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Abstract: The activity of sewage sludge ash (SSA) is not high; ground granulated blast slag (GGBS)
has a high calcium oxide content that can accelerate polymerization rates and exhibit better mechan-
ical performance. In order to improve the engineering application of SSA–GGBS geopolymer, it
is necessary to conduct a comprehensive evaluation of its performance and benefits. In this study,
the fresh properties, mechanical performance and benefits of geopolymer mortar with different
SSA/GGBS, modulus and Na2O contents were studied. Taking the economic and environmental
benefits, working performance and mechanical performance of mortar as evaluation indexes, the
entropy weight TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) compre-
hensive evaluation method is used to evaluate the geopolymer mortar with different proportions.
The results show that as SSA/GGBS increases, the workability of mortar decreases, the setting time
first increases and then decreases, and the compressive strength and flexural strength decrease. By
appropriately increasing the modulus, the workability of the mortar decreases and more silicates
are introduced, resulting in increased strength in the later stage. By appropriately increasing the
Na2O content, the volcanic ash activity of SSA and GGBS is better stimulated, the polymerization
reaction is accelerated, and the early strength increases. The highest Ic (integrated cost index, Ct

fc28
) of

geopolymer mortar is 33.95 CNY/m3/MPa, and the lowest is 16.21 CNY/m3/MPa, which is at least
41.57% higher than that of ordinary Portland cement (OPC). The minimum Ie (embodied CO2 index,
Ec
fc28

) is 6.24 kg/m3/MPa, rising up to 14.15 kg/m3/MPa, which is at least 21.39% lower than that of
OPC. The optimal mix ratio is a water–cement ratio of 0.4, a cement–sand ratio of 1.0, SSA/GGBS of
2/8, a modulus content of 1.4, and an Na2O content of 10%.

Keywords: sewage sludge ash; geopolymer; fluidity; setting time; compressive strength; comprehensive
evaluation

1. Introduction

With the rapid improvement of living standards and the continuous population
increase of, the production of sewage sludge worldwide is also increasing. Incineration
of sewage sludge can considerably reduce the mass and volume of sewage sludge, which
makes further management easier and leads to increasing production of incinerated sewage
sludge ash (SSA) [1]. At the same time, the manufacturing process of cement accounts
for about 5–8% of total CO2 emissions worldwide [2], so it is very necessary to use green
cementing materials instead of cement. Geopolymers are prepared by excitation of solid
precursor in an alkaline environment. The precursors are usually silicon-rich (Si) and
aluminum-rich (Al) ground granulated blast slag (GGBS), fly ash, and metakaolin [3–5].
Compared to ordinary Portland cement, it is a low-carbon and sustainable cement material
for the construction industry [6]. In addition to environmental benefits, geopolymers
also have relatively good mechanical properties [7]. Studies have shown that higher
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incineration temperatures (800 ◦C) can change the chemical composition of SSA (increasing
the amorphous properties) [8], resulting in a certain level of pozzolanic activity of SSA.
This has led to the hypothesis that the use of SSA to produce an environmentally friendly
geopolymer cementing material can both dispose of the increasing volume of SSA and
reduce the production of cement. In view of this, some researchers have studied the
application of SSA in geopolymers.

Research points out that the Si and Al are mostly in amorphous form in SSA, which
improves the degree of geopolymerization reaction as well as the physical and chemical
properties of geopolymer [9]. Furthermore, due to the unique 3D gel network structure
of geopolymers, it is easy to solidify heavy metal ions. The use of SSA in the prepara-
tion of geopolymer can greatly reduce the pollution risk of heavy metal leaching [10–13].
Researchers studying geopolymer prepared from a mixture of SSA and other precursors
including metakaolin, rice husk ash, fly ash and GGBS have mainly focused on the effects of
raw material proportions and alkali activator composition on mechanical properties [9,14–21],
while there is a lack of emphasis on performance, cost and carbon emissions, which are all
important factors considered in practical applications. In addition, commercialization of
geopolymers faces a challenge, as some silico-aluminate cannot be used in geopolymers,
resulting in inconsistent cost and performance of geopolymers [22].

Therefore, future research should focus on whether the use of SSA in geopolymers
is environmentally and economically feasible. In order to increase the possibility of appli-
cation of SSA in geopolymers, it is necessary to comprehensively consider its economic
benefits, environmental impacts, working performance and mechanical properties and
select an optimal implementation scheme to maximize the benefits. In this study, SSA and
GGBS are used as the raw materials to produce geopolymer mortar. Firstly, the effects
of SSA/GGBS, modulus and Na2O content on the workability, setting time, compressive
strength, flexural strength, cost and carbon emission of geopolymer mortar were studied,
then the best ratio is obtained through comprehensive evaluation by the entropy weight
TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) method, which
contributes to the practical application of SSA in geopolymer.

2. Materials and Methods
2.1. Raw Materials

The liquid alkali activator is a mixture of NaOH, Na2SiO3 and addition water in a
certain proportion. The main indicators of Na2SiO3 are shown in Table 1, with a modulus
of 3.13. NaOH is a solid particle.

Table 1. Main indicators of Na2SiO3 (%).

Indicators SiO2 Na2O Solid Phase Liquid Phase

Content 27.64 8.83 36.47 63.53

A mixture of SSA and GGBS was used as the precursor. The SSA was obtained from an
incinerator at a local sludge treatment plant and was incinerated at 850 ◦C, and the GGBS
was commercially available S95-grade ore powder. Neither was mechanically ground with
a ball mill in the laboratory. The chemical compositions of SSA and GGBS are shown in
Table 2. The main chemical component of SSA is SiO2, with a content of up to 38.38%,
followed by Al2O3 and P2O5, with contents of 18. 45% and 14.15%, respectively. The main
components of GGBS are CaO, SiO2, and Al2O3, with contents of 33.49%, 26.39%, and
24.06%, respectively.
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Table 2. Chemical composition of SSA and GGBS (%).

Materials SSA GGBS

SiO2 38.38 26.39
Al2O3 18.45 24.06
Fe2O3 8.16 0.73
CaO 4.69 33.49
MgO 3.15 7.53
Na2O 0.66 0.72
TiO2 1.04 1.41
P2O5 14.15 0.34

The particle size distribution was measured for the GGBS and SSA by laser size
diffraction, as shown in Figure 1. The average grain sizes of the SSA and GGBS are
36.65 µm and 13.44 µm, and the particle sizes are mainly distributed between 1.0–120 µm
and 0.2–40 µm, respectively, indicating that the GGBS is much finer and the particle size
distribution range is more concentrated than the SSA. The sand is medium sand with a
fineness modulus of 2.25. The microstructure of SSA and GGBS are shown in Figure 2.
The shape of SSA particles is irregular, with a rough surface and abundant pores. This
structure increases its specific surface area and makes it easy to absorb water during stirring
molding. The particles of GGBS are mainly blocky and have a smooth surface. Under the
same magnification, particles of SSA are significantly larger than of GGBS. The mineralogy
of the SSA and GGBS was determined by X-ray powder diffractometer (XRD), and the
activity index of SSA and GGBS is indirectly measured by using the strength index method
for to the ground granulated blast slag powder used in cement, mortar and concrete
(GB/T 18046-2017), as shown in Figure 3. It is clear that SSA and GGBS consist of mainly
amorphous humps characterized by baseline deviation between 25◦ and 35◦ (2θ), with a
small calcite crystal peak in between, indicating that most of the minerals are in amorphous
form. Figure 3a also shows that the SSA and GGBS have high crystallinity and contain
certain crystalline minerals. Quartz (SiO2) is the most abundant mineral in SSA, and the
crystal phases are mainly calcium silicate (Ca2SiO3) and calcite (CaCO3) in GGBS. The 7d
and 28d activity indexes of GGBS are 79% and 95.77%, respectively, belonging to the S95
level. The 7d and 28d activity index of SSA are 45% and 57%, respectively. Compared to
SSA, the activity index of GGBS is 75.56% higher at 7d, and 68.42% higher at 28d, indicating
that the volcanic ash activity of GGBS is greater than that of SSA.
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Figure 1. Particle size distribution of raw materials: (a) SSA and GGBS; (b) sand.
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Figure 2. Micromorphology of SSA and GGBS: (a) SSA; (b) GGBS.
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Figure 3. XRD and Activity of SSA and GGBS: (a) XRD; (b) activity.

2.2. Mix Proportion

As there are many factors affecting the performance of geopolymer mortar, the water-
to-binder ratio of 0.4 and sand-to-binder ratio of 1.0 remained unchanged. Note that
the water content included the water in liquid alkali activator. The binder included the
precursor and the solid components of Na2SiO3 (SiO2 and Na2O) and NaOH (Na2O). The
preliminary experiment determined the SSA/GGB level (1/9–5/5), the modulus level
(1.0–1.6) and the Na2O content level (6–12%).

Eleven mix proportions of SSA-GGBS geopolymer mortar were designed, as shown in
Table 3. The SSA/GGBS is the mixture of SSA and GGBS by mass ratio. The modulus is
the molar ratio of SiO2 to Na2O in the liquid alkali activator, and the Na2O content is the
percentage of Na2O in the liquid alkali activator compared to the binder.

Table 3. Mix proportion of geopolymer mortar (kg·m−3).

Sample SSA/GGBS Modulus Na2O
Content SSA GGBS Na2SiO3 NaOH H2O Sand

A1 1/9 1.4 10% 76.45 688.06 490.17 73.18 72.13 1000
A2 2/8 1.4 10% 152.90 611.61 490.17 73.18 72.13 1000

A3 (B3, C3) 3/7 1.4 10% 229.35 535.16 490.17 73.18 72.13 1000
A4 4/6 1.4 10% 305.81 458.71 490.17 73.18 72.13 1000
A5 5/5 1.4 10% 382.26 382.26 490.17 73.18 72.13 1000
B1 3/7 1.0 10% 240.97 562.26 350.12 89.14 157.51 1000
B2 3/7 1.2 10% 235.16 548.71 420.15 81.16 114.82 1000
B4 3/7 1.6 10% 223.55 521.61 560.20 65.21 29.43 1000
C1 3/7 1.4 6% 257.61 601.10 294.10 43.91 203.28 1000
C2 3/7 1.4 8% 243.48 568.13 392.14 58.55 137.70 1000
C4 3/7 1.4 12% 215.23 502.19 588.21 87.82 6.55 1000
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2.3. Test Method

The preparation process of geopolymer mortar is shown in Figure 4. Firstly, the
liquid alkali activator is prepared by mixing the Na2SiO3, NaOH and water in prescribed
proportions; after mixing well, the solution was sealed to prevent evaporation and cooled
to room temperature. The SSA and GGBS were placed in the mortar mixer in the laboratory
and stirred for 1 min, then the alkali activator was poured into the mixer for 2 min, and then
the river sand was poured into the mixer for 2 min to obtain the fresh mortar. The fluidity
test of fresh mortar shall refer to the Method for Determining the Fluidity of Cement
Mortar (GB/T2419-2005). The setting time test of fresh mortar shall refer to the Basic
Performance Testing Methods for Building Mortars (JGJ/T70-2009). The fresh mortar was
poured into a PVA mold with a size of 40 × 40 × 160 mm and vibrated for 30 s on a shaker
to eliminate bubbles. The mortar was placed in a standard curing oven with a temperature
of 20 ± 2 ◦C and a humidity of 95% until the test time. The flexural and compressive
strength test of the geopolymer mortar shall refer to the Test Method for Strength of Cement
Mortar (GB/T17671-2021). After testing the compressive strength at 28 days, part of the
crushed samples was dried for scanning electron microscopy (SEM) analyses conducted
with SU8020 to obtain the microstructure morphology of the geopolymer mortar.
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3. Results and Discussion
3.1. Fresh Performance of Geopolymer Mortar
3.1.1. Workability

The fluidity of the geopolymer mortar is shown in Figure 5. The maximum fluidity
of A1 is 202 mm, and the minimum of A5 is only 105 mm. As SSA/GGBS increased from
1/9 to 5/5, mortar fluidity decreased by 5.94%, 17.33%, 31.19% and 48.02%, respectively.
As is shown in Figure 2, SSA has a rough surface structure, irregular particle shape and
porous microstructure [23–25], which means that the use of SSA as a concrete filler will
increase the water absorption of concrete by 8–20% [26,27]. Therefore, the more SSA used
in the mixing process of geopolymer mortar, the more alkali activating liquid is absorbed,
and the lower the fluidity. Yan [28] also pointed out that after adding dry wastepaper
sludge to geopolymer mortar, the wastepaper sludge absorbed a large amount of water in
the mortar mixture, resulting in a significant decrease in mortar fluidity. As the modulus
increased from 1.0 to 1.6, the fluidity of mortar decreased by 4.30%, 10.22% and 24.19%,
respectively. Due to the high viscosity of the Na2SiO3 solution [29], the higher the modulus,
the higher the viscosity of the solution, and the corresponding viscosity of the mortar will
also increase, so the fluidity of the mortar will decrease. As the Na2O content increased from
6% to 12%, the fluidity of the mortar increased by 21.99%, 18.44% and 9.22%, respectively.
This is because the alkalinity of the system can be improved by properly increasing the
Na2O content, which is conducive to the dissociation of the glass body at the early stage
of hydration, thus reducing the internal friction between the particles and improving
the fluidity; however, excessive alkali content will inhibit the reaction and reduce the
fluidity [30].
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Figure 5. Fluidity of geopolymer mortar.

3.1.2. Setting Time

The setting time of geopolymer mortar is shown in Figure 6. The maximum setting
time of B4 is 98 min, and the minimum of A5 is only 26 min. As SSA/GGBS increased,
the setting time of mortar first increased and then decreased. SSA/GGBS increases, the
calcium content in the system decreases, and the absorption of alkaline activators by SSA
increases. As is shown in Figure 3b, due to the lower activity of SSA compared to GGBS, the
dissolution of calcium in GGBS is delayed, the rate of geopolymer polymerization reaction
slows down, and the formation time of hydration products is prolonged, resulting in an
extension of setting time. In addition, it was found that the setting time of geopolymer
mortar was reduced by increasing the proportion of CaO in the raw material [31]; as is
shown in Table 2, the content of CaO in SSA is much lower than that of GGBS, so the
increase in SSA content will prolong the setting time of the mortar. However, when the
amount of SSA added is too high (SSA/GGBS of 4/6) due to the absorption of a large
amount of water by the SSA during the mixing process, the viscosity of the geopolymer
mortar is also too high, resulting in a loss of plasticity and shortened setting time. As
modulus increases from 1.0 to 1.6, the setting time is extended by 26%, 56% and 96%,
respectively. The number of (SiO4)4− monomers in the solution decreases and the number
of polymers increases with the increase in the modulus, hindering the dissolution and
condensation of solid precursors [32], which has a negative impact on the hydration process
of the system, so the setting time is prolonged. As Na2O content increases, the setting
time of mortar decreased first and then increased. The change process of zeta potential
in the system follows the same pattern as the condensation time [33]. The (SiO4)4− and
(AlO4)5− released by the decomposition of monomer materials in the geopolymer system
are negative charges, and the Na+ introduced by Na2O is positive charges; together they
affect the zeta potential within the system. By appropriately increasing the Na2O content,
positive and negative ions attract each other and the polymerization speed accelerates, so
the setting time decreases. Continuing to increase the Na2O content will lead to an increase
in the amount of Na+ introduced into the system, so the repulsion between ions increases,
polymerization reactions are inhibited, and the setting time increases.
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Figure 6. Setting time of geopolymer mortar.
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3.2. Mechanical Performance of Geopolymer Mortar
3.2.1. Compressive Strength and Flexural Strength

The effect of SSA/GGBS on strength of geopolymer mortar is shown in Figure 7.
As SSA/GGBS increased, the compressive and flexural strength both decreased. The
compressive strength of A1 group at each age is the highest, reaching 45.09 MPa at 3d,
60.12 MPa at 7d and 65.77 MPa at 28d. The compressive strength of A5 at each age is
the lowest, reaching 16.61 MPa at 3d, 20.46 MPa at 7d and 26.45 MPa at 28d, constituting
decreases by 63.16%, 65.97%, and 59.78%, respectively. The flexural strength of A1 is the
highest, reaching 10.02 MPa at 3d, 13.86 MPa at 7d and 16.36 MPa at 28d. The flexural
strength of A5 is the lowest, reaching 3.41 MPa at 3d, 5.38 MPa at 7d and 5.43 MPa at 28d,
constituting decreases by 65.97%, 61.16%, and 66.81%, respectively. The reaction of the
geopolymer polymerization process is as in Equations (1) and (2) below [34]. It can be
seen that the calcium content has a great impact on the compressive strength. The calcium
content in SSA is lower than that of GGBS, so when SSA/GGBS increases, the calcium
content in the system decreases, the content of C-(A)-S-H gel generated decreases, and the
strength decreases. Because the contribution of GGBS to strength plays a dominant role,
and the activity of GGBS is higher than that of SSA, the polymerization rate in the early
stage is fast, and its strength develops slowly from 7d to 28d correspondingly. The content
of GGBS in A1 accounts for 90%, and the compressive strength at 7d is very close to that
at 28d.

Na+ + SiO2(OH)2−
2 /Si(OH)1−

3 + Al(OH)−4 → N−A− S−H gel (1)

Ca2++SiO2(OH)2−
2 /Si(OH)1−

3 + Al(OH)−4 → C− (A)− S−H gel (2)
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Figure 7. Effect of SSA/GGBS on strength of mortar: (a) Compressive; (b) Flexural.

The effect of modulus on strength of geopolymer mortar is shown in Figure 8. As
modulus increased, the compressive strength at 3d decreased. Compared with B1, the
compressive strength of B4 at 3d decreased by 24.19%. In contrast, the compressive strength
at 28d first increased and then decreased. Compared with B1, the compressive strength
of B2, B3 and B4 at 28d increased 16.66%, 11.93% and 6.30%, respectively. The flexural
strength at 28d first increases and then decreases as the modulus increases. Compared with
B1, the flexural strength of B2, B3 and B4 at 28d increased by 31.63%, 23.10% and 6.97%,
respectively. The effect of modulus on the strength of geopolymer mortar varies at different
curing ages. As modulus increases, the alkalinity of the alkali solution decreases, which
will affect the dissolution of silicon aluminum monomers in early polymerization reaction,
resulting in a decrease in the strength at 3d. At the later stage of polymerization, increasing
the modulus can introduce more silicates, more aluminate silicate gel can be generated,
so the strength at 28d increases. However, when the modulus content is too high, due
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to the introduction of too much soluble SiO2, it may cover the surface of unreacted SSA
and GGBS particles during the polymerization reaction process, reducing the degree of
polymerization reaction, resulting in a decrease in the strength at 28d.
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Figure 8. Effect of modulus on strength of mortar: (a) compressive; (b) flexural.

The effect of Na2O content on the strength of geopolymer mortar is shown in Figure 9.
As Na2O content increased, the compressive strength at 3d and 7d increased. Compared
with C1, the compressive strength of C4 at 3d and 7d increased by 26.44% and 19.56%.
While the compressive strength at 28d first increased and then decreased. Compared
with C1, the compressive strength of C2, C3 and C4 at 28d increased by 17.41%, 25.35%
and 12.61%, respectively; The flexural strength at 3d increased as Na2O content increased.
Compared with C1, the flexural strength of C4 at 3d increased by 19.56%. The flexural
strength at 7d and 28d first increases and then decreases. Compared with C1, the flexural
strength of C2, C3 and C4 at 7d increased by 15.32%, 36.12% and 18.20%, while the flexural
strength of C2, C3 and C4 at 28d increased by 2.45%, 36.92% and 18.52%, respectively. The
reaction of the polymer depolymerization process is as in Equations (3)–(5) below [35].
Silica aluminum oxide is hydrolyzed in an alkaline environment to form a geopolymer gel
network. Therefore, with the increase in Na2O content, the OH− concentration increases
and more active silicon aluminum monomers are dissolved in SSA and GGBS during the
early stage of the reaction. Furthermore, the increase in Na2O content also introduces
additional Na+, which is conducive to the formation of C-A-S-H gel and N-A-S-H gel [36],
so the strength at 3d is improved. However, excessive OH− will cause the condensation
reaction of the geopolymer to occur faster and earlier, leading to an immature structure [37];
thus, strength at 28d decreases.

Al2O3 + 3H2O + 2OH− → 2[Al(OH)4]
− (3)

SiO2 + H2O + OH− → [SiO(OH)3]
− (4)

SiO2 + 2OH− → [SiO2(OH)2]
2− (5)

The linear fitting results of the compressive strength and flexural strength of geopoly-
mer mortar are shown in Figure 10. According to the Equation (6), the flexural strength is
basically 1/4 of the compressive strength, which is different from cement mortar. The flexu-
ral strength in cement mortar is generally 1/10–1/5 of the compressive strength, indicating
that geopolymer mortar has good toughness. As shown in Figure 10, the predictive values
calculated by Equation (6) are close to the actual values and the error range is basically
within 15%, indicating that the fitting formula has good applicability.

ft = 0.2491 fc − 0.9822, (6)
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Figure 9. Effect of Na2O content on strength of mortar: (a) compressive; (b) flexural.
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Figure 10. Relationship between compressive strength and flexural strength: (a) fitting results;
(b) error range.

3.2.2. SEM Analysis

The microstructure of the geopolymer mortar after 28 days of curing is shown in
Figure 11. The geopolymer matrix of A1 is denser than that of A5. The main polymerization
products of GGBS and SSA are C-A-S-H gel and N-A-S-H gel, respectively. Compared with
N-A-S-H gel, C-A-S-H gel has a more compact structure [38,39]. As SSA/GGBS increases,
the ratio of C-A-S-H/N-A-S-H in the gel network decreases, and the gel network becomes
sparse, leading to a decline in the strength of the geopolymer mortar.

The geopolymer matrix of B2 is denser than that of B1. This is because increasing
the modulus can increase the indeterminate SiO2 in the system, which is conducive to
the formation of geopolymer gel. However, with the further increase in the modulus, the
surface of the geopolymer matrix of B3 and B4 is covered with a large amount of aluminate
gel, which hinders the further hydration of SSA and GGBS particles, leading to a decrease
in strength.

Due to the low alkalinity, the polymerization reaction of C1 is insufficient, and there
are many voids in the geopolymer matrix. The degree of polymerization of C2 increases,
most of the voids are filled with gel, so the strength is higher. Due to the high alkalinity,
the polymerization reaction speed of C4 is too fast and there were many cracks in the later
stage of the structure, resulting in a decrease in strength.
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3.3. Benefits of Geopolymer Mortar

The current prices and CO2 emissions of raw materials used in geopolymer mortar
are shown in Table 4. Due to the fact that SSA is obtained as recycled solid waste from local
sewage sludge treatment plants, its cost is zero. The carbon emissions of H2O and sand
come from an industry standard in China (T/CBMF 27-2018).

Table 4. Cost and CO2 emission of materials.

Materials Cost for One Ton (CNY) CO2 Emission (kgCO2/m3)

SSA 0 0.025
GGBS 550 0.143 [40]

Na2SiO3 2000 0.387
NaOH 900 1.59 [41]
H2O 3.46 0.000148
Sand 100 0.00398

In order to evaluate the economic efficiency and carbon footprint of geopolymers
in this study, an integrated cost index Ic (¥/m3/MPa) and an embodied CO2 index Ie
(kg/m3/MPa) were adopted as Equation (7) [42] and Equation (8) [43] below.

Ic =
Ct

fc28,
(7)

Ie =
Ec

fc28
(8)
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where Ic is the integrated cost index, Ie is the embodied CO2 index, Ct (CNY/m3) is the cost
of one cubic meter of geopolymer, embodied CO2 (kgCO2/m3) is the total CO2 emission
of one cubic meter of geopolymer, and fc28 (MPa) is the compressive strength at 28d
of geopolymer.

3.3.1. Cost

The cost and Ic of geopolymer mortar with different mix ratios are shown in Figure 12.
As SSA/GGBS decreases and modulus and Na2O content increase, the cost increases. The
maximum cost of group A1 was 1066.28 CNY/m3, while the minimum cost of Group
C1 was 783.80 CNY/m3. The impact of Na2O content on cost is most significant; this is
because the cost of NaOH is the most expensive. The Ic shows a trend of first decreasing
and then increasing with the increase in modulus and Na2O content, but all are around
20 CNY/m3/MPa. SSA/GGBS increases, the Ic increases. The minimum Ic of Group A1 is
16.21 CNY/m3/MPa and the maximum Ic of Group A5 is 33.95 CNY/m3/MPa, with an in-
crease of 109.47%. The Ic of OPC (Ordinarily Portland cement) is 11.45 CNY/m3/MPa [44],
which means that the cost of geopolymer mortar is at least 41.57% higher than that of OPC
under the same strength. This is mainly because the geopolymer requires the use of alkaline
activators to excite, while the cost of sodium hydroxide and sodium silicate is relatively
expensive. In addition, liquid activators are corrosive and difficult to store, transport
and handle, which affects the large-scale production of geopolymers. Therefore, safe and
convenient solid activators can be developed to further reduce the acquisition cost of raw
materials, so that the production of geopolymers can be scaled up and commercialized to
make up for the shortage of geopolymers for engineering applications.
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Figure 12. Cost of geopolymer mortar: (a) Ct; (b) Ic.

3.3.2. Carbon Emission

The carbon emissions and Ie of geopolymer mortar with different mix ratios are shown
in Figure 13. As SSA/GGBS increases and modulus and Na2O contents decrease, the
carbon emissions of geopolymer mortar decrease. The maximum carbon emissions of
Group C4 were 410.40 kgCO2/m3, while the minimum carbon emissions of Group C1 were
280.03 kgCO2/m3, an increase of 60.13%. The Na2O content has the most significant impact
on the carbon emissions of geopolymer mortar, as the increase in Na2O content led to the
most significant increase in NaOH, which has the highest carbon emission factor. The Ie
values are all around 8 kgCO2/m3/MPa with different modulus and Na2O contents. The
increase in SSA/GGBS has to some extent reduced carbon emissions. However, due to the
decrease in strength, it actually leads to an increase in Ie. The minimum Ie of Group A1 is
6.24 kgCO2/m3/MPa, while the maximum Ie of group A5 is 14.15 kgCO2/m3/MPa, an
increase of 126.79%. The Ie of OPC is 18 kgCO2/m3/MPa [43] and the carbon emission
of geopolymer mortar is at least 21.39% lower than that of OPC under the same strength,
indicating that the geopolymer has superior environmental friendliness compared to OPC.
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Figure 13. Carbon emission of geopolymer mortar: (a) Ec; (b) Ie.

3.4. Comprehensive Evaluation of Performance and Benefits

The TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) method
is a sorting method that approximates ideal solutions [45], which can determine the degree
of closeness to the optimal solution in the sample data. The entropy weight TOPSIS method
is a combination of the entropy weight method and the TOPSIS method. By using entropy
to determine weights, it eliminates the shortcomings of subjective weights [46].

3.4.1. Indicator Weight

Considering comprehensively the benefits, workability, and mechanical properties of
geopolymer mortar, a total of 10 evaluation indicators were selected for the preparation
cost. In terms of mortar efficiency, the indicator attribute is negative, which means that the
lower the preparation cost and carbon emissions, the better the overall performance, as
shown in Table 5.

Table 5. Comprehensive evaluation indicators.

Primary Indicators Secondary Indicators Variable Unit Attribute

Benefits Cost X11 CNY/m3 -
CO2 emission X12 kgCO2/m3 -

Fresh performance Fluidity X21 mm +
Setting time X22 min +

Mechanical performance

Compressive strength at 28d X31 MPa +
Flexural strength at 28d X32 MPa +

Compressive strength at 7d X33 MPa +
Flexural strength at 7d X34 MPa +

Compressive strength at 3d X35 MPa +
Flexural strength at 3d X36 MPa +

The process of calculating the weight of evaluation indicators using the entropy weight
method is as follows:

(1) Build evaluation matrix RX . Xij is the raw data corresponding to the jth evaluation
indicators of the ith evaluation object (i = 1, 2, . . . , m; j = 1, 2, . . . , n). The raw data are
shown in Table 6.

RX =

X11 · · · X1n
... Xij

...
Xm1 · · · Xmn

 (9)
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Table 6. Evaluation matrix Rx raw data.

Sample X11 X12 X21 X22 X31 X32 X33 X34 X35 X36

A1 1066.28 410.40 202 44 45.09 60.12 65.77 10.02 13.86 16.36
A2 1024.21 401.37 190 57 40.26 52.59 62.04 8.76 12.79 15.48
A3 982.19 392.35 167 78 32.32 39.46 52.26 6.58 10.57 11.83
A4 940.11 383.33 139 43 24.65 30.02 40.98 5.00 8.20 9.37
A5 898.09 374.31 105 26 16.61 20.46 26.45 3.41 5.38 5.43
B1 903.10 367.59 186 50 37.56 41.00 46.69 6.72 9.36 9.61
B2 942.67 380.03 178 63 34.40 43.93 54.47 7.20 9.87 12.65
B4 1021.56 404.63 159 98 28.65 36.23 49.63 5.94 8.70 10.28
C1 783.80 280.03 141 75 28.21 33.90 41.69 5.75 7.77 8.64
C2 882.82 336.08 172 69 31.67 37.51 48.95 6.36 8.96 10.87
C4 1081.21 448.41 154 85 35.67 40.56 46.95 6.88 9.18 10.24

(2) Indicator standardization RY. Standardize raw data based on indicator attributes.
For positive indicators:

Yij =
Xij −min

(
X1j, · · · , Xmj

)
max

(
X1j, · · · , Xmj

)
−min

(
X1j, · · ·Xmj

) (10)

For negative indicators:

Yij =
max

(
X1j, · · · , Xmj

)
− Xij

max
(
X1j, · · · , Xmj

)
−min

(
X1j, · · ·Xmj

) (11)

(3) Calculate the weight of evaluation indicators:

pij =
yij

∑m
j=1 yij

(12)

ei = −
1

ln n∑m
j=1 PijlnPij (13)

Wi =
1− ei

∑n
i=1(1− ei)

(14)

Normalize the indicators sequentially through Equations (10)–(14), determine the
entropy value, and calculate the weight. The results are shown in the table below in Table 7.

Table 7. Evaluation index weight.

Index e w Total

X11 0.885 15.42%
26.62%X12 0.916 11.20%

X21 0.939 8.10%
18.69%X22 0.921 10.59%

X31 0.941 7.94%

54.69%

X32 0.929 9.57%
X33 0.929 9.54%
X34 0.928 9.68%
X35 0.937 8.49%
X36 0.929 9.47%

It can be seen from Table 7 that in the three dimensions of the first level indicators,
the proportion weights of the benefits, fresh performance, and mechanical performance
of geopolymer mortar are 26.62%, 18.69%, and 54.69%, respectively. This indicates that
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mechanical performance is the most important factor affecting the comprehensive perfor-
mance of geopolymer mortar, which is consistent with the selection basis of materials in
practical engineering applications.

3.4.2. Evaluation Results

After obtaining the weights of each evaluation index through the entropy weight
method, the TOPSIS method is used to comprehensively evaluate the performance of
geopolymer mortar with different mix ratios. The process is as follows:

(1) Building a Weighted Normalization Matrix RV . Vij = Wi × Xij:

V =

V11 · · · V1n
... Vij

...
Vm1 · · · Vnm

 (15)

(2) Determine positive and negative ideal solutions and Euclidean distance:
The minimum value of the negative index and the maximum value of the positive

index constitute the set of positive ideal solutions; The maximum value of the negative
index and the minimum value of the positive index constitute the set of negative ideal
solutions. Use the number set to express its positive ideal solution V+, and negative ideal
solution V−:

V+ =
{

V+
1 , · · · , V+

j , · · · , V+
n

}
(16)

V− =
{

V−1 , · · · , V−j , · · · , V−n
}

(17)

(3) After the positive and negative ideal solutions are determined, calculating the
positive ideal solution distance d+, the negative ideal solution distance d− and the rel-
ative fitness C of the evaluation object respectively through Equations (18)–(20). The
comprehensive evaluation results are shown in Table 8.

d+i =

√
∑n

j=1

(
Vij −V+

j

)2
(18)

d−i =

√
∑n

j=1

(
Vij −V−j

)2
(19)

Ci =
d−i

d−i + d+i
(20)

Table 8. Ranking of comprehensive evaluation results.

Materials d+ d− C Rank

A1 0.515597 0.80035 0.608193 2
A2 0.454622 0.706675 0.608522 1
A3 0.496177 0.539081 0.520722 7
A4 0.669104 0.345128 0.340285 10
A5 0.889749 0.283107 0.241382 11
B1 0.488341 0.548663 0.529084 6
B2 0.444428 0.576844 0.564829 3
B4 0.594678 0.500167 0.456838 8
C1 0.530474 0.625433 0.541075 5
C2 0.452038 0.567486 0.556619 4
C4 0.648903 0.489812 0.430145 9
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According to the principle of the greater the relative superiority, the better, the best
mix ratio is A2. That is to say, the mortar with SSA/GGBS of 2/8, a modulus of 1.4 and
Na2O content of 10% has the best comprehensive performance.

4. Conclusions

In order to further realize the resource utilization of SSA, this study prepared geopolymer
mortar through the synergistic preparation of SSSA and GGBS. The effects of SSA/GGBS,
modulus and Na2O content on the fresh performance, mechanical performance, economic
benefits, and environmental benefits of SSA-GGBS geopolymer mortar were studied. The
entropy-weighted TOPSIS method was used to comprehensively evaluate the performance
and benefits of geopolymer mortar and obtain the optimal mix ratio, and the following
conclusions were obtained:

1. As SSA/GGBS increases, the irregular particle morphology and porous surface struc-
ture of SSA make it highly susceptible to moisture absorption, resulting in a decrease
in fluidity. The activity of SSA is lower compared to GGBS, the polymerization reac-
tion speed of geopolymer is slowed down, the setting time of mortar increases, the
CaO content in SSA is less, the gel network generated by geopolymer polymerization
becomes sparse, and the mortar strength decreases.

2. As modulus increases, the viscosity of solution increases and the fluidity decreases.
Due to the introduction of more silicates, the later strength of mortar is improved.
As Na2O content increases, the pozzolanic activity of SSA and GGBS can be better
stimulated, the setting time is reduced, and the early strength of mortar is improved
due to the accelerated polymerization reaction.

3. Because alkali activators are expensive and have high carbon emissions, the maximum Ic

of geopolymer mortar is 33.95 CNY/m3/MPa, and the minimum is 16.21CNY/m3/MPa,
which is at least 41.57% higher than that of OPC. The minimum Ie is 6.24 kg/m3/MPa,
while the maximum is 14.15 kg/m3/MPa, which is at least 21.39% lower than that of OPC.

4. The weights of benefit, fresh performance, and mechanical performance in the com-
prehensive evaluation model are 26.62%, 18.69% and 54.69%. The optimal mix ratio is
a water–cement ratio of 0.4, a cement–sand ratio of 1.0, SSA/GGBS of 2/8, a modulus
of 1.4, and an Na2O content of 10%.
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