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Abstract: Self-propagating high-temperature synthesis (SHS) is a good way to prepare ZrB2-ZrC/metal
cermet composites. In this work, ZrB2-ZrC/Ni cermet composites with various Ni contents were
successfully fabricated by SHS using the Ni-Zr-B4C system. The effects of Ni content and particle
size of the B4C powder on the SHS reaction were investigated. The results indicated that with an
increase in Ni content, the adiabatic temperature, maximum combustion temperature, ignition delay
time, and ceramic particle size in the product all showed a gradually decreasing trend. The SHS
products and the ignition of the SHS reactions were significantly dependent on the B4C particle size.
The formation mechanism of ZrB2 and ZrC during SHS from the Ni-Zr-B4C system was proposed
based on the combustion wave quenching experiment.

Keywords: self-propagating high-temperature synthesis (SHS); ZrB2; ZrC; reaction behavior; forma-
tion mechanism

1. Introduction

Particle reinforced metal matrix composites have attracted increasing attention be-
cause of their excellent performance. ZrB2 and ZrC have high hardness, a high melting
point, good corrosion resistance, and excellent thermodynamic stability, and also exhibit
outstanding compatibility with the metal matrix, making them ideal materials for particle
reinforcement phases [1–5].

Self-propagating high temperature synthesis (SHS) is a good way to prepare particle
reinforced metal matrix composites because of its numerous advantages, such as a rapid
synthesis of materials, low energy consumption, and high product purity [6–12]. In recent
years, it has been reported that ZrC-ZrB2/metal cermets were prepared by adding different
metal elements into the Zr-B4C system and using metal-Zr-B4C as reaction system, and the
reaction mechanism was investigated. Hu Qiaodan et al. [1] prepared ZrC-ZrB2/Al and
studied the SHS reaction mechanism of the Al-Zr-B4C system, pointing out that Al plays a
very important role in the Al-Zr-B4C system. At first, molten Al reacted with Zr, and then
ZrAl3 formed the Al-Zr liquid phase, which provided a way for B and C atoms to enter
the liquid phase, and finally, ZrC and ZrB2 precipitated out of the liquid. Zhang Mengxian
et al. [4,5] studied the formation path of ZrB2 and ZrC in the Cu-Zr-B4C system during SHS
using a differential scanning calorimeter (DSC) and X-ray diffraction (XRD). The effects
of Cu content, B4C particle size, and heating rate on the SHS reaction behavior were also
studied. Zhang Mengxian et al. [2,3] also studied the reaction behavior in the Co-Zr-B4C
system during SHS. The ZrC-ZrB2 ceramic composite powders were in situ synthesized by
SHS using the Co-Zr-B4C system, and then plasma was sprayed to form cermet coatings on
an Mg alloy. The addition of metal can increase the contact area of the reactants by forming
an intermediate liquid phase, thus reducing the difficulty of the reaction. Ni is a promising
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candidate, with a low wetting angle with the ceramic phases, and Ni can react with B4C to
form an Ni-B liquid phase [7,9].

In our previous paper [13], ZrC-ZrB2/Ni cermet powders were successfully synthe-
sized by SHS using an Ni-Zr-B4C system. The SHS-derived powders were deposited on an
Mg alloy to form ZrC-ZrB2/Ni cermet coatings by using atmospheric plasma spraying. The
produced coatings bonded well with the substrate and provided superior wear resistance.
In another previous paper [14], the reaction mechanism in an Ni-Zr-B4C system to form
ZrB2, and ZrC was analyzed by DSC and XRD. In general, DSC experimental conditions are
slightly different from SHS reaction conditions in a glove box. Therefore, in this work, the
combustion wave quenching experiment was used to reveal the SHS reaction mechanism
in a glove box, and the effects of Ni content and different B4C reactants on the system
products were studied. This is expected to provide a theoretical basis and guidance for the
SHS of cermet composites.

2. Materials and Methods

The ZrB2–ZrC/Ni cermet composites were synthesized according to the following
reaction equation:

xNi + 3Zr + B4C→ xNi+2ZrB2+ZrC (1)

Commercial Ni (≤48 µm, 99% purity, ST-nano science and technology Ltd. Co.,
Shanghai, China), Zr (≤38 µm, 99% purity, ST-nano science and technology Ltd. Co.,
Shanghai, China), and B4C (≤3.5 µm; ≤14 µm; ≤28 µm; ≤40 µm, ≤80 µm, 95% purity,
Abrasive Ltd. Co., Dunhua, China) powders were used as the starting materials. When
studying the influence of Ni content on the SHS reaction, the particle size of B4C was
selected as 3.5 µm. The particle size of the B4C powders varied from 3.5 µm to 80 µm to
investigate the effect of the reactant particle size. The Zr and B4C powders, with a ratio
corresponding to that of stoichiometric 2ZrB2-ZrC (mole ratio) mixed with 0~50 wt.% Ni
content, were selected for the powder blends. The raw reactant powders were dry-mixed
by ball milling at a low speed (~50 rpm) for 6 h, and then pressed into cylindrical compacts
(about 20 mm in diameter and 15 ± 2 mm in height) using a stainless steel die to acquire
densities of 60 ± 2% theoretical density. The SHS reaction was performed in a self-made
glove box filled with argon gas at 0.1 MPa. The green compact was placed on a thin graphite
flake and subsequently ignited from the bottom by an arc welding flame with a strong
current of 60 A. A small hole with a radius of 2 mm and a depth of 2 mm was drilled at the
top of the compact. A pair of W–5% Re/W–26% Re thermocouples was inserted into the
hole and linked up with an temperature acquisition recorder to obtain a time–temperature
curve. The acquisition speed was 20 points per second. The schematic diagram of the SHS
experimental apparatus is shown in Figure 1.

The phase composition of the SHS products was analyzed using an X-ray diffractome-
ter (XRD) (D8 Advance, Bruker, Cu-Kα radiation, λ = 0.15406 nm, Germany) at a scanning
rate of 6◦/min and a scanning range of 20–80◦. The microstructure of the SHS products was
examined by scanning electron microscopy (SEM) (S-4800, Hitachi, Tokyo, Japan) equipped
with energy dispersive spectroscopy (EDS). The linear intersection of the SEM image was
used to measure the size of the ceramic particles.

The combustion wave quenching experiment is a good method to use for studying
the reaction mechanism of SHS. The copper-mold-aided combustion wave quenching
experiment, using the Ni-Zr-B4C system with 30 wt.% Ni in the compact, was performed.
The particle size of B4C in the quenching experiment was 14 µm. Figure 2 shows the
schematic diagram of the combustion wave quenching experimental device. When the
combustion wave passed through a rectangular bar 65 mm × 10 mm × 5 mm in size, the
heat loss increased due to the elongated shape of the bar and the cooling of two copper
plates clamped in the middle of the bar, thus achieving the automatic flow blocking of the
combustion wave. The quenched bar was carefully polished. The phase composition of
the different regions of the SHS quenched bar was identified by X-ray micro-diffraction
(D8 Discover with GADDS, Bruker AXS, Karlsruhe, Germany), which was operated at
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40 kV and 30 mA using an 800 µm beam diameter. The microstructure of the Ni, Zr, B4C
raw material powder and the different regions of the quenched bar were observed by SEM
(S-4800, Hitachi, Japan), respectively. Element distribution at the combustion region was
analyzed by EDS.
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3. Results and Discussion
3.1. Reaction Behavior of the Ni-Zr-B4C System
3.1.1. Effect of Ni Content on the SHS Reaction

The use of heat generated by the exothermic reaction itself for material synthesis is
one of the most basic characteristics of SHS technology [8]. Therefore, thermodynamic
analysis of the combustion system is the basis of studying the SHS process. The adiabatic
temperature (Tad) is one of the most important thermodynamic parameters to describe the
SHS reaction, which can be defined as the theoretically calculated temperature under an
adiabatic condition during the SHS process. It can not only be used as a qualitative basis to
judge whether the combustion reaction is self-propagating, but it can also predict the state
of the combustion reaction products and provide a foundation for the composition design of
the reaction system. Merzhanov et al. [15] proposed an empirical criterion such that when
Tad ≥ 1800 K, the SHS reaction can be self-propagating. Tad can be calculated by computer
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programming using thermodynamic data from Ref. [16], according to Equation (2), as
follows [15]

∆H(298) +
∫ Tad(298)

298
∑ njCp

(
Pj
)
dT + ∑298−Tad(298) njL

(
Pj
)
= 0 (2)

where ∆H (298) is the reaction enthalpy at 298 K, Cp(Pj) and L(Pj) are the heat capacity
and latent heat of the products (if a phase change takes place), and Pj and nj refer to the
products and the stoichiometric constant, respectively.

The variation in Tad with Ni content (ωNi) is shown in Figure 3. WhenωNi is between
0–4 wt.%, 5.23–17.66 wt.% and 57.62–65.04 wt.%, respectively, three temperature platforms
appear in the figure. The temperatures are 3323 K, 3187 K, and 1726 K, corresponding to
the melting point of ZrB2, the boiling point of Ni, and the melting point of Ni, respectively.
In these three platform ranges, the Tad remains constant as the Ni content changes. This is
because materials need to absorb a certain amount of heat during phase changes such as
melting and gasification. Outside the three platforms, the Tad decreases with the increase
in Ni content. This is due to the increase in Ni content, which leads to a decrease in the
amount of Zr and B4C, and a decrease in the heat released from the reaction. As shown
in Figure 3, when the ωNi is 55.6 wt.%, the calculated Tad is 1800 K. According to the
empirical criterion, when Tad ≥ 1800 K, the combustion reaction can be self-sustained [15].
Therefore, the range of 0% ≤ ωNi ≤ 50% was selected in this work. The SHS reactions of
the Ni-Zr-B4C system with ωNi = 0, 10, 20, 30, 40, and 50 wt.% were all successfully ignited
and self-propagated, which was consistent with the theoretical prediction.
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Figure 4 shows the SHS combustion time–temperature curves of the reactant compacts
with various Ni contents in the Ni-Zr-B4C system. According to the curves, the maximum
combustion temperature (Tc) decreases with the increase in Ni content. The Tc of each
content was plotted as a curve and compared with Tad, as observed in Figure 3. It is
revealed that the value of Tc is smaller than that of the corresponding Tad due to heat
loss and incomplete conversion in the actual SHS experiment [3,9]. Moreover, with the
increase in Ni content, the difference between Tc and Tad decreases gradually. It is worth
mentioning that the type of time–temperature curve (yellow curve) changes when 50% Ni
is added. At the peak of the curve, the temperature drops more slowly, and temperature
peak smoothing is observed. It is presumed that in this case, the exothermic reactions of
the formation of the final product are less intense than in other systems [17–19]. With the
increase in Ni content, the heat release decreases gradually.
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The influence of Ni content on the SHS reaction ignition delay (tig) can also be obtained
from the combustion temperature measurement results of samples with different Ni content,
as illustrated in Figure 5. With the Ni content increasing, tig shows a decreasing trend.
Therefore, adding an appropriate amount of Ni to the Zr-B4C system can promote the
ignition reaction. Previous investigations [14] have studied the formation path of ZrB2 and
ZrC ceramic particles in the Ni-Zr-B4C system under DSC conditions, pointing out that
initially, Ni reacts with B4C and Zr, which can form Ni-B and Ni-Zr melt in the subsequent
heating process. The liquid melt is tightly wrapped with B4C. It provides a convenient way
for B and C atoms to dissolve into the liquid phase, so that the Ni-Zr-B-C quaternary liquid
phase can be easily formed, which accelerates the reaction precipitation of ZrB2 and ZrC.
Therefore, the addition of Ni makes the SHS reaction easier to ignite [3].
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Figure 6 shows the XRD patterns for the products in the Ni-Zr-B4C system with
different reactant Ni contents. The phase composition of the SHS products with 0 wt.%
Ni consists of ZrB2 and ZrC. WhenωNi = 10–30 wt.%, the combustion synthesis products
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contain a small amount of Ni2B in addition to Ni, ZrB2, and ZrC. WhenωNi = 40–50 wt.%,
the intermediate phases Ni10Zr7 and Ni4B3 appear and increase with the increase in Ni
content, while Ni2B decrease with the increase in Ni content. This indicates that when
the Ni content is greater than 40 wt.%, the incomplete degree of SHS reaction gradually
increases, and too much Ni blocks the reaction of Zr and B4C. In addition, it can also be
noted in the figure that when the Ni content is low, the peak intensity of ZrB2 is higher
than that of ZrC, but with the increase in Ni content, the peak intensity of ZrB2 gradually
becomes weaker than that of ZrC. This occurs because with the increase in Ni content,
the reaction heat release of the system decreases, and the degree of incomplete reaction
increases. A large amount of intermediate Ni2B has not yet participated in the reaction to
form ZrB2.
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Figure 7 exhibits the microstructures of the SHS products with different Ni contents.
It can be seen that granular ZrB2 and ZrC are formed in the product. The flat hexagonal
particles are ZrB2, and the cube particles are ZrC. When the Ni content is 0 wt.%, the ceramic
particles show severe sintering, and a large number of obvious holes can be observed in
the low magnification photos. When the Ni content increases from 10 wt.% to 50 wt.%, the
ceramic particle size gradually decreases from ~5 µm to ~0.5 µm. The main reasons for the
decrease in ceramic particle size may be as follows: (1) the crystal growth is an exponential
function of temperature [20]. With the increase in Ni content, the combustion temperature
gradually decreases, and the growth rate of ZrB2 and ZrC decreases; (2) with the increase
in Ni content, the thermal conductivity of the product increases, making the cooling rate
increase, which is not conducive to the growth of ceramic particles [21]; and (3) with the
increase in Ni content, the liquid phase between the ceramic particles increases during the
reaction process, which hinders the sintering growth between the grains and reduces the
trend of grain coarsening.
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3.1.2. Effect of B4C Particle Sizes on the SHS Reaction

The 30 wt.% Ni-Zr-B4C system was used as the research object. In the reaction mixture,
the particle size of B4C was 3.5 µm, 14 µm, 28 µm, 40 µm, and 80 µm, the particle size of Ni
was 48 µm, and the particle size of Zr was 38 µm.

The products after the reaction of the samples with different B4C powder were ana-
lyzed by XRD, as illustrated in Figure 8. When the particle size of the B4C powder in the
reactants is 3.5 µm, 14 µm, and 28 µm, the SHS products were composed of ZrB2, ZrC, Ni,
and a small amount of intermediate Ni2B. With the increase in the particle size of the B4C
powder, the ignition delay time of the SHS reaction increased. When the B4C size in the
reactant was larger than 40 µm, the self-propagating reaction became very difficult, and
the ignition time was longer. The product contained large amounts of NiZr, Ni10Zr7, and
Ni2B, but the amounts of ZrB2 and ZrC were very small. When the particle size of the B4C
powder in the reactant was 80 µm, the reaction could not be self-propagated, and almost
no ZrB2 and ZrC were generated. The above results show that the SHS reaction behavior
and the products of the 30 wt.% Ni-Zr-B4C system were significantly affected by the size of
the B4C particles. The increase in the B4C particle size makes the ignition and propagation
process of the self-propagating reaction difficult, and also reduces the propagation rate of
the combustion wave and the product formation rate. A similar effect was found in the
Cu-Zr-B4C system, in which coarser B4C particles postponed the formation of ZrB2 and
ZrC [5]. The results show that the dissolution rate of B4C in Cu-Zr liquid decreased with
the increase in B4C size, which could retard the formation of the Cu-Zr-B-C liquid. This led
to the incomplete conversion of ZrB2 and ZrC.
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3.2. Formation Mechanism of ZrB2 and ZrC during the SHS Process
3.2.1. DSC Analysis

The reaction mechanism of the 30 wt.% Ni-Zr-B4C system during the DSC experiment
was described in detail in a previous paper [14]. It was proposed as follows: firstly, Ni, B4C,
and Zr have solid-state diffusion reactions to form some NixZry and NixBy intermetallics.
Then, an Ni-B eutectic liquid formed at about 1025 ◦C, and the free C atoms dissolved into
the Ni-B liquid to form an Ni-B-C ternary liquid. When the mixture was heated to about
1088 ◦C, part of Zr powder directly reacted with B4C through solid-state diffusion reaction,
and part of the Zr powder dissolved into the Ni-B-C ternary liquid to form the Ni-Zr-B-C
quaternary liquid. When the temperature reached 1150 ◦C, an Ni-Zr eutectic liquid formed.
The Ni-Zr eutectic liquid could also dissolve into the Ni-B liquid or Ni-B-C liquid to form
Ni-Zr-B-C quaternary liquid. Finally, ZrB2 and ZrC precipitated out of the saturated liquid.

3.2.2. Combustion Wave Quenching Experiment

Although the above DSC analysis result is very helpful to understand the formation
mechanism of the Ni-Zr-B4C system, the DSC experimental condition is different from
the SHS in the glove box in terms of heating rate, sample volume, and compacting rate.
These factors have a great influence on the reaction kinetics and mechanism of the system.
Therefore, the reaction mechanism under the DSC condition cannot be used to fully explain
the reaction mechanism under the SHS mode. In order to study the reaction mechanism of
the ZrB2 and ZrC of the Ni-Zr-B4C system formed by the SHS in glove box, a combustion
wave quenching experiment was conducted. The quenched sample was analyzed by XRD
and SEM, and the reaction mechanism was studied.

Figure 9 shows the macroscopic morphology and partition diagram of the SHS
quenched bar, in which the wavy area with the darkest color is the typical morphology of
the combustion wave. Against the spreading direction of combustion wave, the quenched
bar can be differentiated into four regions according to the degree of reaction, namely, the
unreacted region, the preheated region, the reacting region, and the fully reacted region. As
shown in Figure 9, six points are noted in each reaction region and the interface between
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the two regions, respectively. Figure 10 shows the X-ray micro-diffraction patterns for
each point.
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Figure 11 shows the microstructure of the Ni, Zr, B4C raw material powder and the
unreacted region of the quenched bar. It is observed that the Ni, Zr, and B4C powders can
be easily distinguished from the morphology. Among them, the Ni particles show clusters
of flowers, the Zr particles show smooth clumps, and the B4C particles show irregular
shapes with sharp corners (see Figure 11a–c). In addition, the distribution of the reactants
in the unreacted region is relatively uniform (see Figure 11d). The interface between the
unreacted region and the preheated region and the typical morphology of the preheated
region are presented in Figure 12a,b, respectively. It can be observed from Figure 12a that
the morphology of the unreacted region is obviously different from that of the preheated
region. The unreacted region is composed of a loose reactant powder mixture, while the
preheated region is relatively dense, and there is an interface region between them. The
change from point (2) to point (3) in the XRD results is shown in Figure 10, indicating that
Ni reacted with Zr in the preheated region, forming NiZr, with a high content. Meanwhile,
the formation of Ni2B and Ni4B3 indicated that a solid diffusion reaction also occurred
between Ni and B4C. With the increase in temperature, Ni2B and Ni4B3 could form the
Ni-B liquid phase when they reached the eutectic point (1291 K) [22], which rapidly spread
out and filled into the pores of the sample, thus forming a relatively dense structure, as
shown in Figure 12b.
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of the quenched bar.

It is worth mentioned that some papers [22] stated that TiC, rather than TiB2, would
preferentially form in the metal-Ti-B4C system. However, the outcomes of this work are
different, and there is no preferential formation of ZrC in the preheated region because the
eutectic temperature of NixZry is much larger than that of the reported NixTiy.

Figure 12c exhibits the typical morphology of the reacting region. This region was
more compact than the preheated region due to more liquid phase filling. It could also
be observed that B4C was tightly surrounded by the liquid phase, and a portion of B4C
had reacted. According to X-ray micro-diffraction and previous DSC results, the reaction
between Zr and B4C occurred first in this region, and a great quantity of exothermic heat
was released. The temperature of the system increased to reach the eutectic temperature of
Ni10Zr7-Ni (1423 K) and NiZr-Ni (1443 K) [23], and the Ni-Zr liquid phase was formed. The
quaternary Ni-Zr-B-C liquid phase was formed after dissolving with the Ni-B liquid phase
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and dissolving some C atoms; then, a great quantity of ZrB2 and ZrC were precipitated
from the liquid phase.
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Figure 13 shows the morphology around the B4C particles in the reacting region
and the EDS-line analysis of each element. The left part of the figure shows the interface
between Zr and B4C, and a high content of the Zr element was also detected near the
interior of B4C, indicating that a solid–solid reaction between Zr and B4C occurred, and a
portion of ZrB2 and ZrC were formed through this reaction. The right part of the figure
shows the interface between the Ni-Zr liquid phase and B4C, where parts B and C could
obviously diffuse into the Ni-Zr liquid phase.
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The microstructure of the fully reacted region is illustrated in Figure 12d. With the
formation and saturation of a great quantity of the Ni-Zr-B-C liquid phase, a large amount
of ZrB2 and ZrC was precipitated. It can be seen that the B4C particles were decomposed,
and some holes were left at the original positions of the B4C particles.

Therefore, the reaction mechanism in the Ni-Zr-B4C system during SHS is proposed
as follows: (1) Ni + Zr + B4C→ (2) NiZr + Ni10Zr7 + Ni2B + Ni4B3 + Ni + Zr + B4C→ (3)
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NiZr + Ni10Zr7 + Ni-B (liquid) + ZrB2 + ZrC→ (4) Ni-Zr (liquid) +Ni-B (liquid) or Ni-B-C
(liquid) + ZrB2 + ZrC→ (5) Ni-Zr-B-C (liquid) + ZrB2 + ZrC→ (6) ZrB2 + ZrC + Ni.

Based on the results of the DSC analysis and quenching experiment, it was determined
that the reaction mechanism of ZrB2 and ZrC under the two conditions was basically the
same. Initially, Ni reacted with B4C and Zr to form Ni2B, Ni4B3, NiZr, Ni10Zr7, and other
intermediate phases. As the temperature increased, Ni2B and Ni4B3 formed an Ni-B eutectic
liquid phase. When the temperature increased further, some Zr directly reacted with B4C,
and a large amount of heat was released to promote the temperature increase in the system.
After reaching the eutectic temperature of Ni10Zr7, NiZr, and Ni, an Ni-Zr binary liquid
phase was formed. When the two binary liquids mixed with each other, and some free C
dissolved into it, the Ni-Zr-B-C quaternary liquid phase was formed. Finally, when the
concentration of [Zr], [B], and [C] in the liquid met the conditions for the formation of ZrB2
and ZrC, a large amount of ZrB2 and ZrC precipitated out of the saturated liquid.

The difference is that under the DSC condition, the reactant system showed a loose
morphology, a small heating rate, and a large heat loss, leading to a slow liquid phase
formation rate, and a long reaction time to precipitate ZrB2 and ZrC from the liquid phase.
In the SHS reaction, the reactant had a high heating rate and a small heat loss, which can
quickly form the liquid phase and instantly generate a large amount of ZrB2 and ZrC.

4. Conclusions

ZrB2-ZrC/Ni cermets were successfully synthesized by SHS using the Ni-Zr-B4C
system. The SHS reaction behavior and the formation mechanism of ceramic particles were
systematically studied.

(1) With the increase in Ni content, the adiabatic temperature (Tad), the maximum
combustion temperature (Tc), the ignition delay time (tig), and the ceramic particle size
in the product all showed a gradually decreasing trend. When the content of Ni was low,
the product was mainly composed of Ni, ZrB2, and ZrC. When the content of Ni exceeded
40 wt.%, a large number of the intermediate phases existed in the product.

(2) With the increase in B4C powder size, the ignition and propagating process of the
SHS reaction became more and more difficult, and the spread rate of combustion wave and
the formation rate of product gradually decreased. When the particle size of the B4C powder
was larger than 40 µm, the product contained a large number of intermediate phases.

(3) It is revealed that the formation mechanism of ZrB2 and ZrC in the Ni-Zr-B4C
system under the DSC condition and the SHS reaction in the glove box is basically the
same. Initially, Ni reacted with B4C and Zr to form some intermediates such as Ni2B,
Ni4B3, NiZr, and Ni10Zr7, and then the Ni-B eutectic liquid phase formed. As a part of Zr
directly reacted with B4C, a great quantity of heat was released to promote the increase in
the system temperature, and the Ni-Zr binary liquid phase formed. When the two binary
liquids mixed with each other and some free C dissolved into it, the Ni-Zr-B-C quaternary
liquid phase formed. Finally, a great quantity of ZrB2 and ZrC were precipitated out of the
saturated liquid. These results are expected to provide a theoretical basis for the formation
mechanism of ZrB2-ZrC/metal cermet composites using the SHS method.
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