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Abstract: Welding defects are common during the production of large welded structures. However,
few studies have explored methods of compensating for clear welding defects without resorting
to re-welding. Here, an ultrasonic peening method to compensate for the deteriorated mechanical
properties of overlap weld defects without repair welding was studied. We experimentally investi-
gated changes in the mechanical properties of defective welds before and after ultrasonic peening.
The weld specimen with an overlap defect contained a large cavity-type defect inside the weld bead,
which significantly reduced the fatigue life. When the surface of the defective test piece was peened,
the fatigue life of the weld plate was restored, resulting in an equivalent or higher number of cycles
to failure, compared to a specimen with a normal weld. The recovery of mechanical properties was
attributed to the effect of surface work hardening by ultrasonic peening and the change in stress
distribution. Thus, ultrasonic peening could compensate for the deterioration of mechanical proper-
ties such as tensile strength, fatigue life, and elongation due to overlap defects, without resorting to
repair welding.
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1. Introduction

Welding defects are almost inevitable during the production of large welded structures
such as ships. They are particularly likely to occur during manual arc welding, as the weld
integrity is highly dependent on the skill and condition of the welder on the given day.
Owing to the extremely bright light generated during welding, the welder cannot clearly
observe the movement of the welding rod, which affects the welding quality based on
the welder’s skill. Additionally, improper movement of the welding electrode can lead to
undercut and overlap defects of the weld bead [1–3].

Welding defects are classified as internal or external. Internal defects, including
hydrogen embrittlement, cracks generated by low-temperature embrittlement, porosity,
poor penetration, and internal cracks, can only be detected during quality assurance
checks such as non-destructive testing. Conversely, external defects, such as undercuts,
overlaps, discontinuities, spatter, and slag inclusions, can be identified by visual checks
during and after welding. Depending on the severity of the defect, it may require repair
welding. Repair welding is the process of digging out and re-welding defective parts. For
example, external defects can significantly degrade the mechanical properties of welded
structures [4–6]. In structural components, this can result in large-scale collapse of the
structure, which has the potential to cause severe accidents, injury, and even loss of life.
Therefore, a strict inspection process is conducted with non-destructive testing, and welds
that do not meet the required standard are unconditionally removed and welded again.

However, repair welding carries certain risks and can introduce fatal defects. For
example, the defective part must be removed by using a grinder or cutter to dig out
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the welded part. During this process, frictional heat is generated, and this can cause
phase transformations or grain coarsening in the surrounding material. Further heat
is generated during re-welding, which can also cause material deformation and grain
coarsening. Coarse grains in the heat-affected zone (HAZ) can grow even larger. Ultimately,
these effects increase the risk of reheat cracking and degrade the mechanical properties
such as toughness. Furthermore, correcting all minor defects in non-critical parts would
incur high process costs. Therefore, for low-severity or “ambiguous” defects, such as
defects in parts that receive little load, there is often a debate between the construction and
supervisory parties as to whether the defects should be repaired. To satisfy both parties
while reducing the risks and costs associated with repair welding, it may be possible to
compensate for the performance degradation caused by defects without resorting to repair
welding. However, few studies have explored methods of compensating for clear welding
defects without resorting to re-welding [7,8].

Peening is a surface treatment technique in which the surface of the material is mi-
croplastically deformed [9,10]. This compresses surface pores, hair cracks, and subsurface
pores; work-hardens the surface and subsurface of the material; and applies compressive
residual stress to the surface. Consequently, the surface hardness and strength of the mate-
rial are increased, the notch effect is reduced, and the material’s fatigue life is prolonged.
Furthermore, the compressive residual stresses limit crack growth at the surface, which
improves the material’s resistance to stress corrosion cracking, stress fatigue cracking, and
fatigue corrosion [11,12]. Thus, peening is a useful method of improving the fatigue life of
components. Many researchers have studied the fatigue life of welded structures subjected
to cyclic loads, as well as the changes in fatigue life and mechanical properties after surface
treatments such as laser and ultrasonic peening [13–17].

There are several types of peening techniques. Among these, ultrasonic peening uses
ultrasonic resonance to impact the surface of a material using needles or impact pins at a
rate of 2000 times (20 kHz) to microplastically deform the surface. A major advantage of
ultrasonic peening is its portability, which facilitates its on-site application. In addition,
by adjusting the quantity and size of the impact tips, peening can be achieved over large
areas in a short time [18]. Peening has been shown to change the fatigue life or mechanical
properties of welds. However, most studies have focused on normal welds. In this study, we
tested whether overlap defects, which are common external weld defects, can be corrected
by ultrasonic peening, without resorting to repair welding. We experimentally investigated
changes in the mechanical properties of defective welds after ultrasonic peening.

2. Materials and Methods
2.1. Materials

Welding was performed on hot-rolled carbon steel sheets purchased from Chungnam
Steel Co., Ltd., Seoul, Republic of Korea. The grade used was ASTM A570 Gr.40, which is
widely used in structures in the shipbuilding and automotive industries. It is considered a
low-carbon steel as its carbon content is below 0.25 wt.%. The higher the carbon content,
the higher the tendency for martensite to form on cooling; therefore, precautions such as
pre-heating or post-weld heat treatment are necessary for welding [19]. Typically, hot-rolled
carbon steels such as that used in this study do not require pre- or post-heating for welding.
Butt-welded test specimens were fabricated from the cut sheets of rolled plates. Schematics
of the butt-welded specimens are shown in Figure 1.

Flux-cored arc welding was performed at a welding current of 280 A and voltage
of 30 V. Two types of test plates were produced. The first was manufactured assuming
a normal welded product without external weld defects, whereas the second was man-
ufactured to simulate overlap defects that occur during welding. In general, welding
that reproduces defects is more difficult than normal welding, so a highly skilled welder
worked to reproduce the overlap defects. Welding was performed in an indoor workplace
(temperature: 22 ◦C) without external air flow. Before welding, the lower ends of the plates
were first joined by tack welds. We used flux-cored wire welding rods of high-tensile
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steel based on the AWS A5.20 E71T-1C standard. The welding rods were KISWELL, SF-71.
Figure 1c,d show photographs of the welded plates with a normal weld and overlap defect,
respectively. The overlap phenomenon in Figure 1d shows that the weld beads have an
upward bias [20–24].
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Figure 1. Weld specifications. Schematics of (a) cut plate for forming butt welds and (b) cross-section
of normal weld (top) and overlap weld (bottom); Photographs of (c) normal welded plate and
(d) welded plate with overlap defect.

Ultrasonic peening was performed on the surface of the weld bead and the HAZ of
the welded plate with the overlap defect. The area showing surface discoloration caused by
the heat of welding was set as the HAZ. The peening treatment was applied to half of the
entire welded portion of the plate with the overlap defect; the other half was not peened
for comparing the properties before and after peening. Figure 2a,b depict a schematic and
photograph of the ultrasonic peening device, respectively. Ultrasonic peening of the weld
surface with overlap defects was performed with a displacement of 20 µm for 120 s. Three
impact pins with 6 mm round tips were used to facilitate microplastic deformation. During
ultrasonic peening, the peening device was directly picked up by the experimenter to treat
the surface. Moderate pressure was applied to the surface along with the weight of the
peening device, and no strong mechanical force was applied.
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Figure 2. Ultrasonic peening device. (a) Diagram of an ultrasonic peening device; (b) Photograph of
a three-tip ultrasonic peening device.

Fatigue and tensile test pieces were fabricated from the welded parts via wire electric
discharge machining. To understand the effect of peening, the surfaces containing the
weld bead and HAZ were not processed. The shape of the test piece was designed to
ensure that the joint of the root part was not retained on the test piece. Additionally, the
surface opposite the weld was shaped to create a gauge region, thereby minimizing the
cross-sectional area of the weld and HAZ to ensure that fracture occurred in that region.
Figure 3 shows a schematic of the fabricated specimen.
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Figure 3. Schematic of the tensile and fatigue test specimen obtained from the welded plates.

The specimens were divided into three types, depending on the weld type and surface
treatment. The first type contained the normal weld; the second type was obtained from the
defective plate with the overlap defect without peening; and the third type was prepared
from the overlap-defect area subject to ultrasonic peening treatment. To observe the
microstructure of the welds and measure the microhardness, specimens were prepared by
removing the ends of the fatigue test pieces.
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2.2. Test Procedures

The surfaces, cross-sections, and microstructures of the weld beads and HAZs of
the overlap-defect specimens with and without peening were observed using an optical
microscope (OM; MF-A1010D, Mitutoyo, Japan). The microstructures of the surfaces were
further examined by scanning electron microscopy (SEM; MAIA3, Tescan, Czech Republic).
The microhardnesses of the peened and untreated portions of the overlap welded specimen
were measured at loads of 2 N using a Vickers hardness tester (Micromet3, Buehler, Lake
Bluff, IL, USA). The microhardnesses were measured (see Figure 4a) in the HAZ on the
left (point A) and right (point B) sides of the weld bead and in the weld bead itself (point
C). The measurements were performed at 0.2–0.4 mm intervals on the cross-sections of the
samples, starting at a depth of 0.2 mm from the surface.
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Figure 4. Measurement positions on weld specimens. (a) Microhardness measurement positions;
(b) Residual stress measurement positions.

Tensile and fatigue tests were performed on the normal welded specimens, specimens
with the overlap defects, and specimens with peened overlap defects using a universal
testing machine (MTS, 810). Tensile tests were performed at a tensile speed of 1 mm/min to
measure the tensile and yield strengths and obtain stress–strain curves. In the fatigue tests,
stresses of +170 and −170 MPa were applied to the specimens alternately at a frequency
of 20 Hz. The fatigue life was calculated as the average number of cycles to failure of five
tests. The 170 MPa load was used as it is approximately 65% of the yield strength. The
fatigue fracture surfaces were observed using SEM (JSM-7500F, JEOL Ltd., Tokyo, Japan).

Finally, the residual stress of the cross-section was measured using an X-ray residual
stress meter (SmartLab 9KW, Rigaku, Japan) with a Cu Kα X-ray source, power of 45 kV,
current of 200 mA, θ/2θ scan mode, and 2θ scan range of 10.0–90.0◦. Three points were
measured per specimen to measure the residual stress distribution (see Figure 4b): the top
of the HAZ on the specimen (point A), the top of the bead (point B), and the bottom of the
bead (point C). The purpose of this residual stress measurement was to identify the change
in residual stress distribution when an overlap defect occurred and the change in residual
stress when the surface was peened.

3. Results
3.1. Surface Morphology of Overlap-Defect Weld

Figure 5a shows a photograph of the defective plate after peening. Peening was
performed on half of the welded section. Numerous small dimples were formed on the
peened surface. The enlarged image in Figure 5b shows that the weld bead was compressed
during the peening process. In particular, the overlap region exhibited a large amount of
compression. Although the compression was not substantial on the left side of the weld
bead (see Figure 5b), a significant amount of compression was generated by ultrasonic
peening on the right side of the overlapping section. This indicates that numerous unstable
defects existed inside the overlapping section.
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Figure 5. Photographs of overlap-defect weld after ultrasonic peening. (a) Peening surface of the
overlap weld; (b) Close-up image of the peening area.

3.2. Microstructure

The HAZ and bead part of the welded specimen with the overlap defect without
peening were observed using OM. The cross-section of the bead exhibited a typical weld
dendrite microstructure, as shown in Figure 6a. Figure 6b depicts the microstructure of the
HAZ, wherein coarsened pearlite was observed on the right side owing to the welding heat,
and the ferrite–pearlite structure of the base material was observed on the left side. The
dark and light regions are pearlite and ferrite, respectively. Figure 6c depicts a magnified
image of the upper part of the HAZ, demonstrating that there was a decarburized layer
on the upper surface. The partial progression of surface decarburization was attributed
to the heat transferred from the bead during welding. It is important to avoid surface
decarburization because it reduces fatigue life [25,26].

The specimen with the peened overlap defect was observed under OM. The compres-
sion effect caused by peening was observed on the HAZ surface. Figure 7a,b show low- and
high-magnification images, respectively, of the compressed layer on the surface of the HAZ
after ultrasonic peening. The high-magnification image confirmed the compression based
on the shape of the ferrite and pearlite grains. These changes were attributed to the effect
of surface compression caused by the local plastic deformation during peening. The SEM
image in Figure 7c clearly shows the surface compression layer of the HAZ area caused by
ultrasonic peening. This layer was approximately 10 µm thick, with the grain boundaries
disappearing due to the compression. Figure 7d shows a high-magnification SEM image of
the surface of the weld bead, with no significant change observed in the microstructure
because of the compression effect. In addition, it appears that the decarburized layer at
the top of the HAZ before peening was compressed. When decarburization occurs, carbon
in Fe3C in the pearlite structure escapes, leaving a soft ferrite structure. By peening, the
decarburized layer was work-hardened and turned into a compressed layer on the surface.
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3.3. Microhardness

The microhardness was measured from the surface of the section to a 3.0 mm depth.
The measurement positions were the center of the bead and the left and right sides of
the HAZ. Table 1 summarizes the measurement results. For the overlap-defect specimen
without peening, the average hardness value from the surface to the 3.0 mm-deep point of
the weld bead was 160.9 HV; no significant deviation was observed with respect to depth.
Additionally, the average hardness values of the HAZ on the left and right sides of the weld
bead were 123.7 and 126.6 HV, respectively. Again, no significant deviation was observed
with respect to depth.

Table 1. Microhardness of welded specimens at different depths and locations.

Depth from Surface
(mm)

Hardness before Peening (HV) Hardness after Peening (HV)

HAZ(L) Bead HAZ(R) HAZ(L) Bead HAZ(R)

0.2 124.4 158.2 135.2 170.5 189.3 172.3
0.5 122.3 152.5 128.4 168.7 197.2 170.2
0.8 125.4 160.3 122.5 169.2 185.2 168.8
1.0 121.0 165.7 122.9 157.3 172.6 158.5
1.3 123.2 163.0 123.6 145.2 169.5 143.8
1.7 124.6 163.6 126.3 137.5 161.2 135.2
2.0 122.5 161.2 124.8 128.7 162.5 130.5
2.3 125.1 160.9 125.9 122.5 160.8 125.7
2.7 122.4 162.5 123.7 121.3 161.3 122.8
3.0 125.7 161.5 123.2 122.9 161.5 122.5

Average 123.7 160.9 126.6 144.4 172.1 145.0
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Depth from Surface 

(mm) 

Hardness before Peening (HV) Hardness after Peening (HV) 

HAZ(L) Bead HAZ(R) HAZ(L) Bead HAZ(R) 

0.2 124.4 158.2 135.2 170.5 189.3 172.3 

0.5 122.3 152.5 128.4 168.7 197.2 170.2 

0.8 125.4 160.3 122.5 169.2 185.2 168.8 

1.0 121.0 165.7 122.9 157.3 172.6 158.5 

1.3 123.2 163.0 123.6 145.2 169.5 143.8 

Compressed layer 

Compressed ferrite and pearlite 

Compressed layer 

Figure 7. Microstructure of peened overlap-defect specimen. (a) Low-magnification optical image of
the HAZ; (b) High-magnification optical image of the HAZ; (c) Scanning electron microscopy (SEM)
image of the HAZ; (d) SEM image of the weld bead.

For the ultrasonically peened overlap-defect specimen, the average hardness of the
HAZ varied significantly with depth. Between 0.2 and 0.8 mm, the average hardness
values of the HAZ on the left and right sides of the weld bead were 169.5 and 170.4 HV,
respectively, which corresponds to a 40% improvement compared to the average hardness
values before peening. This improvement in hardness was attributed to the work-hardening
effect caused by ultrasonic peening. Subsequently, the hardness gradually decreased with
an increase in depth, reaching approximately 120 HV at a depth of 3.0 mm. The rate of
increase in hardness of the bead part owing to peening was lower than that of the HAZ;
nevertheless, the hardness also increased in the bead part because of work hardening. The
average hardness of the peened weld bead from the surface to a depth of 0.8 mm was
190.6 HV, which corresponds to an increase of approximately 15% compared to that before
peening (160.9 HV). The improvement of surface hardness was also confirmed in the bead
part. The hardness of the bead part was 172.6 HV at a depth of 1.0 mm, which was greater
than that at the same depth before peening (165.7 HV).

3.4. Tensile Properties

Table 2 summarizes the tensile test results. For the normal welded specimen, the tensile
and yield strengths were 399 and 277 MPa, respectively. Thus, this specimen satisfies the
400 MPa strength standard of A570 Gr.40. The strength softening phenomenon caused by
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welding was insignificant because the area of grain coarsening in the HAZ was relatively
small. In the case of the specimen with overlapping defects, the yield strength was 231 MPa,
which was lower than that of the normal welded specimen (277 MPa); however, the tensile
strength was 345 MPa, which is 20% lower than that of the normal welded specimen. The
normal welded specimen fractured in the HAZ during the tensile test, which is typical for
welded specimens, whereas the fracture was initiated in the weld bead in the overlap-defect
specimen. This caused rapid failure of the specimen owing to the concentration of stress on
the defects inside the overlap. Furthermore, the elongation of the overlap-defect specimen
subjected to the tensile test was reduced to 17.8%, which is 33% less than that of the normal
welded specimen (26.5%).

Table 2. Tensile test results of each specimen.

Property Normal Specimen Overlap-Defect Specimen Peened Overlap-Defect Specimen

Yield strength (MPa) 277 231 289
Tensile strength (MPa) 399 345 434

Elongation (%) 26.5 17.8 22.1

For the peened overlap-defect specimen, both the tensile and yield strengths increased
in comparison with those of the normal welded and overlap-defect specimens. The mea-
sured yield and tensile strengths were 289 and 434 MPa, respectively. The tensile strength
was increased by peening because the overlap defect was largely compensated for by peen-
ing. The improvement in strength was attributed to two aspects: first, residual stress was
imparted to the test piece during the peening operation; second, the work-hardening effect
improved the surface and subsurface strengths, because the Vickers hardness test confirmed
that the hardness increased due to peening, and the strength of a metallic material generally
improves with an increase in hardness. Moreover, work hardening decreases the elongation
and ductility of welded materials. Although the elongation of the peened overlap-defect
specimen was improved compared to that of the overlap-defect specimen, the elongation
was decreased in comparison with that of the normal welded specimen. Figure 8 shows the
stress–strain curves of the normal welded, overlap-defect, and overlap-peened specimens.
When low-carbon steel is press-processed, a yield point drop phenomenon can occur, which
causes surface wrinkles called stretcher strains. However, these wrinkles were not observed
on the surface of the peened specimen. This was because the strength after peening was
greater than the yield point [27].
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3.5. Fatigue Behavior

Table 3 summarizes the results of the five fatigue tests for each type of specimen. The
average fatigue cycle life of the normal welded specimens was 111,725 cycles. The fracture
surfaces were observed by SEM to elucidate the fatigue failure mode, as shown in Figure 9.
The low-magnification SEM image in Figure 9a shows that the main failure mode was
brittle fracture. At higher magnification (see Figure 9b), evenly distributed fatigue striations
were observed over most of the fracture surface. Figure 9c shows the morphology of the
final fracture at the end of the test. Brittle regions and ductile dimpling were sequentially
arranged. Additionally, the fracture occurred in the HAZ, as indicated by the tensile test
results. Combining these factors, we concluded that the fracture of the normal welded
specimen was typical of welded specimens under fatigue cycling.

Table 3. Fatigue test results: number of cycles to failure.

Test Number Normal Specimen Overlap-Defect
Specimen

Peened
Overlap-Defect

Specimen

1st 108,508 2543 121,012
2nd 118,210 2266 118,513
3rd 111,102 2439 119,322
4th 107,589 2355 120,583
5th 113,218 2512 115,420

Average 111,725 2423 118,970

For the overlap-defect test pieces, the average fatigue cycle life was 2423, which is
extremely low compared to that of the normal weld specimens. Figure 9d shows a low-
magnification SEM image of the test piece, wherein a large defect was observed inside the
fracture surface. This phenomenon was caused by incomplete filling of the butt weld by
filler material, because the bead was biased to one side during welding owing to the nature
of the overlap defect. Therefore, the fatigue life of the overlap specimen was significantly
reduced compared to that of the normal welded product because of the large defects
in the cavity.

The low-magnification SEM image in Figure 9d also depicts that the sample failed
by brittle fracture. A brittle fracture region was observed across the entire width of the
test piece, indicated by the red arrows. However, no fatigue striations were observed on
this large brittle fracture surface. The absence of fatigue striations was attributed to the
instantaneous expansion of the defect when the specimen was subjected to fatigue stress.
Nevertheless, fatigue striations were observed at the top left of the fracture surface, as
marked by red circles in Figure 9e,f. The fatigue crack was initiated in this region. Based on
our analysis, we concluded that fatigue failure occurred rapidly because fatigue stress was
applied to the narrow cross-sectional area, which resulted in the instantaneous expansion
of the defect.

The average fatigue life of the peened overlap-defect specimens was significantly
improved to 118,970 cycles. Notably, this is even better than that of the normal welded
specimens (111,725 cycles). This improvement was confirmed by visually inspecting the
specimens following the fatigue failures. For the overlap-defect specimen, the fracture
initiated at the incomplete penetration defect inside the weld bead. Figure 10a shows a
photograph of an overlap-defect specimen after the fatigue test; the fracture site was in the
center of the weld bead. In contrast, the peened overlap-defect specimen fractured in the
HAZ, even though a cavity-shaped defect was present in the bead part at the center of the
specimen, as indicated by the white arrow (see Figure 10b). Similarly, the normal welded
specimen also fractured in the HAZ.
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Figure 9. SEM images of the fracture surface of the normal welded specimen. (a) Low-magnification
image; (b) High-magnification image; (c) High-magnification image of final fracture area. SEM
images of the fracture surface of the overlap-defect welded specimens. (d) Low-magnification image;
(e) Fatigue striation region; (f) High-magnification image of fatigue striations.
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Figure 10. Photographs of the fatigue-fractured overlap-defect specimens. (a) Without peening;
(b) With peening. SEM images of the fracture surface of the peened overlap-defect specimen.
(c) Overall fracture surface; (d) Compressed surface; (e) Fatigue striations; (f) Progress of crack
growth; (g) Ductile–brittle surface; (h) High-magnification image of the final fracture region.

Figure 10c–h depict the SEM images of the fatigue fracture surfaces of the peened
overlap-defect specimens. The fracture surface can be divided into three zones, as shown
in Figure 10c. The first (marked with a red arrow at the bottom of the above figure) is the
HAZ surface and subsurface area, where the surface was compressed by ultrasonic peening.
The second (marked with a yellow circle) is the fatigue striation region, which indicates the
progression of the fatigue cracks. Finally, in the third zone (at the top of the above figure),
ductile and brittle regions coexisted, with no fatigue striations. Therefore, the third zone
was considered to be the final stage of rapid failure.

Figure 10d shows a higher magnification image of the compressed HAZ surface. No
ductile fracture or fatigue striations were observed in this area. In comparison with the
general brittle section, the fracture surface was smooth in this region. The fracture in this
compressed area and the final fracture region are believed to have occurred simultane-
ously. As shown in Figure 10e, fatigue striations were observed immediately below the
compressed zone. These fatigue striations initiated at the compression zone below the
HAZ surface and propagated through the specimen. Figure 10f confirms that the fatigue
striations progressed entirely in this striation region. In contrast, fatigue striations did not
appear in the ductile–brittle fracture area, as shown in Figure 10g. This is because the final
fracture occurred after the fatigue crack growth. Examining this area indicated that the
brittle and ductile surfaces were composed of fine layers. Figure 10h shows the brittle
surface and ductile-type dimple morphology [28–32]. When the final fracture occurred, the
ductile layer was presumed to be slightly elongated, delaying the final fracture.

3.6. Residual Stress

The residual stresses in the cross-sections of the overlap-defect and peened overlap-
defect specimens were measured using an X-ray residual stress measuring device. Initially,
X-ray diffraction was performed to select a plane for measuring the residual stress; Figure 11
illustrates the results. Among the X-ray diffraction peaks, the (211) plane was selected for
residual stress measurements, which could generate data about all three lattice parameters
(a, b, and c). As the residual stresses determine the lattice distortions in the three directions,
this plane was considered ideal for the measurements.
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Figure 11. X-ray diffraction patterns of the normal welded specimen.

In general, the welded section comprises the HAZ, base metal, boundary, and weld
bead. The typical stress distribution includes tensile residual stresses in the HAZ and
weld bead. During welding, the temperature of the weld bead increases above the melting
temperature of the material because of the arc heat, and the bead changes to a liquid
phase. Consequently, the volume of the bead expands, followed by contraction as the
bead solidifies. In the HAZ, heat is transmitted from the weld bead to the surrounding
material, increasing the temperature to the austenite zone. Subsequently, the material
rapidly cools, which results in the formation of a martensite or pearlite phase, leading to
volume expansion. Thus, the weld bead and HAZ exhibit residual tensile stresses owing to
the volume expansion.

Table 4 summarizes the residual stress measurement results. For the overlap-defect
specimen, the compressive stress was −386 MPa in the HAZ, with the tensile stresses at
the top and bottom of the bead part 1496 and 1037 MPa, respectively. This stress state was
attributed to the cavity-type defect observed in the center of the bead of the overlap-defect
specimen owing to the incomplete penetration of the filler metal during welding. This
cavity creates a strong expansion force on the surrounding material. Therefore, a high
residual tensile stress of 1496 MPa was measured at the top of the bead owing to the
expansion force; however, it acted as a repulsive force on the surrounding material, leading
to a compressive residual stress being measured in the HAZ. This is because the volume of
the base material was large in the HAZ. Thus, the rapid failure of this specimen during
fatigue testing was exacerbated by amplifying effect of the residual tensile stress in the weld
bead on the applied fatigue stress. Figure 12a,b depict this phenomenon schematically.

Table 4. Residual stress measurements of overlap-defect and peened test pieces.

Specimen
Location

Heat-Affected Zone Upper Region of the Bead Middle Region of the Bead

Overlap-defect specimen −386 MPa 1496 MPa 1037 MPa
Peened overlap-defect specimen 978 MPa 460 MPa 647 MPa
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Figure 12. Schematic of residual stress generation at overlap defects. (a) Expansion force generated
by the defect inside the bead; (b) Residual stress in the overlap-defect specimen; (c) Residual stress
on the peened surface of the overlap-defect specimen.

The residual stress distribution in the overlap-defect welded plate changed after
ultrasonic peening. Notably, the respective stresses at the surface and lower parts of the
bead decreased from 1496 and 1037 MPa before peening to 460 and 647 MPa after peening.
As the surface of the bead was directly peened using the ultrasonic peening device, the
decrease in the tensile stress on the surface was large, whereas a smaller decrease was
observed in the lower part of the bead. Conversely, the compressive residual stress of
−386 MPa in the HAZ changed to a tensile residual stress of +978 MPa after ultrasonic
peening. This change in the stress distribution amplified the residual tensile stress in the
HAZ during fatigue testing of the peened specimen, which resulted in fatigue failure
occurring in the HAZ without significant expansion of the fatal defects inside the bead.
Figure 12c schematically illustrates this phenomenon, while Figures 13 and 14 show the
respective residual stress diagrams.
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Figure 13. Residual stress diagrams of the overlap-defect specimen. (a) Heat-affected zone; (b) Upper
region of the bead; (c) Middle region of the bead.
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4. Discussion

To determine the efficacy of ultrasound peening for correcting overlap defects without
repair welding, normal and overlap-defect welded specimens were produced and tested.
The most prominent feature in this experimental study was the significant reduction in the
fatigue life of the welded specimens with overlap defects. The fatigue life of the overlap-
defect welded specimens was approximately 50 times lower than that of the normal welded
specimens. This was caused by the large cavity defect inside the weld bead, where the filler
metal was biased in one direction and thus did not completely infiltrate the weld bead. This
large internal defect resulted in rapid crack progression when fatigue stress was applied.
The fracture was located in the weld bead itself.

The welded plates with overlap defects were then subjected to ultrasonic peening.
Fatigue tests showed that the peened specimen had a slightly higher fatigue life than the
normal welded specimen, and a significantly higher fatigue life than the overlap-defect
specimen. Furthermore, the fatigue failure occurred in the HAZ in the peened specimen.
Despite the presence of defects inside the bead, they were not enlarged under the applied
fatigue load, and the fracture occurred in the HAZ, similar to that observed in the normal
welded specimen.

The higher fatigue strength of the peened specimen was due to two reasons. The first
reason is that the high residual tensile stress in the bead caused by the defects was lowered
by ultrasonic peening and converted into a relatively high tensile residual stress in the HAZ
rather than the bead. This implied that elongation occurred in the HAZ during fatigue
cycling. The second reason is the effect of surface work hardening. The increase of hardness
due to work hardening was much higher in the HAZ than in the bead. The higher the
surface hardness, the higher the fatigue life. Therefore, elongation during fatigue cycling
occurred in the HAZ, and because the surface hardness of the HAZ was increased, the
fatigue life increased compared to that of the normal weld. The decrease in tensile strength
and elongation due to the overlap defect were therefore compensated for during fatigue
cycling. The above results demonstrate that ultrasonic peening technology can compensate
for the elongation and reduction in tensile strength and fatigue life caused by the overlap
defects of welds without repair welding.

Furthermore, two benefits can be obtained from ultrasonic peening technology. Be-
cause inclusions and segregations inside the material also lead to pores and cracks, de-
fect detection is sometimes inconclusive in non-destructive testing. Such defects can be
cost-effectively repaired by ultrasonic peening instead of re-welding all potential defects.
Furthermore, our findings show that ultrasonic peening could compensate for non-safety-
critical overlap defects, such as those in structures subjected to weak stresses (e.g., support
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rods for long pipes) [33–38]. Welding overlap defects in such parts can be easily repaired
with ultrasonic peening instead of re-welding. Therefore, minimal re-welding of overlap
defects could reduce maintenance costs.

5. Conclusions

In this study, ultrasonic peening was explored to compensate for frequent overlap
defects during welding. The surface of the welded plate, which reproduced the overlap
defect, was treated using ultrasonic peening, and the mechanical properties before and
after peening treatment were compared. When an overlap defect occurred, a large cavity
defect formed inside the bead. Defects inside the bead lowered the tensile strength and
greatly reduced the fatigue life. Nevertheless, both tensile strength and fatigue life were
compensated as a result of ultrasonic peening treatment for this overlap defect. Due to
surface hardening by ultrasonic peening and change in stress distribution, cracks did not
develop inside the overlap bead. Therefore, ultrasonic peening could compensate for the
deterioration of mechanical properties such as tensile strength, fatigue life, and elongation
due to the overlap defect. However, the change in absorbed energy during impact tests,
which is another important mechanical property, should be further studied. In addition, it
is essential to set the work standard for utilizing ultrasonic peening in actual weld sites;
therefore, the effects of peening for different times and pressures per unit area should be
further studied.
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