
Citation: Che, K.; Zhao, M.; Sun, Y.;

Pan, J. In Situ Synthesis of

NiFeLDH/A–CBp from Pyrolytic

Carbon as High-Performance Oxygen

Evolution Reaction Catalyst for Water

Splitting and Zinc Hydrometallurgy.

Materials 2023, 16, 3997. https://

doi.org/10.3390/ma16113997

Academic Editors: Karol J. Fijałkowski,
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Abstract: Nickel–iron-layered double hydroxide (NiFeLDH) is one of the promising catalysts for the
oxygen evolution reaction (OER) in alkaline electrolytes, but its conductivity limits its large-scale
application. The focus of current work is to explore low-cost, conductive substrates for large-scale
production and combine them with NiFeLDH to improve its conductivity. In this work, purified and
activated pyrolytic carbon black (CBp) is combined with NiFeLDH to form an NiFeLDH/A–CBp
catalyst for OER. CBp not only improves the conductivity of the catalyst but also greatly reduces the
size of NiFeLDH nanosheets to increase the activated surface area. In addition, ascorbic acid (AA)
is introduced to enhance the coupling between NiFeLDH and A–CBp, which can be evidenced by
the increase of Fe-O-Ni peak intensity in FTIR measurement. Thus, a lower overvoltage of 227 mV
and larger active surface area of 43.26 mF·cm−2 are achieved in 1 M KOH solution for NiFeLDH/A–
CBp. In addition, NiFeLDH/A–CBp shows good catalytic performance and stability as the anode
catalyst for water splitting and Zn electrowinning in alkaline electrolytes. In Zn electrowinning with
NiFeLDH/A–CBp, the low cell voltage of 2.08 V at 1000 A·m−2 results in lower energy consumption
of 1.78 kW h/KgZn, which is nearly half of the 3.40 kW h/KgZn of industrial electrowinning. This
work demonstrates the new application of high-value-added CBp in hydrogen production from
electrolytic water and zinc hydrometallurgy to realize the recycling of waste carbon resources and
reduce the consumption of fossil resources.

Keywords: OER catalyst; pyrolytic carbon black; water splitting; anodic catalyst; zinc electrowinning

1. Introduction

The electrochemical oxygen evolution reaction (OER) has important applications in
many fields, including water electrolysis, electrochemical synthesis, Zn hydrometallurgy,
etc. [1,2]. The OER is a four-electron process with a sluggish kinetic process that requires a
high overpotential, largely increasing the energy consumption of the whole electrocatalytic
process [3,4]. Therefore, researchers are committed to developing high-performance elec-
trocatalysts to effectively reduce the overpotential of the reaction process and the energy
consumption [5–8]. The high cost and low reserve of precious metal catalysts with high
electrochemical performance limit their large-scale application. Hence, exploring new
non-noble metal-based catalysts with low cost, high efficiency, and stability is the focus of
the current work.

Nickel–iron-layered double hydroxide (NiFeLDH) is one of the promising catalysts
for OER in alkaline electrolytes, with a large specific surface area and layered structure
facilitating charge exchange. However, the poor conductivity and incomplete exposure of
active sites hinder the at-scale application of NiFeLDH. In order to improve the conductivity
of NiFeLDH, researchers have loaded NiFeLDH nanosheets onto a conductive substrate.
For example, Guofa Dong et al. synthesized LDH nanosheet arrays containing NiFe on
carbon fiber cloth (CC) [9]. In another study, Ming Gong et al. synthesized ultra-thin
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nickel iron layered double hydroxide (NiFe LDH) nanosheets on lightly oxidized multi
walled carbon nanotubes (CNTs) [10]. Jiahao Yu et al. in-situ grown 3D mesoporous NiFe
layered double hydroxide (LDH) micro clusters with layered structure on foam nickel [11].
In addition, Abolfath Eshghi et al. electrochemically synthesized nickel–iron-layered
double hydroxide nanocomposites on graphene/glassy carbon electrodes [12]. The above
scholars combined LDH with conductive materials to obtain catalysts that exhibit good
OER performance in alkaline solutions. However, the disadvantages of these works are
obvious: the high cost or complex synthetic method of the substrate or the weak interaction
between NiFeLDH and the substrate. Therefore, developing a conductive substrate with a
low-cost, simple synthetic method and strong interaction with NiFeLDH is a promising
approach to improving the catalytic performance of NiFeLDH, achieving mass production.

CBp is a product from the pyrolysis of waste tires under anaerobic conditions at
450 ◦C [13,14],which is mainly composed of different grades of commercial carbon black
and inorganic fillers from the rubber manufacturing process, with the ash content being
15–20% [15–17]. Its price is only 5–10% of that of commercial CB, and the application is
mostly limited to the rubber field [18,19]. In order to improve the added value and broaden
the application fields of CBp, researchers have developed its applications in energy storage
and catalysis. For example, Lisa Djuandhi et al. demonstrated significant advantages
in the application of CBp as an electrode component in lithium-ion battery systems [20].
Shilpa et al. extracted customized activated carbon from CBp as a new anode material
for lithium-ion batteries [21]. Ravi Kali converted the rubber tubes of discarded bicycles
into value-added low-dimensional carbon materials and used them as negative electrode
materials for sodium-ion battery applications [22]. Next, Keqiang Ding et al. prepared
honeycomb-shaped carbon particles from CBp as anodes for lithium-ion batteries [23].
Chun Chi Chen et al. also investigated the application of nitrogen-doped CBp as an elec-
trode material for supercapacitors [24]. Another study converted pyrolysis carbon derived
from discarded tires into activated carbon for supercapacitor electrodes [25]. Another
converted waste tire rubber into high-value-added carbon carriers for electrocatalysis [26].
The above examples from the literature show the potential applications of CBp in energy
storage, but the purity of CBp still limits its performance. CBp with high purity and high
activity is necessary to further improve performance. Based on the composition characteris-
tics of CBp, our team obtained activated CBp with high purity and high specific surface area
through acid–base purification treatment and KOH activation [27,28], which will further
promote the application of CBp as a substitute for activated carbon in adsorption, energy
storage, and catalysis [21,29–32]. Hence, CBp is a promising candidate as a conductive
substrate of NiFeLDH, due to its large supply and low cost, along with the simple and
large-scale processing technology from our group.

Furthermore, with the reduction of high-grade and high-quality sphalerite resources,
the shortage of zinc resources has become acute [33]. The recovery of metallic zinc from ZnO
ore and waste slag by alkaline solution electrolysis has become the major method of zinc
production, with advantages such as high efficiency, low pollution, high yield, and good
operability. S. V. Mamyachenkov et al. studied the electrolytic recovery of zinc in alkaline
zincate solutions under laboratory conditions, which could provide satisfactory coulomb
efficiency (85–95%) and low application energy consumption (2.28–3.20 kW h/KgZn) [34].
Zhao et al. reported a new comprehensive hydrometallurgical process for producing
zinc powder in alkaline media, demonstrating its superiority in alkaline electrolysis [35].
S. Gürmen et al. studied the possibility of applying alkaline electrolysis technology to
electrolytic zinc, which saves 20% in terms of energy compared to industrial electrolytic
zinc [36]. In the alkaline electrolysis process, the anode for the OER significantly impacts
the whole zinc electrodeposition process, requiring good electrocatalytic performance,
good conductivity, stability, long life, low corrosion resistance, and affordable production
costs [37–39]. This situation is similar to hydrogen production by water electrolysis. The
development of OER catalysts with excellent catalytic performance, low cost, and suitability
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for mass production is a long-term goal. Combining NiFeLDH with CBp as anodic catalyst
for zinc recovery and water electrolysis should be an effective solution.

Based on the above considerations, activated CBp with high purity and specific surface
area obtained through acid–base purification and KOH activation was used as a conductive
substrate to prepare NiFeLDH/A–CBp through a facile in situ synthesis method. In order
to improve the OER catalytic performance of NiFeLDH/A–CBp, ascorbic acid (AA) as a
chelating agent was introduced to enhance the coupling between NiFeLDH and A–CBp and
the related synergistic effect of NiFe atoms. The optimal catalyst with a large active surface
area offered a low overpotential (227 mV) for water splitting in the alkaline electrolyte. In
addition, the NiFeLDH/A–CBp catalyst largely reduced the bath voltage to reduce the
energy consumption during the electrolytic process. Therefore, NiFeLDH/A–CBp, as a
promising catalyst, is expected to enlarge the commercial application of Zn recovery and
water electrolysis.

2. Materials and Methods
2.1. Materials

Pyrolytic carbon black (CBp) was provided by Hunan Qiheng Environmental Pro-
tection, China. Urea (CO(NH2)2, 71334-76-4, 99%), ethyl alcohol (EtOH, 141-78-6, 95%),
hydrochloric acid (HCl, 7647-01-0, 36%), and sulfuric acid (H2SO4, 8014-95-7, 51.9%) were
received from Beijing Chemical Factory, China. Ammonium fluoride (NH4F,14972-90-
8, 99.5%), iron nitrate nine hydrate (Fe (NO3)3·9H2O), nickel nitrate hexahydrate (Ni
(NO3)2·6H2O), and ascorbic acid (C6H8O6, 2252244-20-3, 99.7%) were provided by Xilong
Chemical Industry, China. Zinc oxide (ZnO, 1314-13-2, 99%) and sodium hydroxide (KOH,
1310-58-3, 85%) were supplied by Beijing Chemical Factory, China. Carbon paper, foam
nickel, and foam nickel molybdenum were provided by Cyber.

2.2. Synthesis of NiFeLDH/A–CBp

A–CBp was prepared by purification and KOH activation according to the method
of a previously published paper [27,28]. The impurities in CBp were leached with acid to
obtain purified carbon black, which was denoted by P–CBp. Then, P–CBp was activated
with KOH (ω:ω = 1:4) for 90 min at 700 ◦C under N2 atmosphere. The activated product
was washed and dried to obtain activated carbon black (A–CBp).

NiFeLDH/A–CBp was prepared by a hydrothermal method. Firstly, mixtures with
50 mg A–CBp, 0.15 mmol Fe (NO3)3·9H2O, and different contents of AA were ultrasonically
dispersed in 50 mL water for 30 min. Then, 3.5 mmol NH4F, 0.6 mmol Ni(NO3)2·6H2O,
and 15 mmol CO(NH2)2 were added to the above solution, which was stirred for 10 min
at 60 ◦C. The resulting mixture was heated at 120 ◦C for 12 h. Lastly, the samples were
collected, washed, and dried. Here, the obtained catalysts with different AA contents from
0 mmol to 0.4 mmol are named AA–x mmol. Among them, the optimized OER catalyst is
marked as NiFeLDH/A–CBp.

2.3. Characterization

The following characterization methods were used to examine the structure, morphol-
ogy, and surface properties of the prepared materials, including SEM, TEM, XRD, FTIR,
and XPS. The detailed information of the characterization devices is shown in Table S1.

2.4. Electrochemical Measurement

Electrochemical properties were measured by a three-electrode system. The prepared
catalysts were applied as working electrodes, Pt plate as a counter electrode, and Hg/HgO
as the reference electrode.

Electrodeposition of zinc and water electrolysis were measured by LANDIAN using a
two-electrode system. The prepared catalysts were applied as anode electrodes. Copper
sheets and foam nickel molybdenum were the cathode electrodes for zinc electrodeposition
and water electrolysis, respectively.
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3. Results

The ash, accounting for almost 20% of CBp, mainly includes colloid layers, coke from
the pyrolysis process of waste tires, and inorganic fillers like SiO2, Zn, Ca, etc., that weaken
the performance of CBp [40]. Therefore, as Figure 1 shows, it is essential to purify and
active CBp by removing impurities with acid and baking with KOH before synthesizing
a catalyst. Then, the activated CBp (A–CBp) can be combined with NiFeLDH to form an
NiFeLDH/A–CBp catalyst by in situ hydrothermal method.
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Figure 1. Schematic diagram of NiFeLDH/A–CBp preparation.

In Figure 2a, micro-scale NiFeLDH nanosheets with high crystallinity assemble into
a big globular flower [41]. When NiFeLDH nanosheets are combined with A–CBp in
Figure 2b, their size decreases obviously, and they cannot be uniformly dispersed on the
surface of A–CBp, only gathering together. In order to enhance the interaction of NiFeLDH
nanosheets with ACBp, ascorbic acid (AA) is introduced. When the AA content is 0.1 mmol
(Figure 2c), the layered structure of NiFeLDH nanosheets can uniformly load onto the A–
CBp surface to form a layered structure to fully expose active sites and improve conductivity.
As the AA content increases to 0.2 mmol in Figure 2d, the interaction between A–CBp
and NiFeLDH nanosheets further strengthens, and part of the surface of the NiFeLDH
nanosheets is covered by A–CBp to block active sites. When continuing to increase the
content of AA, the NiFeLDH nanosheets and A–CBp adhere to each other as shown in
Figure 2e,f, which greatly reduces active site exposure. Hence, the proper content of AA
(0.1 mmol) is beneficial to charge transfer between NiFeLDH nanosheets and A–CBp [42].

The morphology of the synthesized NiFeLDH/A–CBp was studied through TEM
(Figure 3). The introduction of AA enables NiFeLDH to be completely encapsulated on the
surface of CBp, ensuring a strong interface connection between the two [42]. The HRTEM
images in Figure 3b,d,f,g,h clearly show the lattice of (015) of NiFeLDH [43–47]. The lattice
stripe spacing decreases with the increase of AA content, indicating that NiFeLDH tends to
be amorphous, mainly due to the enhanced force between Fe and Ni, which is consistent
with SEM results [48].
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The XRD patterns of NiFeLDH/A–CBp samples with various AA contents are shown
in Figure 4a. The results of AA–x mmol are well-matched with the standard pattern (JCPDS
card No.38-0715) [42]. The displayed peaks at 11.35◦, 22.74◦, 33.46◦, 34.41◦, 38.77◦, 45.99◦,
59.98◦, and 61.25◦ are ascribed to (003), (006), (101), (012), (015), (018), (110), and (113),
respectively [42]. Compared with AA–0 mmol, the intensities of all peaks of NiFeLDH/A–
CBp gradually decrease with the increase of AA content. This shows that AA strengthens
the interaction between NiFeLDH and A–CBp while weakening slightly the orderliness of
NiFeLDH nanosheets grains.

The surface chemical properties of NiFeLDH/A–CBp samples with different AA
contents were studied using FTIR spectroscopy, as shown in Figure 4b. The peaks at
3425 and 1618 cm−1 belong to the stretching vibrations of hydroxyl groups and C=O, which
are related to AA and CBp [49]. In addition, the peaks of NiFeLDH/A–CBp at 1358 and
1492 cm−1 are the interaction of NO−

3 interlayer groups [50]. The spectral bands within
the range of 500–900 cm−1 are related to the metal–oxygen–metal lattice vibrations of
NiFeLDH/A–CBp (Fe–O and Ni–O) layer cations. The band appearing at approximately
670 cm−1 is attributed to the stretching mode of Fe–O–Ni [51]. In addition, there is a strong
peak at 1620 cm−1, which is mainly derived from CBp [52]. Among the signals, due to the
introduction of AA, the NO3 peak intensity weakens, and the peak intensities of Fe–O–Ni
and M–O become stronger, indicating a stronger interface connection between NiFeLDH
and CBp.
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(g) 0.3 mmol, or (i) 0.4 mmol of AA. (b,d,f,h,j) HRTEM of NiFeLDH/A–CBp corresponding to
(a,c,e,g,i).
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The XPS analysis of NiFeLDH/A−CBp with AA–0 mmol and AA–0.1 mmol were
shown in Figure 4c. The binding energies (284.6 eV and 531.9 eV) are C ls and O 1s,
respectively [42]. In the synthesis process, there is a small amount of Ni3+ and Fe2+. For
NiFeLDH/A−CBp with AA−0.1 mmol, XPS spectra displays decomposed peaks of Ni 2p
at 858.4 eV, 864.2 eV, 875.9 eV, and 880.3 eV, corresponding to Ni2+ 2p3/2, Ni3+ 2p3/2, Ni2+

2p1/2, and Ni3+ 2p1/2, respectively [53]. Ni3+ is difficult to further oxidize due to its high
valence. The observed 4 peaks at 706.7–723.8 eV correspond to Fe2+ 2p3/2, Fe3+ 2p3/2, Fe2+

2p1/2, and Fe3+ 2p1/2 [54], respectively. In addition, the characteristic peak centered around
713.2 and 722.9 eV represent the satellite peak. Ni2+ and Fe3+, as the main valence states
for NiFeLDH/ACBp, are beneficial to improving the OER performance [10,55]. Compared
with NiFeLDH/A−CBp with AA–0 mmol, the XPS peak of Ni 2p and Fe 2p of that with
AA–0.1 mmol transfer to higher binding energy, show stronger interaction between metals.
The spectrum of O 1s is shown in Figure 4f; the peak at 530.19 eV is connected to the
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oxygen metallic bond, and the other peak at 531.09 eV is attributed to the oxygen vacancy
or surface hydroxyl. The =O is related to the peak found at 532.49 eV [47,56]. Compared
with the XPS spectra of AA–0 mmol and AA–0.1 mmol, the O 1s peak showed significant
changes, with a smaller peak area of O at 532.49 eV and an increase in the area of oxygen
vacancies or surface hydroxyl peaks at 531.09 eV, thanks to an increase in the number of
hydroxyl groups in AA.

For water splitting, the OER catalytic performance of NiFeLDH/A–CBp samples with
different AA contents was tested in 1 M KOH. Among them, AA–0.1 mmol exhibited the
lowest overpotential (227 mV) at 10 mA·cm−2 (Figure 5a). It has excellent electrocatalytic
performance compared to similar materials in the past (Table S2) [57–61]. The introduction
of AA can improve the Tafel slopes of catalysts, implying that AA can accelerate the charge
transfer rate, as indicated in Figure 5b [42]. CV tests were carried out to further explore
the electrochemically active area of NiFeLDH/A–CBp catalysts (Figure S1a–e). The Cdl
can be obtained by calculation from the curves of current density (CD) vs. scan rate in
Figure 5c. The Cdl value of AA–0.1 mmol is the largest at 43.26 mF cm−2, indicating that
more active sites of the catalyst can be exposed by adjusting the amount of AA. Hence,
an NiFeLDH/A–CBp catalyst with 0.1 mmol AA has more active sites and a fast charge
transfer rate, indicating better electrochemical catalytic properties (Figure 5d). As seen from
Figure 5e, although the conductivity of the material is slightly weaker after the addition of
AA, it does not affect the improvement of the catalytic performance. The charge transfer
resistance of NiFeLDH/A–CBp is relatively small. Meanwhile, NiFeLDH/A–CBp exhibits a
smaller series resistance and a higher Warburg impedance slope (ZW), suggesting increased
conductivity to boost the electron transfer rate [62–64]. The voltage maintains 99.2% and the
surface morphology and structure of NiFeLDH/A–CBp did not show significant changes
after long-term stability testing, which exhibits the excellent ability of NiFeLDH/A–CBp.

Based on the good OER performance of the NiFeLDH/A–CBp catalyst, it firstly can
be used as an anodic catalyst for water electrolysis, as shown in Figure 6. The cathode is
made of a foam nickel molybdenum material [65]. The NiFeLDH/A–CBp catalyst shows
high OER current density with a low overpotential of 227 mV at 10 mA cm−2 (Figure 6b).
The performed stability test demonstrates excellent overall water solubility stability, which
is the same as the change in the oxygen evolution OER stability test (Figure 6c) [66–68].

In order to reduce the electrolyzer voltage and lower the energy consumption of zinc
hydrometallurgy, NiFeLDH/A–CBp was also employed as an anodic OER catalyst for zinc
electrolysis. The effects of the current density and temperature on the current efficiency,
electrolyzer voltage, and energy consumption were studied in an alkaline solution of 0.4 M
ZnO and 6 M KOH.

Figure 7a shows the influence of the CD on three factors at 30 ◦C. With the increase
of the CD from 300 to 2000 A·m−2, the current efficiency firstly decreases slightly, then
rapidly due to the enhancement of hydrogen evolution at higher current densities [34].
The increased CD will increase the voltage drop caused by the electrolyte, electrode, and
ohmic contact, increasing the electrolyzer voltage and power consumption in zinc electrol-
ysis [69]. So, considering the electrolytic rate, a CD of 1000 A·m−2 is superior. Next, the
influence of the electrolytic temperature was studied at 1000 A·m−2, as shown in Figure 7b.
With the increase of the electrolytic temperature, the current efficiency first increased
and then decreased. At 40 ◦C, the zinc electrodeposition efficiency reaches 99.38%, and
the cathodic hydrogen evolution side reaction is greatly suppressed [70]. However, the
electrolyzer voltage and energy consumption decreased first and then increased. Under
high-electrolytic-temperature conditions, the dominant factor is the decrease of the hydro-
gen overvoltage, which is conducive to hydrogen evolution, thereby reducing the current
efficiency and increasing the power consumption [34]. Furthermore, the temperature is too
high, and the zinc powder is seriously dissolved. Hence, the optimal electrolytic conditions
are at 40 ◦C with a CD of 1000 A·m−2 by comprehensive consideration.
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Figure 7. The curves of current efficiency, electrolyzer voltage and electric power consumption
changed with (a) current density, and (b) electrolyte temperature with NiFeLDH/A–CBp loaded onto
carbon paper. (c) Electrolyzer voltage curves of NF and NF–CL during electrolysis within 60 min.
(d) Constant-current electrolysis curve of NF–CL in 0.4 M ZnO and 6 M KOH. (e) Comparison of
electrolyzer voltage and electric power consumption reported in various works in the literature at
1000 A/m2 for alkaline zinc electrodeposition [34–39,71].

Under the optimal experimental conditions, the electrolyzer voltage of foam nickel
(NF) as anode is approximately 2.4 V, and the energy consumption is 2.056 kWh/KgZn. In
contrast, a lower electrolyzer voltage of 2.08 V and energy consumption of 1.782 kWh/KgZn
can be obtained by NiFeLDH/A–CBp dropped onto NF (NF–CL) as an anodic catalyst
(Figure 7c); these values are also significantly lower than that those reported, published,
and shown in Figure 7e [34,35,37,39,71]), highlighting the excellent catalytic performance
of NiFeLDH/A–CBp. In addition, NiFeLDH/A–CBp has good stability. The electrolyzer
voltage with NF–CL is almost constant after electrolysis for 1 h, while it increases 2.92%
with NF. The stability of NiFeLDH/A–CBp is further demonstrated by a long-time elec-
trolytic test of 600 min (Figure 7d), and the voltage of NF–CL can be maintained at 99.88%,
proving that an NiFeLDH/A–CBp catalyst can effectively reduce energy consumption in
zinc electrolysis.

The cathodic products of electrodeposition zinc were also analyzed, as shown in
Figure 8. The morphology of zinc powder obtained at different CDs for 1 h is characterized
(Figure 8a–c). At a low current density of 500 A·m−2, dense, uniaxial, and nanoscale zinc
powder is produced, which is easy to oxidize due to low ion mobility. With the increase
of the CD to 1000 A·m−2, the deposition rate increased, promoting the growth of zinc
nanoparticles. The zinc powder became flaky, and the size of the zinc powder increased to
a micron level, which is closer to the requirement for commercial Zn powder. Therefore, the
higher current density of 1000 A·m−2 is selected as optimal, though the electrolyzer voltage
and energy consumption are a little higher than that they are at lower CD values. As the
CD increases to 1500 A·m−2, the flaky zinc powder becomes thicker at a faster deposition
rate, resulting in many particles gathering on the surface (Figure 8c) [72]. Figure 8d is the
XRD diagram of the zinc products obtained at different temperatures. The characteristic
peaks of all materials at different electrodeposition temperatures are well-matched with
XRD standard cards of Zn, PDF#65-3358. The peaks at 36.29◦, 38.99◦, 43.22◦, 54.32◦, 70.08◦,
70.63◦, and 77.05◦ correspond to (002), (100), (101), (102), (103), (110), and (004) of Zn [72].
With the increase in temperature, the intensities of characteristic diffraction peaks gradually
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decrease, showing that the higher the temperature, the faster the deposition rate of cathode
zinc ions and the worse the crystallinity of the products [72]. At 40 ◦C, the crystallinity of
the obtained zinc powder is good, and the current efficiency is highest. Thus, 40 ◦C as the
optimal electrolytic temperature is reasonable.
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densities of (a) 500 A·m−2, (b) 1000 A·m−2, and (c) 1500 A·m−2 at 30 ◦C. (d) XRD of cathodic products
at different temperatures and 1000 A·m−2.

4. Conclusions

In summary, we obtained the conductive material CBp from waste tires and formed
high-performance catalysts for water decomposition and zinc deposition through simple
in situ synthesis. The SEM images reveal that the resulting NiFeLDH uniformly covers
the surface of A–CBp. The optimized NiFeLDH/A–CBp catalyst demonstrated a higher
Cdl of 43.26 mF·cm−2 and a lower overpotential (227 mV at 10 mA·cm−2), indicating
increased active sites, electrochemical active area, and catalytic performance. In addition,
NiFeLDH/A–CBp as an anodic catalyst presented a lower electrolytic voltage (2.08 V at
100 mA·cm−2), and the energy consumption (1.782 kWh/kgZn) for Zn electrodeposition
in an alkaline solution was much lower than that of 3.4 kWh/KgZn in industrial acidic
electrowinning. The proposed work provides an energy-saving OER catalyst derived from
CBp for water splitting and Zinc electrowinning in industrial applications.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ma16113997/s1, Figure S1: CV curves of NiFeLDH/A–CBp at different
sweep speeds with different AA contents. (a) 0 mmol, (b) 0.1 mmol, (c) 0.2 mmol, (d) 0.3 mmol, and
(e) 0.4 mmol. Figure S2: (a,b) SEM images of NiFeLDH/A–CBp after OER durability test. (c) XRD of
NiFeLDH/A–CBp before and after OER durability test. Table S1: The characterization of physical
and electrochemical properties for as-prepared samples. Table S2: Comparison of catalysts with high
OER activity in alkaline solution reported in various literature.
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