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Abstract: There is a fast-growing interest in the use of selective laser melting (SLM) for metal/alloy
additive manufacturing. Our current knowledge of SLM-printed 316 stainless steel (SS316) is limited
and sometimes appears sporadic, presumably due to the complex interdependent effects of a large
number of process variables of the SLM processing. This is reflected in the discrepant findings in the
crystallographic textures and microstructures in this investigation compared to those reported in the
literature, which also vary among themselves. The as-printed material is macroscopically asymmetric
in terms of both structure and crystallographic texture. The <101> and <111> crystallographic
directions align parallel with the SLM scanning direction (SD) and build direction (BD), respectively.
Likewise, some characteristic low-angle boundary features have been reported to be crystallographic,
while this investigation unequivocally proves them to be non-crystallographic, since they always
maintain an identical alignment with the SLM laser scanning direction, irrespective of the matrix
material’s crystal orientation. There are also 500 ± 200 nm columnar or cellular features, depending
on the cross-section, which are generally found all over the sample. These columnar or cellular
features are formed with walls made of dense packing of dislocations entangled with Mn-, Si- and
O-enriched amorphous inclusions. They remain stable after ASM solution treatments at a temperature
of 1050 ◦C, and therefore, are capable of hindering boundary migration events of recrystallization
and grain growth. Thus, the nanoscale structures can be retained at high temperatures. Large 2–4 µm
inclusions form during the solution treatment, within which the chemical and phase distribution
are heterogeneous.

Keywords: selective laser melting (SLM); 3D printing; additive manufacturing (AM); 316 stainless
steel (SS316); EBSD; TEM

1. Introduction

Selective laser melting (SLM) is a powder-based 3D printing/additive manufacturing
(AM) technique for fabricating complex metallic parts with custom-designed internal
and/or external structures. In SLM, a digital system drives a high-power laser beam,
up to 1 kW, along a predesigned track to melt and fuse metallic powder particles layer
by layer to build a complex metal/alloy shape and/or internal structures that otherwise
would be impossible to fabricate with conventional metal processing techniques. SLM
was initially developed almost two decades ago [1], but until recently, it has primarily
been used in laboratory-scale and industrial prototyping [2–5]. Over the last ten years,
the manufacturing sector has shown a keen interest in using SLM for industrial mass
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production. This is primarily due to improvements in SLM printing hardware, e.g., laser
precision, powder manufacturing, etc., thus reducing time and production costs, as well as
increasing the inherent metallurgical benefits of SLM manufacturing [2–4]. SLM provides
a high degree of freedom in alloy compositions, covering both conventional and exotic
mixtures, e.g., high-entropy alloys, and provides for post-heating treatments [6–8]. There
are also unique metallurgical benefits in terms of the lightweighting and strengthening of
material via the control of solidification rates and compositional gradients. These benefits
are not possible, or are highly restricted, in conventional metal casting and subsequent
thermomechanical processing (TMP) [9–11]. As a result, the SLM technique is rapidly
being incorporated into industrial manufacturing [12–14], particularly in the aerospace,
automotive, biomedical and energy sectors [15–17].

The metallurgical process variables between conventional metal processing and SLM
are significantly different [18,19]. Consequently, the material properties, structures (at
macro, micro and nano scales), and application performance have large differences, even
for the same alloy composition. Nevertheless, it should be noted that the majority of
metal AM techniques are developed from the concept of conventional techniques such
as casting, welding, powder processing and/or cladding. These conventional techniques
are not ideal when developing additive manufacturing process parameters and variables,
and Aboulkhair et al. [18] recently summarized the SLM process variables, and their
differences compared to conventional processing. For instance, castability and weldability
are considered the primary characteristics for a given alloy’s suitability for SLM fabrication.
Indeed, there are marked differences between the solidification rates and conventional
welding parameters and those involved in SLM. Likewise, the remelting and rewelding
during subsequent SLM scanning creates a thermal effect that has some similarities to
conventional TMP [5].

Our current SLM knowledge is limited to a handful of alloy systems, including
aluminum [19–22] and titanium [10,23,24] alloys, as well as some studies on stainless
steel [25–28], nickel [29–32], cobalt [33–36], copper [37] and magnesium [38] alloys. Con-
sistent and systematic investigations are essential to developing a detailed understanding
of the effect of process variables on the microstructures and ultimate physical properties
of SLM-printed materials; as such, it has taken many decades of research to reach the
current level of knowledge for a given alloy system for a given conventional processing.
The SLM journey has commenced, and the processes, microstructures and properties of
materials processed in this way are in high demand because of the significant benefits
and rapid growth of the technique. This paper presents a comprehensive analysis of the
crystallography and composition of structures in an SLM-printed 316 stainless steel (SS316)
in the macro to the nano scales for advancing and rectifying our understanding on the
structural and crystallographic texture phenomena.

2. Materials and Methods

SLM printing was conducted with a 3D system Pro X DMP 320 machine by a com-
mercial 3D printing service company (Amiga Engineering, Tullamarine, VIC, Australia). A
SS316 powder feed supplied by TLS Technik GmbH & Co (Bitterfeld-Wolfen, Germany)
with 45 ± 10 µm average size was used to print a rectangular block 40 × 40 × 2 mm (X:Y:Z),
see the schematic in Figure 1a inset. The other SLM parameters were 30 µm layer thickness,
250 W laser power, 900 mm/s laser speed, 30 µm scan resolution, parallel raster pattern
with 0◦ rotation, and high-purity argon as the shielding gas. The feed chemical composition
was provided by the supplier as 0.02 wt.% C, 0.51 wt.% Si, 1.0 wt.% Mn. 17.5 wt.% Cr,
2.3 wt.% Mo, 11.1 wt.% Ni, and Fe balance.
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Figure 1. EBSD-measured color-coded IPF map of the as-printed SLM sample showing the orienta-
tion along the (a) BD and (b) SD. The insets in Figure 1a show the optical microscopy image and the 
EBSD cross-section. 

The printed material was subjected to an isothermal solution treatment at 1050 °C for 
4 h in an argon-purged furnace followed by immediate water-cooling. The longitudinal 
cross-section, see the schematic in Figure 1a inset, of both the as-printed and heat-treated 
samples were cut, mechanically polished down to colloidal silica finish, and then ion 
milled with a Technoorg Linda SEMPrep II system (Budapest, Hungary) to obtain a de-
fect-free surface suitable for investigation by electron backscattered diffraction (EBSD) in-
vestigation. The ion milling parameters were 8 kV, 6° tilt and 360° rotation. EBSD was 
conducted with an Oxford Instruments SymmetryTM system attached to a Tescan Mira 
(Brno, The Czech Republic) field emission scanning electron microscope (FE SEM) oper-
ated at 15 kV beam energy. Iron FCC (face-centerd cubic) phase from the Oxford database 
was used for indexing EBSD patterns and the Oxford Instruments’ AztecCrystal software 
v.2.1.259 was used to post-process and analyze the EBSD data. 

Site-specific transmission electron microscopy (TEM) samples were prepared from 
bulk samples using a Tescan Lyra Ga+ (Brno, The Czech Republic) focused ion beam (FIB)-
SEM. The final polishing step was performed with a low beam energy of 2 kV to minimize 
ion beam damage. A FEI Talos FS200X G2 (Waltham, MA, USA) FE TEM was used for the 
TEM investigation and was operated at 200 kV. Elemental mapping was conducted by an 
energy dispersive spectroscopy (EDS) attached as two pairs of a FEI Super X detection 

Figure 1. EBSD-measured color-coded IPF map of the as-printed SLM sample showing the orientation
along the (a) BD and (b) SD. The insets in Figure 1a show the optical microscopy image and the
EBSD cross-section.

The printed material was subjected to an isothermal solution treatment at 1050 ◦C for
4 h in an argon-purged furnace followed by immediate water-cooling. The longitudinal
cross-section, see the schematic in Figure 1a inset, of both the as-printed and heat-treated
samples were cut, mechanically polished down to colloidal silica finish, and then ion milled
with a Technoorg Linda SEMPrep II system (Budapest, Hungary) to obtain a defect-free
surface suitable for investigation by electron backscattered diffraction (EBSD) investigation.
The ion milling parameters were 8 kV, 6◦ tilt and 360◦ rotation. EBSD was conducted
with an Oxford Instruments SymmetryTM system attached to a Tescan Mira (Brno, The
Czech Republic) field emission scanning electron microscope (FE SEM) operated at 15 kV
beam energy. Iron FCC (face-centerd cubic) phase from the Oxford database was used for
indexing EBSD patterns and the Oxford Instruments’ AztecCrystal software v.2.1.259 was
used to post-process and analyze the EBSD data.

Site-specific transmission electron microscopy (TEM) samples were prepared from
bulk samples using a Tescan Lyra Ga+ (Brno, The Czech Republic) focused ion beam (FIB)-
SEM. The final polishing step was performed with a low beam energy of 2 kV to minimize
ion beam damage. A FEI Talos FS200X G2 (Waltham, MA, USA) FE TEM was used for
the TEM investigation and was operated at 200 kV. Elemental mapping was conducted by
an energy dispersive spectroscopy (EDS) attached as two pairs of a FEI Super X detection
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system. Location-specific diffraction analysis was performed using selective area diffraction
(SAD) with an aperture with a diameter of 200 nm and convergent beam electron diffraction
(CBED). A double tilt holder was used to tilt the sample to the intended crystallographic
zone axis by navigating through the CBED generated Kikuchi pattern. TEM imaging
was conducted both in conventional and scanning TEM (STEM) modes. For STEM, the
bright field (BF) and high-angle annular dark-field (HAADF) mode were used to enhance
diffraction and atomic number contrast, respectively. TEM data acquisition and analysis
was undertaken using Velox software and diffraction data analysis was conducted using
the international center for diffraction data (ICDD) database.

3. Results and Discussion
3.1. Structural Symmetry and Crystallographic Texture

Figure 1a,b show EBSD color-coded inverse pole figure (IPF) maps in the building
direction (BD) and scanning direction (SD) in a BD-SD cross-section from an SLM-printed
block. The investigated cross-section schematic is shown in the inset in Figure 1a, in which
the terminology of the orthogonal print axes is shown, in convention with comparable
studies, e.g., [39]. In Figure 1, the optical micrograph shows the characteristic print features
in an SD-TD surface previously reported in numerous investigations [39–42]. From the IPF
maps, it is clear that the BD and SD were predominantly oriented along the <111> and <101>
crystal directions, respectively. It has been well-established that crystallographic texture in
iron controls its anisotropy in mechanical, thermal, magnetic and optical properties. The
observed macroscopic crystallographic texture is therefore likely to play a fundamental
control on the anisotropy of physical properties in SLM-printed SS316. The thick and
thin black lines in the EBSD map represent the high-angle (>15◦) and low-angle (3–15◦)
misorientation boundaries, respectively. The high-angle boundaries are broadly parallel to
the laser scanning tracks associated with printing. There was no evidence of the formation
of the ∑9 twin boundary (<111>60◦) in the as-printed sample. This finding is consistent
with the other literature, where no twin boundaries were reported in SLM-printed SS316,
although the wrought form of the material contained annealing twins [41,42].The formation
of twin boundaries is generally promoted by low solidification rates [43,44]. Therefore, in
the case of SLM-manufactured SS316, where solidification occurs almost instantly at cooling
rates ranging from 103 to 107 K/s [2,45–47], the formation of twin boundaries is hindered.
This rapid cooling prevents sufficient time for the atoms to rearrange, which in turn delays
the nucleation and growth of twin boundaries. This is in contrast to wrought SS316L, where
cooling rates are much slower and facilitate the formation of twin boundaries [41,42].

In the IPF map presented in Figure 1b, there are thin <001>-oriented layers, colored in
red, between thicker <101>-oriented printing tracks, colored in green. These green and red
layers are called ‘major’ and ‘minor layers’ by Sun et al. [48] (pp. 89–93). The thickness of
the major and minor layers varied between 100 and 200 µm and 50 and 100 µm, respectively,
suggesting an overall crystallographic relationship between the major and minor layers. In
both IPF maps, there are other orientations in the major layers, which are present in the red
and green regions in Figure 1a, and red and blue regions in Figure 1b. EBSD analysis in the
TD revealed mixed orientation, not presented in the Figure 1. These findings suggest that
a sample-scale macroscopic crystallographic texture forms in SLM-printed SS316, which
is consistent overall with the recent literature, but the reported textures vary in terms of
crystal orientation [48–51]. An epitaxial growth mechanism between the major and minor
layers is regarded as the origin of the overall texture development [48]. However, lattice
epitaxy requires a perfect match between two lattice interfaces with common coincident
sites, which is somewhat unrealistic to imagine in the SLM-printed material, because it
contains a continuous change in orientation, as reflected by a gradual change in color
within short distances in the EBSD maps. Hence, a separate in-depth investigation at a
finer length scale is required to find out whether there are epitaxies over short distances,
and if this collectively develops the overall texture.
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In Figure 2a, the misorientation boundaries are elucidated in a higher-resolution,
100 nm step size, IPF map, whereby the SD is plotted as per the color-coded IPF section in
the inset. As before, the high- (>15◦) and low-angle (3–15◦) boundaries are represented by
thick and thin black lines, respectively. The corresponding Kernel average misorientation
(KAM) map is shown in Figure 2b, in which each data point represents the mean orientation
difference with the eight surrounding neighboring points. The blue–yellow–red legend in
Figure 2b indicates the relative KAM intensity. There is a correlation between Figure 2a,b,
viz., comparison of the white encircled areas shows that the high-stored-energy spots have a
higher density of misorientation boundaries. This observation can be understood in relation
to dislocation density because a higher dislocation density is required to accommodate
any misorientation. There were also regions of low stored energy. One such example
is encompassed with a white rectangular box, within which there is a small orientation
variation, represented by a minor change in the IPF color variation. Such low misorientation
variations indicate the presence of dislocation mesh and cell structures, which usually
accommodate relatively less energy [52]. Therefore, the as-printed sample showed an
overall heterogeneous distribution of the stored energy. This finding explains the spatial
variation of the micro- and nano-scale mechanical data in the SLM-printed material [53,54].
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distributions and their alignments with the SD and (b) the corresponding inhomogeneities in the
KAM plot.
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Figure 2a also reveals several other morphological features of the boundary. For
example, the majority of the boundaries were straight, though there were several high-
angle boundaries that had convoluted trajectories, some of which are indicated with white
arrows. This phenomenon indicates the occurrence of a thermally induced restoration
process, perhaps from the heat flow from the subsequent SLM scanning [52]. It is important
to note that the boundaries depicted in Figure 2 are also present in Figure 1. However,
Figure 1 provides a broader field of view, making the details of the boundaries less apparent.
Figure 2 complements Figure 1 by offering a closer view (or finer scale) that provides
additional information about the boundary features. There was no sign of recrystallization,
as noted by an absence of a trailed region with a uniform orientation behind a migrating
high-angle boundary [52]. The convoluted high-angle boundaries are expected to have
formed during solidification or due to subsequent thermal restoration [52], although the
process did not progress to the boundary migration stage of recrystallization.

3.2. Substructural Features

There is a profuse presence of straight misorientation boundaries in Figure 2a, which
are aligned, within a certain angular range, with the SD, as indicated by the black lines.
Some straight boundaries are aligned along the SD, as shown in Figure 2a, which is <101>
of the lattice direction. A small fraction also aligns at the right angle, in short segments
indicated with the black arrows, which is along the BD ||<111>. The remainder, accounting
for the largest fraction of straight boundaries, are aligned in the ±30–45◦ angular range,
with the highest frequency being around ±35◦. Some boundary combinations also resemble
a leaf vein structure, with changing directions; one such example is circled in black at the
right bottom of Figure 2a. Therefore, the overall alignment of the straight boundaries is rather
complex, which Dinda et al. [55] (pp. 2152–2160) described as a function of the laser scanning
strategy. In some recent studies, the boundaries appeared to have a coincidence with the
crystallographic planes, most commonly along the {100} plane trace, e.g., SS316-, Ni-25%
(Mo, Nb and Ti)-, Al-, Ta-, Ti-Mo-Zr-Al- and Mo-Si-alloys [48,49,55–60]. A few mechanisms
for the formation of these textures have been outlined in the published literature based
on the formation of the solid/liquid interface in order to explain their crystallographic
origin. The scan rate and laser energy have been reported to play a vital role in this
regard [61]. In this investigation, however, the alignment of the straight boundaries
invariably remained identical within an angular range with the SD, irrespective of the
matrix orientation, as shown in Figure 2a. For instance, the boundary orientations in
the blue-, located in the upper left, and red-oriented regions comprise the same angular
alignments with SD as the boundaries found in the vast majority green regions. This
suggests that the low-angle straight boundaries are non-crystallographic, viz., they do not
preferentially form on a particular lattice plane trace(s). Although this conclusion is made
based on unequivocal evidence, it should be noted that only a 3D EBSD can reveal the real
crystallography of a 3D interface. There is evidence that 2D trace analysis of 3D boundary
features may lead to misleading conclusions. One such example is the low-angle microband
boundaries that form in high stacking fault energy materials that have been claimed to
be both crystallographic [62] and non-crystallographic [63]. This debate continued until
reconciliation was achieved on the basis of a 3D EBSD investigation [64,65].

A recent article by Pham et al. [51] (p. 749) accounts for the variations in boundary
formation in SLM-printed SS316, such as those seen in Figure 2a. The fundamental basis
remains identical to the previous reports, viz., the boundaries form along the solid–liquid
interface during the solidification process [48,66,67]. In Pham et al.’s simulation work, it
was demonstrated that side branching occurs, similarly to the current findings shown in
Figures 1 and 2, during the solidification process, and thus alters the shape of the solidifying
boundary front. As a result, the alignment of the solidification interface changes, and
therefore, the formation of low-angle boundaries takes place over a wider angular range.
The magnitude of side branching depends on a number of factors, primarily on the thermal
gradient and heat flux, and the SLM parameters that control these two. Each narrative in
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the literature on low-angle crystallographic boundary formation, including Pham et al.’s
study, is overwhelmed by the assumption that the solid/liquid interface appears as a
crystallographic lattice interface. However, physical details on the mechanism by which
the habit plane or rotation axis correlate with a preferred crystal plane or direction are
missing. Therefore, the mechanism of low-angle boundary formation is rather complicated,
because of the simultaneous occurrence of rapid solidification with the complex mechanical
interaction of the semi-solid pool by laser beam movement. In addition, there is thermal
pulsing during the subsequent overlay of layers.

Numerous investigations have reported columnar structures that also appear as fine
cellular structures in the transverse cross-section of SLM-printed SS316 [40,68,69]. An
example of such a cell structure is shown as an SEM image in the inset of Figure 3a. Unlike
the low- and high-angle boundary structures in Figures 1 and 2, this structure was found
homogeneously throughout the sample. These cellular structures have been reported to
vary in size from 0.25 to 1.2 µm, with the actual size having an inverse relationship with the
laser scanning speed. [46,70,71]. It has been observed that these structures exhibit a weaker
strengthening effect compared to the grain boundaries of the microstructure [71]. Because of
the submicron-scale fineness of the cellular structures, an electron-transparent TEM sample
was prepared using FIB-SEM site-specific lift-out methods. Figure 3a shows an HAADF
STEM image of the TEM sample, in which the columnar structures are sub-vertical in the
cross-sectional lamellae. The walls of the columns are densely populated with dislocations,
and the walls are spaced parallel at an average distance of 500 nm. These boundaries were
also decorated with 5–30 nm spherical particles. The particles were tangled within the
boundary dislocations, see higher magnification image in Figure 3b, and created a pinning
effect. These particles are likely to have restricted any thermally activated migration, and
thus, restricted the structures to the nanoscale. The dislocation walls were 50–150 nm in
thickness and are expected to have created a strain field, which became apparent through
the diffraction contrast in the BF STEM imaging in Figure 3c, which was taken after tilting
the sample so that the boundaries were edge-on. These dislocation features are expected to
provide elevated strengthening in the SLM-printed SS316 material over the conventionally
processed grade that usually comprises large equiaxed grains, hundreds of µm in size, and
twin boundaries. This is reflected in a 20–50% improvement in the tensile strength of SLM-
printed SS316 over the conventional grade with an identical chemical composition [40].
The strength can also be improved by changing the laser strategy that works at a larger
length scale. While further discussions of mechanical properties are outside the scope of
this paper, it is expected from the results presented herein that superior strengthening at
the micro and nano scale can be achieved in SLM-printed grade due to the retention of
nanostructures and the formation of inclusions due to the rapid cooling (~103–105 K/s) of
SLM solidification [72].

The darker appearance of the particles in the HAADF STEM images in Figure 3 in-
dicates that they had a lower average atomic weight than the matrix. In Figure 4, an
area was selected that contained larger particles, and these were subjected to elemental
analysis by STEM-EDS. Elemental maps revealed that the particles were rich in Mn, Si
and O. Significant efforts were devoted to determining the crystallographic identity of
the inclusions using SAD and CBED diffraction techniques, but no diffraction spots were
observed other than those from the FCC iron matrix, and therefore, these particles are likely
amorphous. This finding is consistent with the report by Salman et al. [69] (pp. 205–212).
It is pertinent to note that Shibata et al. [73] (pp. 522–528) found larger particles, ~1 µm,
with identical morphologies in cast SS316. These were characterized as MnO–SiO2 par-
ticles, solely based on the chemical ratio measured by electron probe microanalysis and
thermodynamic calculations. In some cases, they also found a small association of Cr2O3.
In regard to the current study, it is important to note that Cr was not measured within
the particles, and no Cr-C crystalline diffraction patterns were observed. Therefore, Cr is
expected to remain in the solid solution to provide the intended stainless property in the
SLM-printed SS316.
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3.3. Solution Treatment Structures

A solution treatment at 1050 ◦C for 4 h, per ASM [74] recommendations, of the as-
printed sample is expected to anneal any thermally unstable microstructures, and to ensure
a uniform Cr dissolution into the matrix. It is pertinent to note that the stainless properties
are impaired in conventional-grade SS316 because of the inadequate presence of atomic
Cr in the solution that occurs due to Cr-C formation. The solution treatment brings the
Cr atoms back to the matrix as solutes. Cr-containing inclusions were not observed in the
samples in this study, see Figures 3 and 4, which suggests that the solution treatment is
not needed for Cr dissolution purposes in the SLM material. However, the heterogeneous
boundary structures shown in Figure 2 may result in an uneven Cr distribution, because
dislocations are naturally preferable sites for solute atoms. Therefore, the solution treatment
may indeed promote an even Cr concentration.

Interestingly, only a subtle change took place in the substructures during the 1050 ◦C
solution treatment. Figure 5a,b present a comparative view in the form of KAM maps
that reveal an overall reduction in the KAM-intensive boundary density after the solution
treatment. The solution-treated structure is also shown in the BF STEM micrograph in
Figure 5c, in which the dislocation-constituted boundaries underwent a thermal relaxation
process, compared with Figure 3, viz., the boundaries were curved and the dislocations
were dissociated. The rectangular area in Figure 5c is magnified in the HAADF STEM
image in Figure 5d. Analysis revealed boundary pinning by the inclusions that were
found in the as-printed sample in Figures 3 and 4. They were measured to contain Mn,
Si and O as per the as-printed sample. Overall, the inclusion density was significantly
reduced by the solution treatment, perhaps because of some degree of dissolution and/or
agglomeration. The high stability of the inclusions after the solution treatment at 1050 ◦C
explains why recrystallization and grain growth did not take place in the SLM-printed
material. Previously, Shibata et al. [73] (pp. 522–528) reported that amorphous Mn-Si-
O particles remain stable even after 1200 ◦C solution treatment in cast SS316, where
grain growth was not prevented because the density was low and the inclusions size was
large, >1 µm.
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section. TEM investigation of the solution-treated sample shows (c) the changes in the dislocation
boundary structures in a BF STEM image and (d) the retention of boundaries by particle (arrowed)
pinning in a magnified HAADF STEM image of the rectangular area marked in subfigure (c).
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It is important to note that inclusions 2–4 µm in size were also observed in the solution-
treated sample that were absent under as-printed conditions. An example is shown in the
upper inset in Figure 6a, whereby a TEM lamella was prepared by FIB and presented as a
STEM HAADF image (Figure 6a) in order to determine the chemical distribution within
the inclusion. The surrounding iron matrix appears brighter. It should be noted that it
was identified via TEM-EDS that the inclusions were rich in Mn, Si, and O, although there
were also Cr- and O-rich regions within the inclusions, which can also be seen as brighter
regions, as indicated by arrows, in the darker overall matrix. An SAD pattern was taken of
the marked area and indexed as Cr3O4, as illustrated in the lower inset of Figure 6a. The
iron matrix also contained Cr, which was expected as the solute. These findings suggest
that during the solution treatment, a large fraction of the nano-sized inclusions agglomerate
into large 2–4 µm inclusions. The Cr from the solid solution also diffused and participated
in the formation of inclusions, since Cr was not found in the inclusions in the as-printed
sample. Overall, the localized corrosion resistance of the as-printed SLM-manufactured
SS316 is excellent, which can be attributed to factors such as the absence of sulphides,
the presence of a more stable passive film, lower rates of metastable pitting, and a higher
pitting potential compared to its wrought counterpart [75–77]. However, the presence
of these large inclusions with heterogeneous chemical and structural distribution after
heat treatment, as reported in this work, has been shown to be detrimental to the alloy’s
resistance to localized corrosion by decreasing its pitting potential [78]. Therefore, the
solution treatment recommended by ASM [74] for conventional SS316 is, indeed, expected
to be detrimental to the SLM-printed material.
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for Si, Mn, O, and Cr, respectively. The insets in (a) show the inclusion from which the TEM sample
was prepared, and the indexed SAD pattern of Cr3O4 from the SAD-labeled area.
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SLM-manufactured SS316 components have shown excellent mechanical proper-
ties [40,79,80] and localized corrosion resistance [75–77], often surpassing their conven-
tionally manufactured wrought counterparts. Therefore, it is crucial to evaluate their
performance against common damage mechanisms observed in the energy sector, such as
stress corrosion cracking (SCC) or hydrogen-induced cracking (HIC), in both as-printed
and heat-treated microstructures. Additionally, exploring the optimization of properties
through variations in printing parameters or the utilization of post-processing steps would
be of great significance.

4. Conclusions

In this investigation, a thorough microscopic characterization of SLM SS316s/s under
as-printed and solution-annealed conditions was conducted at the macro, micro and nano
scales. The findings suggest some of the existing findings are inconclusive or imprecise,
and require further investigation to mature our knowledge in this area. The conclusions of
this study can be summarized as follows:

1. SLM-printed material possesses an asymmetric crystallographic texture and material
structure. The microstructure has a distinctive structural morphology along the
orthogonal axes of the sample, and develops crystallographic textures in SD ||<101>
and BD ||<111>.

2. Heterogenous distributions of misorientation boundaries and stored energy were
found throughout the SLM-printed structures. Twin boundary formation was not
observed in either the as-printed or solution-annealed samples.

3. In the as-printed structures, the typical straight misorientation boundaries were
characterized as being non-crystallographic. The boundaries maintained general
alignment with the SD within an angular range, irrespective of the matrix’s crystal
orientation, although there were occasional coincidences with crystal plane traces.

4. The high-angle boundaries in the SLM substructures underwent thermal restoration,
which was activated by the heat originating from the printing of the subsequent
layer. Pinning by the nano inclusions hindered classical recrystallization, and thus,
prevented the formation of a defect-free annealing structure, even after 4 h of solution
treatment at 1050 ◦C.

5. A nano-scale lamellar structure with a width of 500 ± 200 nm formed homogeneously
throughout the printed material. Depending on the orientation, the structures ap-
peared with cellular or columnar morphologies in SEM and TEM images. Their
boundaries contained dense dislocation structures tangled with fine amorphous inclu-
sions containing Mn, Si and O. Cr was not found above the limit of detection in the
inclusions. Hence, Cr remains in the matrix to provide the stainless properties.

6. Some degree of dissociation of the dislocation boundaries occurred during the solution
treatment, but the overall refined structures were retained. Additionally, inclusions
with a size of 2–4 µm formed, consisting of composite structures and chemical dis-
tributions. These inclusions can have detrimental effects on the localized corrosion
resistance of the alloy.
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