/emulsions (PVA, CS, GT, and EO) is studied in order to predict the average
experimental diameter of electrospun nanofibers, thus reducing the experimental stages.

2. Materials and Methods
2.1. Preparation of the Electrospinning Solutions/Emulsions

Table 1 shows the preparation procedure of different aqueous polymeric solu-
tions/emulsions whose physical properties were established before the electrospin-
ning process. The following conditions of the electrospinning process were considered:
composition, voltage, flow rate, viscosity, conductivity, and experimental diameter of
the nanofibers.

Table 1. Methodologies for preparing the electrospinning solutions/emulsions.

Solutions/Emulsions Procedure

PVA Prepared PVA aqueous solution (% w/w): 8 and 10.

PVA/OO Emulsion formed with 10 (% w/w) of PVA with OO. Composition (%
w/w): 96 (PVA) with 4 (OO) and 92 (PVA) with 8 (OO).

PVA/OEO
Emulsion formed with 10 (% w/w) of PVA with OEO. Composition

(% w/w): 95 (PVA) with (OEO), 92.5 (PVA) with 7.5 (OEO), and
90 (PVA) with 10 (OEO).

GT/α-TOC

Emulsions of GT in acetic acid (AA) and distilled water (W).
Compositions (% w/w): [18 g GT; 5 α-TOC; 30 AA; 47 W]; [20 g GT;
5 α-TOC; 30 AA; 45 W]; [22 g GT; 5 α-TOC; 30 AA; 43 W]; [22 g GT;

7.5 α-TOC; 30 AA; 41 W]; [22 g GT; 10 α-TOC; 30 AA; 38 W].

PVA/CS Solutions with composition (% w/w): 10 (PVA) with 0.5 (CS),
10 (PVA) with 2 (CS), 10 (PVA) with 1 (CS), and 8 (PVA) with 1.5 (CS).

PVA/AO Emulsions with composition (% w/w): 10 (PVA) with 22 (AO).
PVA/Av Solutions with composition (% w/w): 10 (PVA), 90 (A) and 55 (Av).

The PVA solutions were prepared by dispersing them in distilled water with stirring
at 600 rpm and 80 ± 1 ◦C for 30 min [32,33]. Afterward, the EO (OO, OEO, or AO) was
added at 25 ± 1 ◦C to form the emulsion, which was mechanically stirred for 5 min.

The GT solution was dispersed in acetic acid and distilled water solution and stirred at
600 rpm and 90 ± 1 ◦C for 1 h. Then, α-TOC was incorporated at 25 ± 1 ◦C and emulsified
by mechanical stirring for 5 min [34]. As for the PVA/CS solutions, a solution at 10% w/w
and another of CS employing an aqueous solution of acetic acid at 2% were prepared; then,
both solutions were mixed up at 25 ± 1 ◦C for 1 h prior to the electrospinning process [35].
Finally, the PVA/Av solutions were homogenized at 25 ± 1 ◦C for 1 h.

The solutions, at room temperature, were injected into a SEV electrospinning piece
of equipment (model espin-50 kV). For the electrospinning process, a voltage interval
ranging from 20 to 30 kV was selected; the apparatus was connected in series, and the
injector–collector distance oscillated between 10 and 20 cm.

2.2. Characterization of the Solutions/Emulsions

The viscosity of the studied solutions/emulsions was determined by means of a
RheolabQC Anton Paar rheometer at 25 ± 1 ◦C, employing the DG24 concentric cylinder
configuration and the Star Rheoplus 3.0x software. The conductivity was measured with a
Conductronic piece of equipment (model PC18) at 25 ± 1 ◦C.
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The viscosity and conductivity of the PVA emulsions incorporated with the EOs and
GT/α-TOC emulsions and PVA/CS and PVA/Av solutions were established prior to the
electrospinning process.

2.3. Morphological Study of the Electrospun Nanofibers

The structures of the electrospun nanofibers were analyzed by means of scanning
electron microscopy (SEM), employing a microscope (model JSM-6610LV). The images
were processed with the ImageJ 1.51j8 software, and with it, the experimental diameter
of the nanofibers was also determined, which corresponded to the arithmetic mean of
85 measurements of SEM carried out with different nanofibers [36].

2.4. Structure of the ANN Model

In the present work, the multilayer perceptron (MLP) neural network was employed
with sigmoid activation (logsing) in the hidden layers, according to Equation (1), and linear
in the output layer, as indicated in Equation (2) [37,38]:

f (x) =
1

1 + e−x (1)

g(x) = x (2)

The experimental data that were fed into the ANN were normalized by means of
Equation (3) [39]:

xn =
x−mean(x)

sd(x)
(3)

where xn is the normalized value of x input variables, mean (x) is the mean of x, and sd(x)
is the standard deviation of x. The training of the ANN was carried out by means of the
Levenberg–Marquardt backpropagation (trainlm) algorithm with a learning rate of 0.4. The
experimental data were divided into three groups: training, validation, and test sets with
around 70%, 15%, and 15% of the total set of experimental data, respectively. The computa-
tions were performed with the Matlab software version 2018b. Four neurons corresponding
to four electrospinning variables (flow rate, voltage, viscosity, and conductivity) were
employed in the input layer and one neuron ascribed to the diameter of the electrospun
nanofiber was set in the output layer. Different configurations were tested for one, two,
and three hidden layers, as shown in Table 2. The configuration of the ANN model was
selected based on the minimal MMSE value of the training, test, and validation sets [40,41].

Table 2. Tested configurations employing one, two, and three hidden layers in the ANN.

Input Variables
Number of Neurons

Layer 1 Layer 2 Layer 3

Flow rate
Voltage

Viscosity
Conductivity

2
4
6
8

10
12
14

4
8

12
16
20

3
4
5
6

The error percentage was calculated by means of Equation (4):

%error =

∣∣∣∣∣Dpredicted − Dexperimental

Dexperimental

∣∣∣∣∣× 100 (4)
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2.5. Computation of the Relative Contribution of the Input Variables

The relative contribution of each input variable was calculated by means of the algo-
rithm proposed by Olden et al. [42], according to Equation (5):

CRP =
∑n

j=1
|wjp||vj|
∑I

k=1|wjk|

∑I
i=1 ∑n

j=1
|wjp||vj|
∑I

k=1|wjk|

(5)

where CRP is the contribution percentage by each input at the ANN output, p is the variable
input for knowing its relative contribution, n is the number of hidden neurons, j is the j-th
hidden neuron, I is the number of ANN inputs, wjp is the synaptic weight of the p input
toward neuron j, vj is the synaptic weight of neuron j toward the output, and wjk is the
synaptic weight of the input k toward neuron j.

3. Results and Discussion
3.1. Morphologic Characterization

The experimental diameters of the nanofibers, reported in the support material
(Table S1), are close to those obtained by [43] for PVA electrospun nanofibers at 8 and
10%, whose diameters measured 270 and 390 nm, respectively.

As for the PVA/OEO nanofibers, a directly proportional relationship between the
concentration and experimental diameter of the nanofibers was observed, as shown in
Figure 1. This effect was similar to the one on the PVA/OO nanofibers. Notwithstanding,
for the PVA/OEO system, an inverse behavior was identified between the conductivity and
nanofiber experimental diameter because the OEO encapsulated in the nanofibers, which
contains d-limonene, monoterpenes, trans-dihydrocarvone, and trans-p-methane, among
other hydrophobic compounds, diminished the sample conductivity [33,44].
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On the other hand, a higher concentration of gelatin in the solution of the GT/α-TOC
nanofibers allowed the production of thinner nanofibers, as observed in Figure 1; this result
can be attributed to the use of acetic acid during the preparation of the protein solution
prior to the electrospinning process. It should be kept in mind that gelatin is an amphoteric
protein that consists of amino acids such as glycine, alanine, proline, and hydroxyproline,
in addition to other residual monomers that are positively charged, derived from NH+

3
and carboxyl radicals, which promote high conductivity in the emulsion, which depends
on the solution pH and concentration of solvents such as acetic acid [45–47].

Regarding the PVA/CS nanofibers, a decrease in the experimental diameter of the
nanofibers was observed as the CS concentration increased, as shown in Figure 1. Further-
more, the conductivity was increased, which has been reported by several authors [48,49];
for example, Chen et al. [50] studied electrospun solutions with different conductivities
and investigated the effect on the morphology of the nanofibers, finding that the higher the
conductivity, the smaller the nanofiber diameter.

On the other hand, the Av extract consists of aloine (polyhydroxylated anthraquinone
glucoside), which is characterized by having a long alkyl structure that explains the high
electrical conductivity of the electrospun solution [51].

As observed in Table S1, the values of the input variables are expressed in different
units and magnitudes; for this reason, it is necessary to normalize the data in order for the
variables to be similar even when they belong to different distributions. Normalization,
prior to the ANN training, is important for producing satisfactory results and reducing the
computation time [23,52].

Figure 2 shows the SEM micrographs of some of the studied systems produced by
the electrospinning process. In Figure S1, micrographs with different magnifications are
shown. Figure 2a,b correspond to the solution prepared with PVA (8 and 10% w/w), where
it is evidenced that the PVA concentration plays a major role in the surface topography and
distribution of the nanofiber experimental diameter. It is confirmed that at 10% PVA, larger
diameters than those with 8% are produced; also, the presence of a branched microstructure
is evidenced. The micrographs in Figure 2c–h correspond to the electrospun nanofibers
from the solutions/emulsions, where it can be observed that the nanofibers display both
homogeneous and uniform topography and diameter distribution. These results indicate
that the experimental conditions of the electrospinning process allowed the production
of well-defined nanofiber shapes, which will be predicted by means of the proposed
ANN configurations.

3.2. Architectures with One Hidden Layer

The weighing of the input variables (Table 3) and output variable, which was the
average nanofiber diameter of each sample, was optimized in order to identify the best
structure as a function of the number of layers and neurons. Due to the sensitivity of the
prediction computation of the experimental diameter of the nanofibers, the optimal ANN
structure was identified as a function of the number of hidden layers and neurons; this
procedure has also been reported by other authors [53,54]. The optimal ANN configuration
was selected according to the MMSE and R2 that relates the predicted diameter to the
experimental one. For test 1, the R2 value was 0.71, and for test 2, it was 0.70, which
indicated that the results of tests 1 and 2 were not satisfactory in the prediction of the
experimental nanofiber diameter; for this reason, increasing the number of input variables
to four was considered, as shown in Table 3.



Materials 2023, 16, 5720 7 of 18

Materials 2023, 16, x FOR PEER REVIEW 7 of 19 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Cont.



Materials 2023, 16, 5720 8 of 18

Materials 2023, 16, x FOR PEER REVIEW 8 of 19 
 

 

 
(d) 

 
(e) 

 
(f) 

Figure 2. Cont.



Materials 2023, 16, 5720 9 of 18

Materials 2023, 16, x FOR PEER REVIEW 9 of 19 
 

 

 
(g) 

 
(h) 

Figure 2. Micrographs of the studied systems: (a) 8% PVA, (b) 10% PVA, (c) PVA/OO, (d) PVA/OEO, 
(e) GT/α-TOC, (f) PVA/CS, (g) PVA/AO, and (h) PVA/Av. 

3.2. Architectures with One Hidden Layer 
The weighing of the input variables (Table 3) and output variable, which was the 

average nanofiber diameter of each sample, was optimized in order to identify the best 
structure as a function of the number of layers and neurons. Due to the sensitivity of the 
prediction computation of the experimental diameter of the nanofibers, the optimal ANN 
structure was identified as a function of the number of hidden layers and neurons; this 
procedure has also been reported by other authors [53,54]. The optimal ANN configura-
tion was selected according to the MMSE and R2 that relates the predicted diameter to the 
experimental one. For test 1, the R2 value was 0.71, and for test 2, it was 0.70, which indi-
cated that the results of tests 1 and 2 were not satisfactory in the prediction of the experi-
mental nanofiber diameter; for this reason, increasing the number of input variables to 
four was considered, as shown in Table 3. 

  

Figure 2. Micrographs of the studied systems: (a) 8% PVA, (b) 10% PVA, (c) PVA/OO, (d) PVA/OEO,
(e) GT/α-TOC, (f) PVA/CS, (g) PVA/AO, and (h) PVA/Av.

Table 3. ANN input variables for the prediction of the diameter of the electrospun nanofibers.

Test Number of Variables Variables

1 3 Flow rate, voltage, and viscosity
2 3 Conductivity, voltage, and viscosity
3 4 Flow rate, voltage, viscosity, and conductivity

The configuration with four ANN input variables consisted of one hidden layer with
a variable number of neurons from two to fourteen, as shown in Figure 3. The obtained
results are shown in Table 4, which revealed two important possibilities in the prediction
of the experimental nanofiber diameter as a function of the number of neurons in the
hidden layer. Firstly, if the number is too small, the model cannot yield an accurate output
value. Secondly, it was observed that an increase in the number of neurons in the hidden
layer did not guarantee a better estimation of the output experimental data; it can even
produce overfitting, which prevents the generalization process during the test phase, thus
generating an overparameterized model. These problems in the use of ANN to predict
experimental data have also been reported by other authors [55].
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Table 4. Configurations tested by employing one ANN hidden layer with input variables such as
flow rate, voltage, viscosity, and conductivity.

Number of Neurons 2 4 6 8 10 12 14

R2

Training 0.88 0.96 0.97 0.97 0.97 0.97 0.98
Test 0.63 0.43 0.66 0.82 0.80 0.59 0.64

Validation 0.70 0.95 0.93 0.96 0.97 0.96 0.96
Total 0.84 0.92 0.95 0.96 0.95 0.95 0.96

MMSE
Training 0.13 0.04 0.03 0.03 0.03 0.03 0.02

Test 0.23 0.27 0.12 0.08 0.10 0.15 0.13
Validation 0.21 0.03 0.04 0.04 0.03 0.03 0.03

In order to avoid overparameterization, a variable number of neurons in a hidden
layer from 2 to 14 was chosen for this study. Higher test MMSE values were observed in the
ANN configurations consisting of 2, 4, 12, and 14 neurons, as observed in Table 4. On the
other hand, it is shown that the 8-neuron configuration with training, test, and validation
displayed lower MMSE values (0.03, 0.08, and 0.04, respectively) with an R2 of 0.96 and
an error percentage of 4.44%; these results are in contrast with the rest of the proposed
configurations for predicting the experimental nanofiber diameter, thus confirming that
this configuration was the best approach to the experimental values of the nanofiber
diameters obtained by SEM. Different configurations of ANN models featuring a single
hidden layer have been employed in the prediction of experimental data [39,56], which is
the case of the work by You et al. [57], who employed this configuration type to predict
the molecular weight of polycaprolactone synthesized through enzymatic polymerization;
more specifically, a configuration featuring one hidden layer with 20 neurons was used,
obtaining an R2 of 0.99.
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3.3. Sensitivity Analysis

It has been reported that the use of a single hidden layer can favor the prediction of ex-
perimental data [58]; however, the ANN accuracy can be affected and, as a consequence, its
training can be deficient, i.e., if a bad fitting process takes place with R2 ≤ 0.7, more training
with the concomitant modification of both hidden layers and neurons is necessary [59,60].

For this reason, the 8-neuron configuration allowed the establishment of the impor-
tance of the variables related to the characteristics of the polymeric solutions/emulsions and
of those operation variables associated with the electrospinning process that are implied in
the prediction of the experimental diameter of nanofibers. This type of sensitivity analysis
was also proposed by Nasouri [18] and Kalantary et al. [16], where the experimental input
variables (concentration and distance) were more important in the diameter prediction
of PVP (polyvinylpyrrolidone) and poly(3-caprolactone)/gelatin nanofibers; in order to
be able to identify the most important variables, the authors fed the synaptic weight of
the ANN inputs and outputs of the optimized ANN by means of Equation (5). Figure 4
shows the relative contribution of the one-hidden-layer configuration. It can be observed
that the viscosity of the solutions/emulsions is the most important input variable in the
diameter prediction with 29%, i.e., the higher the viscosity, the larger the experimental
nanofiber diameter, as observed in Figure 5. These results are in good agreement with
the experimental data, where the main contribution during electrospinning was given by
viscosity. In addition, this variable is related to temperature, composition, and chemical
nature of the components of the polymeric solutions/emulsions, whereas the variables
with less relevance were evidenced by the conductivity (26%), voltage (24%), and feeding
flow rate (20%) data. Furthermore, it was found that the increase in the EO concentration
augmented the viscosity and decreased the conductivity of the emulsions, as observed in
Table S1; similar results were reported by Kalantary et al. [16], confirming that the highest
weight in the prediction of the nanofiber diameters corresponded to the polymer concentra-
tion in the electrospinning solution. On the other hand, Keirouz et al. [61] established a
directly proportional relationship between the nanofiber diameter and viscosity. Likewise,
Ibrahim et al. [62] proposed an inversely proportional relationship between conductivity
and diameter.
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3.4. Architecture with Two Hidden Layers

Once the response of one hidden layer predicting the diameter of nanofibers was
analyzed, the study of the effect of two hidden layers was proposed in order to obtain an
R2 closer to unity, which would imply an enhanced relationship between the experimental
diameters and those predicted by the ANN. To this end, the 8-n configuration was proposed,
which consisted of 8 neurons in the first hidden layer, whereas n (4, 8, 12, 16, and 20)
represented the variations of the neurons corresponding to the second hidden layer, with
the following configurations shown in Figure S2: 8-4, 8-8, 8-12, 8-16 and 8-20. From the
analysis of the MMSE and R2 of the output results corresponding to the training, test, and
validation stages, it was observed that the configurations in Figure S2c (8–12) and Figure
S2d (8-16) presented similar results, which were the lowest of all the configurations, as
shown in Table 5. The following MMSE values for each stage for Figure S2c (0.02, 0.05,
0.04) and Figure S2d (0.02, 0.06, 0.03) were obtained, which revealed MMSE values in the
configuration in Figure S2c that were similar to those in (d); however, the configuration
(8-16) in Figure S1d showed more efficiency in the prediction of the experimental nanofiber
diameter with an R2 of 0.98 and average error percentage of 3.96%. Similar results were
presented by Khatti [52], who employed a configuration consisting of two hidden layers
with eleven and five neurons to predict the experimental diameter of polycaprolactone
nanofibers with an R2 of 0.97. The prediction of the experimental nanofiber diameter by
means of this ANN is complex and depends on the studied system and availability and
quality of the input data.
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Table 5. Configurations tested by employing two ANN hidden layers with flow rate, voltage, viscosity,
and conductivity as input variables.

Number of Neurons 8-4 8-8 8-12 8-16 8-20

R2

Training 0.98 0.97 0.98 0.98 0.98
Test 0.62 0.82 0.84 0.86 0.88

Validation 0.96 0.96 0.95 0.98 0.97
Total 0.95 0.96 0.97 0.98 0.97

MMSE
Training 0.03 0.03 0.02 0.02 0.02

Test 0.20 0.08 0.05 0.06 0.09
Validation 0.04 0.04 0.04 0.03 0.03

3.5. Architecture with Three Hidden Layers

The aim of analyzing the configuration with two hidden layers (8-16) was to increase
the R2 through an additional configuration of three hidden layers of 8-16-n neurons, as
shown in Figure S3, where n varied from three to six. The results revealed that the 8-16-3
(Figure S3a) and 8-16-5 configurations (Figure 6) presented R2 values of 0.98 and 0.98,
respectively, as shown in Table 6.
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Table 6. Configurations tested by employing three ANN hidden layers with flow rate, voltage,
viscosity, and conductivity as input variables.

Number of Neurons 8-16-3 8-16-4 8-16-5 8-16-6

R2

Training 0.99 0.98 0.98 0.97
Test 0.92 0.88 0.93 0.87

Validation 0.97 0.93 0.96 0.97
Total 0.98 0.97 0.98 0.96

MMSE
Training 0.02 0.03 0.02 0.03

Test 0.04 0.05 0.03 0.05
Validation 0.03 0.03 0.03 0.04
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As for the test MMSE values, the 8-16-5 configuration presented values that were
lower than those of the other configurations. This result means that the prediction of the
experimental diameters of the nanofibers by means of one, two, and three hidden layers
is reliable according to an R2 of 0.98 (Table 7), as reported elsewhere [63]. Furthermore, a
significant difference in the prediction of diameters between two and three hidden layers,
as shown in Table 7, was not observed. Similar results have been found by employing
two and three hidden ANN layers [64,65].

Table 7. Selected configurations with four input variables: flow rate, voltage, viscosity, and conductivity.

Number of Hidden Layers 1 2 3

Configurations 8 8-16 8-16-5

R2

Training 0.97 0.98 0.98
Test 0.82 0.86 0.93

Validation 0.96 0.98 0.96
Total 0.96 0.98 0.98

MMSE
Training 0.03 0.02 0.02

Test 0.08 0.06 0.03
Validation 0.04 0.03 0.03

Figure 7 shows the distribution of the nanofiber diameters predicted with the 8-16-5
configuration, according to Figure 6, which confirms that the employed ANN is reliable
for predicting the experimental diameter obtained by means of the electrospinning of
both the PVA, PVA/CS, and PVA/Av solutions and GT/α-TOC, PVA/OO, PVA/OEO,
and PVA/AO emulsions. From these results, it can be said that the ANN model with
two and three hidden layers contributes to understanding the hierarchy that experimental
variables have in the prediction of the experimental diameter, which can help shorten the
experimentation times.
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4. Conclusions

In this work, different configurations of artificial neural networks (ANNs) were used
for predicting the experimental diameter produced during the electrospinning process
of nanofibers from PVA, PVA/CS, and PVA/Av solutions and GT/α-TOC, PVA/OO,
PVA/OEO, and PVA/AO emulsions. In addition, the experimentation is related to the
theory by means of an ANN model designed for understanding the nonlinear relationship
among operative variables of the electrospinning process such as flow and voltage and
physical properties of the biopolymer and essential oil solutions/emulsions.

An enhanced prediction of the experimental nanofiber diameter was achieved by
employing four input variables (flow, voltage, viscosity, and conductivity) in comparison
with the use of three variables (flow rate, voltage and viscosity or conductivity, voltage,
and viscosity) in the ANN configuration.

The ANN configurations that best predicted the experimental nanofiber diameter were
those with two and three hidden layers, with an R2 close to 0.98. Nevertheless, according
to the MMSE, the best configuration for predicting the experimental nanofiber diameter
with the test data was the one with three hidden layers, with an MMSE value of 0.03, which
is in contrast with the MMSE value of 0.06 for two hidden layers (8-16).

The computation error between the experimental nanofiber diameter obtained by SEM
and the one predicted by the ANN was 3.79% for the configuration with three hidden
layers, whereas for the one with two layers, it was 3.95%, which confirms the reliability of
the ANN with three hidden layers, which will allow for narrowing down the combinations
of polymers, solvents, and concentrations of solutions/emulsions in earlier stages in order
to optimize the experimentation stage before proceeding to the electrospinning process.

Additionally, it was confirmed that the most influential variable in the prediction of
the experimental nanofiber diameter by employing a one-hidden-layer configuration with
eight neurons was the viscosity of the solutions/emulsions to be electrospun.
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mdpi.com/article/10.3390/ma16165720/s1, Table S1: Operation parameters and physical properties
of the polymeric solutions/emulsions prior to the electrospinning process and experimental nanofiber
diameter; Table S2: Normalized Data; Figure S1: Micrographs of the studied systems: (a) 8% PVA,
(b) 10% PVA, (c) PVA/OO, (d) GT/α-TOC and (e) PVA/CS; Figure S2: Configurations with two
hidden layers; Figure S3: Configurations with three hidden layers; Figure S4: Diameter distribution
of the electrospun nanofibers.
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